
15
Polarization in deep-inelastic scattering

Suppose that the initial lepton beam is longitudinally polarized. If the
target nucleon is unpolarized and unobserved, there is no effect on the
cross section because parity is conserved in the strong and electromagnetic
interactions. We consider parity violation induced by the weak interaction
in the next chapter.

Suppose, however, that the target nucleon is polarized along the incident
electron direction so that it is also longitudinally polarized in the infinite-
momentum frame. There is then additional information on the strong-
interaction spin structure of the nucleon in deep-inelastic scattering (DIS)
experiments carried out under these conditions. Many such N(e, e′)DIS

experiments have now been performed, starting with the work of Vernon
Hughes and collaborators at SLAC [Hu83]. A theoretical analysis of
such experiments follows immediately from our discussions of the quark–
parton model in chapter 14 and of the polarization of spin-1/2 fermions
in appendix D.

In the extreme relativistic limit (ERL) one can simply insert the ap-
propriate helicity projection operator for massless fermions in the lepton
trace. For helicity h = ±1 one uses1

Ph =
1

2
(1 − h γ5) (15.1)

The result is that the lepton trace now takes the form

ηhμν = −2ε1ε2
1

2

∑
s1

∑
s2

ū(k1)γνu(k2)ū(k2)γμ(1 − hγ5)u(k1)

= −ε1ε2 trace

[
γν

(−iγλk2λ

2ε2

)
γμ(1 − hγ5)

(−iγρk1ρ

2ε1

)]

1 Note that the h used here is twice the spin projection.
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15 Polarization in deep-inelastic scattering 111

=
1

4
4
[
k2νk1μ + k1νk2μ − (k1 · k2)δμν + hεμνλρk2λk1ρ

]
= ημν + hεμνλρk2λk1ρ (15.2)

Here, as before

ημν = k2νk1μ + k1νk2μ − (k1 · k2)δμν (15.3)

Since the helicity is a pseudoscalar under the parity transformation (wit-
ness the γ5 in the helicity projection operator), there can now be a pseu-
dotensor contribution hεμνλρk2λk1ρ to the response tensor.

Assume the target is longitudinally polarized and has helicity aligned
(↑) along p. Now carry out exactly the same impulse approximation
calculation in the quark–parton model as in the previous section only now
insert a projection operator for the relativistic quarks of helicity hi = ±1

Phi =
1

2
(1 − hiγ5) (15.4)

Evidently hi measures the helicity of the quarks relative to the helicity
of the nucleon (here ↑). An inspection of the arguments leading to Eq.
(14.34), and the above analysis, indicate that one should make the following
replacement in Eq. (14.34){

p′
μpν + p′

νpμ − (p · p′)δμν
}

→{
p′
μpν + p′

νpμ − (p · p′)δμν + hi εμνλρp
′
λpρ

}
(15.5)

One then proceeds in exactly the same manner to Eq. (14.36) with the
result

W (i)
μν

.
=

Q2
i

2
δ(ηi − x)

[
δμν +

2ηi
mν

pμpν +
hi

mν
εμνλρpλqρ

]
(15.6)

An incoherent sum over all quarks implies that there is an additional
Lorentz covariant contribution to the DIS response tensor for this nucleon
with positive helicity of the form

δW ↑
μν = W ↑ 1

m2
εμνλρpλqρ (15.7)

The quark–parton model identifies

2ν

m
W ↑ =

∑
i

Q2
i hifi(x)

=
∑
i

Q2
i [f

↑
i (x) − f

↓
i (x)] (15.8)
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112 Part 2 General analysis

Here an obvious notation has been introduced to denote the helicity of
the quark relative to the helicity of the nucleon. The quark–parton model
predicts that the combination on the left side of Eq. (15.8) obeys Bjorken
scaling in DIS, and furthermore, that it measures the helicity distribution
of the quarks inside the nucleon in the infinite momentum frame

2ν

m
W ↑ → G1(x) ; DIS

G1(x) =
∑
i

Q2
i [f

↑
i (x) − f

↓
i (x)] (15.9)

It remains to investigate the physical consequences of the additional terms
in the lepton and target response tensors in Eqs. (15.2) and (15.7) in the
polarized case.

