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WEIERSTRASS POINTS AT THE CUSPS OF r0(i6p) 
AND HYPERELLIPTICITY OF r0(«). 

H. LARCHER 

For a fixed positive integer n we consider the subgroup T0(n) of the modular 
group r ( l ) . T0(n) consists of all linear fractional transformations 
L: z —> (az + b)/ (cz + d) with rational integers a, b, c, d, determinant 
ad — be = 1, and c = 0(mod n). If ffl = {z|;s = x + iy, x and 3; real and 
y > 0} is the upper half of the s-plane then S0 = S0(n) = J4?/T0(n), properly 
compactified, is a compact Riemann surface whose genus we denote by g(n). 
A point P of a Riemann surface S of genus g is called a Weierstrass point if 
there exists a function on S that has a pole of order a S g at P and is regular 
everywhere else on 5. 

Lehner and Newman started the search for Weierstrass points of S0 (or, 
loosely, of r0(w)). In [5], they gave sufficient conditions for the cusps 0 and 
ico to be Weierstrass points of T0(n) provided that n = 0 (mod 4) or n = 0 
(mod 9). In [1], Atkin obtained a much more general result. We may loosely 
describe his result by the statement that "almost all" n which are not quad-
ratfrei have the cusps 0 and ico as Weierstrass points of T0(n). To qualify 
"almost all", we mention that his proof does not apply for relatively few, 
but still infinitely many n which are not quadratfrei. Among these are found 
the integers of the form n — 16̂ >, where the prime p ^ 3, and which are the 
objects of the first part of our investigation. 

The papers [5] and [1] used the following result which is essentially due 
to Schoenberg (see [8]). Let S\ and 52 be compact Riemann surfaces of respec­
tive genera gi and g2 fe è 2), and let II: S2 —* Si be an analytic branched 
covering such that all points on S2 lying over the same point P of Si have the 
same branch order. If n ^ 2 is the number of sheets in S2 over Si, and if S2 
has either (i) more than four branch points of order n — 1, or (ii) only one 
branch point of order n — 1 and the total branch order B of S2 over Si satisfies 
B ^ 2(n — 2), then these branch points are Weierstrass points of S2. The 
result is obtained by lifting suitable functions on Si to functions on S2 and 
making use of the Riemann-Hurwitz relation 2(g2 — 1) = 2n(gi — 1) + B. 
If the relation is written in the form n(gi + 1) = gi — (B — 4w + 2)/2, we 
readily deduce that the points of branch order n — 1 are Weierstrass points 
provided that B ^ 4w — 2 or B ^ 2n — 4. 

This paper consists of two parts whose results are contained in the following 
two theorems. 
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THEOREM 1. If the prime p ^ 3, then all cusps of T0(16p) are Weierstrass 
points. 

THEOREM 2. For all sufficiently large positive integers n, T0(n) is not hyperel-
liptic. 

The latter result may be compared with a conjecture by Lehner and Newman 
that for n ^ 72, To(n) is not hyperelliptic. The proof of Theorem 1 is based 
on the following result by Lewittes which is found in [6]. If H is a group of 
automorphisms of order k of a Riemann surface 5 of genus g (i.e., conformai 
homeomorphisms of S onto itself), D the vector space of abelian differentials 
of the first kind on 5, and if h is an element of H, then h can be used to define 
a linear transformation on D. Thus we obtain a representation of H by a group 
of matrices ff*. If h generates H, h(P) = P for a point P on S, and h rotates 
at P by e, where e is a primitive &-th root of unity, then with respect to a 
suitable basis in D, h has a representation by the diagonal matrix 

diag(e% e**, . . . ,€*>), 

where 71, 72, . . . , y0 are the gaps at P. Denoting the number of diagonal 
elements of the form e2wil/lc by m (I) {I — 0, 1, . . . , k — 1), it is clear that 
knowledge of the m (I) might yield sufficient information to conclude that P 
is a Weierstrass point. 

Proof of Theorem 1. First we compute the number of cusps of S0(16p) 
and the number of double triangles which meet at each cusp. These triangles 
derive from the standard triangulation of a fundamental domain of T0(16p). 
Since some of the results obtained here are of interest beyond the scope of this 
paper, we again let n by any positive integer. With regard to the following 
derivation, see also [10]. 

