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Patterns within 
The ramblings of a former editor 

VICTOR BRYANT 

You have heard about the monkeys who will eventually type the 
complete works of Shakespeare, but that's just one example of the fact that 
eventually patterns will emerge out of chaos. As a simple example let us 
prove the well-known result that any sequence of real numbers must have an 
increasing or a decreasing subsequence. To avoid any ambiguity about what 
these terms mean let us assume that the numbers in the sequence are all 
different and, for the sake of illustration, let us assume that they are all 
positive. Then illustrate the sequence xx, xi, *3, x4, xs, ... by vertical lines 
in the following way: 

X\ 

*2 

*3 

X4 

xs 

Now imagine that these are hotels stretching down to the sea on the 
Costa Little: mark those hotels '*' if they have a sea-view, i.e. if their view 
of the sea is not obscured by some taller hotel between them and the sea: 

» Hol'< Hotel 
Panorama * Brii, 

n Vista 

^ to the sea 

Now either there will exist an infinite number of hotels with a sea-view 
(in which case they clearly form a decreasing sequence) or from some point 
onwards (the kth, say) no hotel has a sea-view. But then the kth's view is 
obscured by some higher one, whose view is obscured by some higher one, 
whose view is ... giving, an increasing subsequence. 

For a different example consider the well-known fact that if there are six 
people in a room then either three of them will know each other or three will 
be mutual strangers. To make this more precise and to prepare the ground 
for generalisations consider the six people as points in a plane and join two 
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by a black line if they know each other and by a white line (shown as dotted 
in the picture) if they don't. Then there will exist three points all joined to 
each other in the same colour; e.g. 1, 2 and 5 in the following example: 

The proof of that result for any colouring is delightful. Consider any one 
point and the five lines leading from it (each in black or white). There must 
be at least three lines of one colour: assume, say, that there are three black. 
Now consider the three points at the other ends of those three black lines: 

Either all of the lines in here ^^_ 
are white (and we have found three 
points all joined in white) or there (_ 
is a black line in here (and overall 
we've found three points joined in black) 

This can be extended in all sorts of ways: see, for example, Keith 
Austin's article [1] - which also shows some links with the previous 
problem - or the Chapter on Ramsey theory in my book [2]. One interesting 
way of extending this result is to prove that if 17 points are all joined in 
pairs by lines in any one of three colours, then again there will be three of 
them all joined in lines of the same colour. Can you see how the proof will 
go? Imagine the 17 have all been joined up in black, white or red lines. Then 
consider any one point and the 16 lines coming from it: there must be at 
least of six of the same colour, so assume that there are six red lines and 
look at the points at the other end of those six red lines. If any pair of them 
is joined in red we have found three all joined in red. On the other hand if all 
six of those points are joined in black and white then we are back to the 
earlier problem and there are bound to be three joined in black or white. 

Where did the '17' come from? We had to make sure that the 16 lines 
included at least 6 of one colour. This followed since 16 = 5 + 5 + 5+ 1 and 
so 5 of each colour would not be enough. So how many points will have to 
be joined up in four colours to ensure that we can use similar arguments to 
show that there exist three all joined in the same colour? When we consider 
one point we would like its lines to include 17 of the same colour, so 
6 5 ( = 4 x l 6 + l ) lines will ensure this, and we must look at 66 points all 
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joined together in one of four colours, etc. The table shows the values 
obtained inductively by this sort of argument, and the interested reader can 
prove it: 

Number of colours 

Number of points 

1 

3 

2 

6 

3 

17 

4 

66 

5 

327 

n 

[nle] + 1 

It's a pleasant surprise that the number e has emerged from that finite 
process. The result also enables you to deduce Schur's theorem which says 
that if the integers from 1 to [n\ e] are each coloured in one of n colours then 
there are bound to exist x, y and z, not necessarily distinct, of the same 
colour and with x + y = z. To prove it, imagine that you are given the 
integers coloured. Then take [nle] + 1 points in the plane, numbered 1, 2, 
3, ..., and join each one to each of the others using the same colour for the 
line joining / toy (/ < j) as was used for the number j - i. There must exist 
three, i, j and k say with i < j < k, joined in the same colour: what does 
that tell you about the numbers j - i, k - j and k - /? 

That result leads us on to another related problem. We illustrate this first 
by making the following observation: if you evenly space out nine balls in a 
row, each of them being black or white, then there are bound to be three of 
the same colour with one exactly mid-way between the other two; e.g. 3, 6 
and 9 in the following array: 

o « o » » o « o o 
1 2 3 4 5 6 7 8 9 

However it is certainly possible to place eight balls in a row without that 
property (for example the eight obtained by omitting number 9 above). 
Another way of saying this is that if you colour each of the integers 1 to 9 
black or white then three of them of the same colour will have one which is 
the average of the other two. In order to prepare the way for generalisations, 
an even grander way of saying the same thing is that: 

If you colour the integers 1 to 9 in either of 2 colours there 
will exist a 3-term arithmetic progression in one colour. 