These results can be used to compute the asymmetry for scattering of
the lepton by the target in the case when the helicities are both aligned or
antialigned. Define this asymmetry by

A ≡ dσ↑↑ − dσ↓↑
dσ↑↑ + dσ↓↑

(15.10)

The subscripts refer to the particle helicities, the convention here being
that the first subscript is that of the electron and the second that of the
nucleon. Parity invariance of the strong and electromagnetic interactions
implies that A will be unchanged under a reversal of both helicities, as
the reader can readily verify explicitly from the preceeding arguments.2

First note that when two tensors are contracted, they must both be even
or odd in the interchange of the indices μ and ν to get a non-zero result.
Then, since all common factors cancel in the ratio, the problem reduces to
the evaluation of the following expression

A = W ↑ 1

m2

εμνλρk2λk1ρ εμνστpσqτ

ημνWμν
(15.11)

The denominator is evaluated in Eq. (11.32)

ημνWμν = (k1μk2ν + k1νk2μ − k1 · k2 δμν)

(
W1δμν + W2

pμpν

m2

)

= W1(−2k1 · k2) + W2
1

m2
(2 p · k1 p · k2 − p2 k1 · k2)

= W1q
2 + W2

1

m2

(
2 p · k1 p · k2 − 1

2
m2q2

)
(15.12)

2 Compare with Eq. (13.55).
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15 Polarization in deep-inelastic scattering 113

Recall q = k2 − k1 and q2 = −2k1 · k2 in the ERL. The numerator is
evaluated using Eq. (D.18)

W ↑ 1

m2
εμνλρk2λk1ρ εμνστpσqτ = 2W ↑ 1

m2
(k2 · p k1 · q − k1 · p k2 · q)

= −W ↑ q
2

m2
p · (k1 + k2) (15.13)

In the quark–parton model in DIS with x = q2/2mν one has from before

2W1 = F1(x) =
∑
i

Q2
i [f

↑
i (x) + f

↓
i (x)]

ν

m
W2 = F2(x) = xF1(x)

2ν

m
W ↑ = G1(x) =

∑
i

Q2
i [f

↑
i (x) − f

↓
i (x)] (15.14)

Hence one can write the asymmetry A as

A ≡ N

D
N = −G1(x)mν [p · (k1 + k2)]

D = F1(x)

[
m2ν2 +

(
2 p · k1 p · k2 − 1

2
m2q2

)]
(15.15)

An equivalent expression is

A =
G1(x)

F1(x)
D

D = − mν [p · (k1 + k2)][
m2ν2 +

(
2 p · k1 p · k2 − m2q2/2

)] (15.16)

These two expressions give the quark–parton result for A in DIS written in
Lorentz invariant form. The first factor shows that what is being measured
in these experiments is the ratio G1(x)/F1(x). The second depolarization
factor (of the virtual photon which must transmit the spin information) is
purely kinematic.

In the laboratory frame where p = (0, im), one has in the ERL

D =
ε21 − ε22

ε21 + ε22 − 2ε1ε2 sin2 θ/2
(15.17)

This reproduces the result in [Hu95].
If one retains correction terms of O(m/ε1), and correspondingly consid-

ers other directions of the polarization of the target, then the expression
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114 Part 2 General analysis

for the polarization asymmetry becomes more complicated, and one can,
in fact, measure an additional spin structure function G2(x), whose inter-
pretation in the quark–parton model is more ambiguous. The full response
for arbitrary target polarization is given in [Vo92], where experimental
results from the scattering of very-high-energy polarized muons from
polarized nucleon targets is also discussed.
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