We consider the subgroup of T(l) defined by 

k=l 

where T(n) is the principal congruence subgroup of level n of T(l) and 
U: z —* z + 1. If A is an element in Tn then 

Â = |̂ 0 [J (mod»), 

where the integer r satisfies 0 ^ r ^ » - 1. Now it is readily verified that 
Tn is a normal subgroup of T0(n). From this, the determinant condition 
ad = 1 (mod n) for the elements of r0(w), and the observation that the pairs 
(a, d) and ( — a, —d) lead to the same substitution, follow that the factor 
g r o u p s = T0(n)/Tn is a group of automorphisms of order %<p(n) of S(Tn), the 
compact Riemann surface associated with Tw, where <p(n) is the Euler ç 
function. From now on, S(G) denotes the Riemann surface associated with G, 

https://doi.org/10.4153/CJM-1971-103-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-103-6


962 H.LARCHER 

where G is a subgroup of r ( l ) . 7 ^ may contain elliptic and parabolic elements 
and hence have elliptic and parabolic fixed points on S(Tn). The number of 
elliptic elements depends on the number of incongruent solutions of the con­
gruences x2 + 1 = 0 and x2 — x + 1 = 0 (mod n). The number of para­
bolic substitutions in ^f is equal to the number of incongruent solutions of 
x2 = 0 (mod n) with x ^ 0. The last congruence has solutions provided 
only that n is not quadratfrei. If n = d2m, where m is quadratfrei and d > 1, 
then the incongruent solutions are x = kdm with 1 ^ k ^ d — 1. Putting 

j _ 1 + dm —m 
[_ n 1 — dm j ' 

we see that 

-p _ 1 + kdm —km 
[_ kn 1 — kdm J ' 

i.e., the parabolic substitutions i n 7 ^ form a cyclic subgroup °ll of order d. 
To compute the fixed points of the group of automorphisms tft on S(Tn) we 

define 

and observe that,J# does not contain any elliptic transformations. For a posi­
tive divisor e of d and e 9^ d we denote by h(e) the number of cusps on S(Tn) 
which are fixed points of the parabolic substitutions B in s/ such that Bd/e 

is in Tn and having the properties: (i) d/e is the smallest such integer, and (ii) 
there is no parabolic substitution B± i n s / such that B\ — B for some r > 1. 
Now h(e) is simply the number of modulo Tn inequivalent fixed points of the 
parabolic substitutions B whose matrices are of the form 

0 _ | 1 + \vedm —\28 | 
L jJL2e2mn/d 1 — \\xedm\ ' 

where (/x, X) = 1, (/x, d/e) = 1, (X, d/e) = 1, 8\e2m, and (5, e2m/5) = 1. The 
last three restrictions are necessary in order for B to satisfy the properties 
(i) and (ii), required in the definition of h(e), while the restriction (/x, X) = 1 
becomes obvious after writing down the fixed points of the substitutions B. 
It is well known that two pairs of integers {a, b) and [a', bf], where (a,b,n) = 1 
and (af, £', n) = 1, are equivalent modulo Tn, the homogeneous group associ­
ated with rw, if and only if V = b (mod n) and a! = a (mod(ô, w)). Applying 
this to the fixed points of the substitutions B we obtain 

He) = h 2 * <p(dô/e)<p(ne/dÔ). 

This may be written in the form 

(1) h(e) = i;U(«)*>(<*/«) Z*l . 
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n = d2m and m quadratfrei. Here we use the symbol X)* to indicate that 
summation is extended only over those divisors ô of e2m for which 
(<5, e2m/d) = 1. 

We derive one more formula which we need later on. If e\n we denote by 
*$e the set of cusps on S ( rw) at which e double triangles meet. If C is a parabolic 
substitution in Tn whose fixed point lies in 9%, then for suitable X and ju 

1 + \fxn — \e 
C = \ * n 1 ^ 

fi -n 1 — \un 
L e J 

where (X, n/e) — 1 and (/x, e) = 1. Since the matrix of the transform of C 
under R: z —> — 1/nz is of the form 

1 — Xjun —/x - , 
e 

L \ en 1 + X)uwj 
we deduce 

(2) R VeR-i = ^n / f l . 