It is amazing that we can generalise that result to any number of colours 
instead of just 2 and any length arithmetic progression instead of 3 that we 
like: of course the number corresponding to the 9 might be very much larger 
and indeed, in general, quite hard to find. For example there exist numbers 
M and N such that: 

If you colour the integers 1 to M in any of 3 colours there 
will exist a 3-term arithmetic progression in one colour. 
If you colour the integers 1 to N in any of 3 colours there 
will exist a 4-term arithmetic progression in one colour. 

Etc. 
With a bit of computer help you might like to try to find the lowest M 

and N which work. But if you're not actually looking for the lowest number 
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which works, then some delightful counting arguments can be used. For 
example changing the 9 to 325 in the first result gives 

If you colour the integers 1 to 325 in either of 2 colours there 
will exist a 3-term arithmetic progression in one colour 

and enables us to use the following proof. Imagine the coloured 1 - 325 as a 
row of evenly-spaced black and white balls and imagine them in 65 clumps 
of 5. So for example the first clump might be 

O O • • O 

and the second clump might be 

• O • • O 

As there are only 32 different patterns of this type there must be two 
clumps amongst the first 33 which have the same pattern, the mth and nth 
clumps, say, where m < n. Then look also at the (2n - m)th clump (which 
is still amongst the 65 clumps). Then either one of these clumps itself 
contains a 3-term arithmetic progression of one colour (and we've finished) 
or overall we'll look at our three special clumps; e.g. 

• o • • o ... • o • • o ... o o o o o 
? ? ? ? ? ? 

Now imagine the ball marked '??' as white and black in turn: can you see 
in the example illustrated that in either case it is possible to pick out a 3-
term arithmetic progression in one colour? Can you see how the proof 
generalises to all cases? 

The advantage of that proof is that it generalises to higher numbers of 
colours. For example, if you want to find your own proof of the 
corresponding result for a 3-term arithmetic progression in one colour when 
3 colours are allowed, try replacing 325(= (2 x 2 + 1) x (2 x 22 x 2 + 1 + 1)) by 

(2 X 3 + 1) X (2 X 3 2 X 3 + 1 + 1) X (2 X 3 ( 2 * 3 + 1 ) * ( 2 K 3 ' « 3 + , + 1) + !) 

and look at clumps of clumps of 7(!). This idea leads to the van der 
Waerden numbers. 

All the above examples are part of Ramsey theory which covers a whole 
family of results illustrating in some specific way that 'infinite disorder is 
impossible'. When I remember my desk during the ten years in which I 
edited the Gazette I am tempted to think that Ramsey theory is wrong. That 
was partly the excuse for including these items in an article for this 
centenary edition. But no excuse is really needed: the delightfulness of the 
results and the surprise emergence of a pattern in each case will, I hope, 
have entertained you. Indeed, during my editorship one of the real joys of 
the job was the discovery by various contributors of some pattern which I 
had not seen before. Ones that stick in mind include 'Strike it out - add it 
up' [3] which observed the following patterns obtained by deleting some 
integers and forming subtotals of what is left: 
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Delete every second 

Form subtotals of the rest 

1 1 3 <T 5 6 7 « 9 Kf 11 ... 

1 4 9 16 25 36 ... 

That was expected, but what about: 

Delete every third 

Form subtotals and delete every second 

Form subtotals of the rest 

1 2 2 4 5 6 7 8 9 10 11 ... 

1 2 7 YL 1927 3748"... 

1 8 27 64 ... 

That delightful emergence of squares and cubes generalises in all sorts of 
ways. 

I also remember with pleasure the articles on self-descriptive strings [4, 
5, 6]. What is special about the list 

6 2 1 0 0 0 1 0 0 0? 

How many 0's does it have? How many l's? How many 2's? ... As 
subsequent articles and correspondence showed, this topic created a lot of 
classroom interest. Other ideas which I learned in that era and have used 
time and again in my teaching are the neat proofs that 
cos (sin*) > sin (cosx) [7], combinations of postage stamps [8] (and many 
subsequent notes), the convergence of 1 - \ + I - 7 + ... [9], and so on 
and so on. 

I also had my fair share of world scoops. Perhaps the best 'proof of 
Fermat's last theorem out of the many I received was the following: 'If you 
take a cube of side 3 and a cube of side 4 and break them down into little 1 x 
l x l cubes you get 91 cubes altogether. No matter how hard you try these 
do not form another cube. A similar argument works in all cases.' 

Another gem missed by Gazette readers was the following 'proof of 
Goldbach's conjecture that every even number greater than 4 can be written 
as the sum of two odd primes. Bearing in mind the simplicity of the 
following proof, it is amazing that it defeated great mathematicians for so 
long: 'Let the two odd primes be In + 1 and 2m + 1: their sum is 
2n + 2m + 2 which is even'. 

All in all, editing the Gazette for part of its first 100 years was a 
privilege which made me many friends throughout the world and it greatly 
enriched the pattern of my mathematical life. 
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