Seventh Meeting; May 10th, 1895.

Wm. Peddie, Esq., M.A., D.Sc., in the Chair.

Proof of a Theorem in Conics.

By R. F. Muiriead, M.A.

I.

In text books of Plane Coordinate Geometry, two methods are usually given for investigating the condition that the general equation of the second degree:

$$
\phi \equiv a x^{2}+b y^{2}+c z^{2}+2 f y z+2 g z x+2 h x y=0
$$

may represent a pair of real or imaginary straight lines.
The first is by identifying ϕ with the product of two linear factors, say $\quad \lambda \lambda^{\prime} \equiv(l x+m y+n z)\left(l^{\prime} x+m^{\prime} y+n^{\prime} z\right)$. Equating coefficients, and eliminating $l, m, n, l^{\prime}, m^{\prime}, n^{\prime}$, we get

$$
\left|\begin{array}{lll}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right|=0, \text { or, Discriminant }=0
$$

as the condition required.
The second method consists in solving $\phi=0$ as a quadratic equation in x, and deducing the condition that the expression in y and z under the radical sign, should be a perfect square.

This as before, gives the condition : Discriminant $=0$.
We may note by the way that of these two methods, the former, strictly speaking, proves only the necessity, and the latter, only the sufficiency of the condition; so that the propositions proved are converse, one of the other.

The object of this Note is to point out a short way of performing the elimination required in the former method, by forming the determinant which is the product of the two zero determinants

$$
\left|\begin{array}{cc}
l, l^{\prime}, & o \\
m, m^{\prime}, & o \\
n, n^{\prime}, & o
\end{array}\right| \quad \text { and } \quad\left|\begin{array}{c}
l^{\prime}, l, o \\
m^{\prime}, m, o \\
n^{\prime}, \\
n, o
\end{array}\right|
$$

The product is the symmetrical determinant

$$
\left|\begin{array}{ccc}
l l^{\prime}+l l^{\prime} l, & l m^{\prime}+l^{\prime} m, & l n^{\prime}+l^{\prime} n \\
m l^{\prime}+m^{\prime} l, & m m^{\prime}+m^{\prime} m, & m n^{\prime}+m^{\prime} n \\
n l^{\prime}+n^{\prime} l, & n m^{\prime}+n^{\prime} m, & n n^{\prime}+n^{\prime} n
\end{array}\right|
$$

which is of course identically equal to zero.
But if ϕ is identical with $\lambda \lambda^{\prime}$ the determinant is obviously the same as

$$
8 \times\left|\begin{array}{ccc}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right|
$$

Thus the discriminant of ϕ is zero if ϕ represents a pair of straight lines.

Of course $\lambda \lambda^{\prime}=0$ is the standard form when we have a pair of real straight lines; and can only represent an imaginary pair when some of the coefficients are imaginary. The standard form for a pair of imaginary lines (or point-ellipse) would be $\lambda^{2}+\lambda^{\prime 2}=0$, where $\lambda \equiv l x+m y+n z$, etc.

In this case the identification with ϕ gives

$$
a=l^{2}+l^{\prime 2}, f=m_{2} n+m^{\prime} n^{\prime}, \text { etc., etc. }
$$

And the elimination of $l, m, n, l^{\prime}, m^{\prime}, n^{\prime}$ can here be performed by squaring the zero determinant

$$
\left|\begin{array}{lll}
l & l & o \\
m & m^{\prime} & o \\
n & n^{\prime} & o
\end{array}\right|
$$

and substituting a for $l^{2}+l^{\prime \prime}, f$ for $m n+m^{\prime} n^{\prime}$, etc., in the result.

II.

It occurred to me recently that this method of getting the condition discriminant $=0$ by multiplying two determinants, might be capable of application to discuss the discriminant in the general case. I have only had leisure to make a beginning in this direction, and none to look up the literature of the subject; but the following results seem interesting, and are new to me.

Suppose the general expression ϕ put into the form

$$
p \lambda^{2}+p^{\prime} \lambda^{\prime 2}+p^{\prime \prime} \lambda^{\prime \prime 2}
$$

where $p p^{\prime} p^{\prime \prime}$ are constants and $\lambda \equiv l x+m y+n z$, etc. ; thus we have

$$
a=p l^{2}+p^{\prime} l^{\prime 2}+p^{\prime \prime} l^{\prime \prime 2}, f=p m n+p^{\prime} m^{\prime} n^{\prime}+p^{\prime \prime} m^{\prime \prime} n^{\prime \prime}, \text { etc., etc. }
$$

and the discriminant

$$
\left|\begin{array}{lll}
a & h & g \\
h & i & f \\
g & f & c
\end{array}\right|
$$

is obviously
the product

$$
\left|\begin{array}{ccc}
l & l^{\prime} & l^{\prime \prime} \\
m & m^{\prime} & m^{\prime \prime} \\
n & n^{\prime} & n^{\prime \prime}
\end{array}\right| \times\left|\begin{array}{ccc}
p l, & p^{\prime} l^{\prime}, & p^{\prime \prime} l^{\prime \prime} \\
p m, & p^{\prime} m^{\prime}, & p^{\prime \prime} m^{\prime \prime} \\
p n, & p^{\prime} n^{\prime}, & p^{\prime \prime} n^{\prime \prime}
\end{array}\right|
$$

which may be written

$$
p p^{\prime} p^{\prime \prime} \times\left|\begin{array}{ccc}
l & l^{\prime} & l^{\prime \prime} \\
m & m^{\prime} & m^{\prime \prime} \\
n & n^{\prime} & n^{\prime \prime}
\end{array}\right|^{2}
$$

and this is $=p \cdot p^{\prime} \cdot p^{\prime \prime} . \mathrm{NN}^{\prime} \mathbf{N}^{\prime \prime} \times$ twice area of triangle formed by the lines $\lambda=0, \lambda^{\prime}=0, \lambda^{\prime \prime}=0$; where $N, N^{\prime}, \mathbf{N}^{\prime \prime}$, are the minors of $n, n^{\prime}, n^{\prime \prime}$.

This of course vanishes when the lines are concurrent, in which case ϕ is expressible as the sum of two squared linear terms; and also when $p p^{\prime} p^{\prime \prime}=0$, i.e. when one at least of the squared terms is awanting.

The lines $\lambda=0, \lambda^{\prime}=0, \lambda^{\prime \prime}=0$ form a self-conjugate triangle for the conic; and such triangles are triply infinite in number for a given conic. We get the same result as to the possible number of ways of expressing ϕ in the form $p \lambda^{2}+p^{\prime} \lambda^{\prime 2}+p^{\prime \prime} \lambda^{\prime 2}$ by noting that
there are 8 independent ratios between the coefficients of the latter expression, and only 5 in ϕ.

Again, it appears that the discriminant may vanish in virtue of $p^{\prime \prime}$ being zero, in which case the value of $\lambda^{\prime \prime}$ might be anything whatever ; in fact, it seems that in such a case, while two sides of a self-conjugate triangle must pass through the centre of the conic, the position of the third is quite indeterminate, a result which is obvious also from the geometrical point of view.