To compute the number of cusps and the number of double triangles which 
meet at each cusp of S(Tn), we make use of the formula 

(3) f(e) = ±e<p(e)<p(n/e), 

where e\n and e ^ n, which is due to Lewittes [7]. Here, f(e) has the same 
meaning on S(T(n)) as h(e) has on S(Tn). If in (3) we replace e by n, we get 
the number of cusps on T (n) which are not fixed points under any auto­
morphism belonging to the group Tn/T(n). This is an immediate consequence 
of formula (2). Now it is readily seen that for any e which is a divisor of n 
there a.ref(e)/e cusps on S(Tn) at which e double triangles meet. It is advan­
tageous to introduce an expression from which this can be read off quickly. 
Making an unorthodox use of the set notation we define for Tn the "cusp 
schema" 

(4) ^ ( r „ ) = {?<p(e)<p(n/e)Ce\ e\n and e > 0}, 

where kCj means that there are k cusps at which j double triangles meet. 
After these preliminary results, we are ready to compute the "cusp schema" 

for r0(16£). From (4), it follows that 

^(Tiep) = {$<p(e)<p(lGp/e)Ce\ e\16p and e > 0}. 

By our theory, since n = 42^?, S(ri6 p) has a group of automorphisms of order 4. 
According to formula (1), there are h (I) = ^y{p) and h (2) = 8(p(p) parabolic 
fixed points of order four and two, respectively. To decide which cusps on 
S(Tiep) are fixed under these automorphisms, we use (2) together with 
Rs$ R~1 = s/j which is readily verified. From ^(Tiep), one deduces that the 

https://doi.org/10.4153/CJM-1971-103-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-103-6


964 H. LARCHER 

fixed points of order four are the cusps of 9% and ^ 4 p and that those of order 
two are the cusps of 9% and ^ \ p . Hence, the "cusp schema" of s/(16p) is 

<£(s/) = {±<p(p)Ci, ±<f{p)Cv, <p(p)&, <p(p)C4p, <p(p)Cu, <p(p)Ciep}. 

Since S(s/ ) has a group of automorphisms of order <p(p) without parabolic 
fixed points, we finally have 

(5) Sf (r0(16£)) = {4Ci, 4CP, C4, C4„ C16, Ci«p}. 

Now r0(16^) is a normal subgroup of index four of r 0 (4£) . To show this we 
observe that if A is in To(16p) and J3 is in r0(4£>), where 

j = r a b~\ 
then BAB'1 is in T0(l6p) provided that a — d = 0 (mod 4). Writing the 
determinant as the congruence ad = 1 (mod 8), we deduce that a2 + d2 = 2 
(mod 8). The two congruences imply that (a — d)2 = 0 (mod 8), and hence 
that a — d = 0 (mod 4). Thus the factor group r 0 (4^) / r 0 (16£) is a group 
of automorphisms of order four of S0(lQp). From the "cusp schema" (5), we 
see that it has four parabolic fixed points of order four, one of which is the 
cusp 0. To obtain a formula for mil) (I = 1, 2, 3) at 0, we need the rotations 
tfvirjU^ where (rjt 4) = 1, produced by a generator of the group of auto­
morphisms at all the fixed points Pi (j = 1, 2, 3, 4). Here the r / s are quad­
ratic residues mod 4, and hence r3 = 1 (j = 1, 2, 3, 4). To see the latter, one 
can simply write down the parabolic substitutions for the four fixed points 
and thus obtain the rotations. We do it in more generality, since it throws 
light on why and how the quadratic residues appear in the rotations. 

Let Gi be a normal subgroup of index k of G2 and let A be a parabolic 
substitution such that G2 = J^LiGiA', where T(n) C Gx C G2 C r ( l ) . (We 
remark that in all the cases we run into here, the groups G\ and G2 can be 
characterized by arithmetic properties of the coefficients of their respective 
elements.) Then G2/G\ is a cyclic group of automorphisms of order k of S(Gi). 
If the cusp P of S(Gi) is a fixed point of A, then there is a parabolic substitu­
tion B in G2 such that 

B = \l +
2
X/xa ~X^ ] 

L M c 1 — Xfiaj ' 
where be = a2, P — Xa/iic, and k is the smallest positive integer such that 
Bk is in Gi. Putting (X, /x) = e, we observe that for any e with (e, k) = 1, the 
parabolic substitution B (e) with 

75/ \ M + e 2 X^ —e2\2b 
L e JJL e 1 — e A/zaJ 

and (X, /x) = 1, is in G2 and has the same properties as B above. In the usual 
triangulation of S(Gi), a neighbourhood of P consists of a certain number of 
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double triangles. The two boundary arcs of this neighbourhood which meet 
at P are identified under Bk(l). Putting e(a) — e2xia, we see that 

(6) * = e(l/n*ck(z- P)) 

is a local parameter at P on S(G\). To find the rotation of A at P, we have 
to find that B (e) for which there exists an element C in G\ satisfying CA = B (e). 
This determines a unique e mod k, and hence the rotation of A at P is given 
by 

Introducing this in (6) yields t' = e(e2/k)t; i.e., .4 rotates at P by e(t2/k). 
Now m(0) = | , the genus of S0(4£), since this is the number of linearly 

independent differentials in D which are invariant under r 0 (4£) / r 0 (16£) . 
We obtain a formula for m(l) (I = 1, 2, 3) by either an application of the 
Riemann-Roch Theorem, or the use of a formula by Chevalley and Weil [3]. 
We use the latter and obtain 

(7) m(l) = g - 1 + £ (1 - 7/4), I = 1, 2, 3. 

In particular, we have: m(0) = | , w( l ) = g + 2, m(2) = g + 1, and 
w(3) = g. 

If g is the genus of 5o(16£) and if 71 < 72 < • . . < 1Q are the gaps at a 
point P on So which is not a Weierstrass point, then yt = i ior i = 1, 2, . . . , g. 
This implies that if P is not a Weierstrass point, then for any two non negative 
integers h and h less than k, \m(h) — mfa)] ^ 1. However, P is a Weierstrass 
point if for two integers h and h, \m(h) — m(/2)| ^ 2. In our case we have 
m(l ) — m(3) = 2, and hence the cusp 0 is a Weierstrass point of 5o(16£). 
Evidently, the same holds for all the cusps which are fixed points of 
r 0 (4£ ) / r 0 ( i 6£ ) . 

Finally, it is easy to see that all the cusps of S0(16p) are Weierstrass points. 
Let A be an automorphism of the Riemann surface S and le t / (P) be a function 
on *S. Then/(^4_ 1P) is a function on 5 and has the same behaviour at AP as 
f(P) has at P. In particular, P and AP are both Weierstrass points, or not. 
Now R: z —» — 1/16^2 is an automorphism of S0(16£) and maps (i) 0 onto 
ico, which is one of the cusps of fé\, and (ii) Cu onto one of the cusps of ^v. 
Under r 0 (4^) / r 0 (16^) , the four cusps of 9% and ^v are mapped onto them­
selves. This completes the proof of Theorem 1. 

We close this part by giving two examples for T0(n), where the only Weier­
strass points are the cusps. For r0(48) and r0(64), the genus g = 3 and the 
gaps at the twelve respective cusps are 1, 2, 5. Since (g — l)g(g + 1) = 24, 
there are no other Weierstrass points. For r0(48), it follows from our deriva­
tion by putting p = 3. In the case of r0(64), one has to carry out the parallel 
steps to the above derivation and one obtains the stated result. 
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Proof of Theorem 2. Henceforth, we call an automorphism of order two 
of a Riemann surface an involution. A hyperelliptic Riemann surface S of 
genus g has a unique involution J with 2g + 2 fixed points which are precisely 
the Weierstrass points of S. The possible orders which groups of auto­
morphisms of a hyperelliptic surface may have are rather few. Thus a look at 
them is often sufficient to conclude that a Riemann surface is not hyperelliptic. 
This will not work here, since in general we only know one involution of S0(n). 
In the proof of Theorem 2 we make use of the following 

LEMMA. An involution PL 7^ J of a hyperelliptic surface S has either 0, 2, or 
4 fixed points which are not Weierstrass points of S. 

Although it does not contain any new result we prove the lemma here. 
It may be considered trivially true if H has no fixed points. Let P be a Weier­
strass point of 5 and let us assume that HÇP) = P . Then there exists an 
iJ-invariant function / on 5 which has a pole of order two at P and is regular 
everywhere else on S. We can lower/ to a function / on 5, the orbit space of S 
under H, and / is regular everywhere on S except for a simple pole at one point. 
But H 9^ J implies that the genus g of S is at least one, which is a contradiction. 
Next we note that the set of Weierstrass points is invariant under an auto­
morphism. If II: S -+S is the branched analytic covering defined by H and 
if P is a Weierstrass point of S, then P = II (P) is a Weierstrass point S, 
provided g ^ 2. In particular, S is again hyperelliptic. From the Riemann-
Hurwitz relation we deduce 

(8) 2 | + 2 = 3 + g - * / 2 è £ + l = i (2* + 2), 
where t is the number of fixed points of H and g is the genus of S. This implies 
that t ^ 4 and that t is even for | ^ 2. (8) still holds for g — 1, since 
2 ( 1 + 1 ) S i g + 1 simply reflects the fact that a fixed point under H is not a 
Weierstrass point. 

An immediate consequence of the Lemma is the 

COROLLARY. If an involution H of a hyperelliptic surface has more than four 
fixed points then H — J. 

The idea in the proof of Theorem 2 is as follows. The substitution 
R: z —> — 1/nz defines an involution on So(n) with t fixed points all of which 
are elliptic for n ^ 5. For those n for which we can establish the inequality 
4 < / < 2g + 2, Theorem 2 follows from the Corollary. 

We divide the proof into several parts. 

(i) n is not quadratfrei and, if p, q, and r denote distinct primes, is not of the 
form: 

(1) n = 8p. 
(2) n = p2q and not both p and q are congruent 1 mod 12. 

(9) -{ (3) n = p2qr and neither x2 + 1 = 0 nor x2 — x + 1 = 0 (mod pqr) 
is soluble. 

(4) n = 81. 
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The exceptions (9) cover those n for which we do not know whether the 
cusp ico is a Weierstrass point or not (see [1]). 

We consider only those n for which g ^ 3 and we assume T0(n) to be 
hyperelliptic. For all these n, the cusp ico is a Weierstrass point of T0(n). The 
involution R has t = ônh( — 4n) fixed points, where h(d) is the class number of 
the quadratic number field of discriminant d and 8n is 2, 4/3, or 1 according as 
n = 7 (mod 8), w = 3 (mod 8), or n ?£ 3 (mod 4) (see [4]). For all n for which 
t > 4 we have by the corollary that R = J and that / = 2g + 2, which are 
all the Weierstrass points of T0(n). But ico is a Weierstrass point and not a 
fixed point of i£, which is a contradiction. As for the existence of ris for which 
/ > 4, we state the result: log A(—4n) ~ log \/4w, which is due to Siegel [9]. 

(ii) n is quadratfrei. Let n = IIzLi^, and let r0(w) be hyperelliptic. The 
genus of To(n) is given by the formula 

where a(w) and ô(^) are the numbers of incongruent solutions of x2 + 1 = 0 
and x2 — x + 1 = 0 (mod n), respectively. If a(n) and d(n) denote the sum 
and the number of divisors of n, then 

g = [a(n) - %a(ri) - 4b(n) - 6d(n) + 12]/12. 

Observing that d(n) = 2r is an upper bound for a(n) and b(n)y we obtain for 
all sufficiently large n 

2g + 2^ $[<r(n) - 13d(») + 12] > ^ l o g ( 4 r c ) ^ t > 4. 
7T 

Here we make use of the result of Siegel and of the inequality: 

h(-4d) ^ [2V3log(4d)]/7T, 

which holds for any positive integer d and is due to Bateman [2]. The in­
equality contradicts the hyperellipticity of T0(n). 

(iii) There remain the first three cases listed in (9). Their proofs are 
analogous to case (ii) and are not repeated here. This completes the proof of 
Theorem 2. 

We close with the remark (suggested by the referee) that Theorem 2 could 
be proved without Atkin's result, since the idea used in (ii) and (iii) would 
also work in part (i). However, the details in the proof of (i) would get more 
involved. 
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