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Introduction

Central Sidon sets and central Ap sets are defined and equivalent charac-
terizations are given. It is shown that a central Sidon set with an upper bound
on the degrees of its elements is a Ap set (1 < p < oo). The bound on the degrees
is shown to be necessary by an example.

Two sufficient conditions are given which insure that a set is central Sidon.
The first uses Riesz polynomials and provides a method for constructing infinite
central Sidon sets under appropriate conditions. The second generalizes the
notion of independent sets and shows that the set of nontrivial projections in
the product of subgroups of unitary groups is a central Sidon set.

1. Preliminaries

We assume the notation, definitions and theorems of [1J and [2]. Through-
out G will be a compact group with dual object E. For a e S , U" will be a con-
tinuous irreducible unitary representation of G with degree da and trace %„.
la will denote the identity operator on the Hilbert space upon which V acts.

If A is one of the algebras M(G), LP(G) (1 ^ p ^ oo), C(G), T(G), or K(G),
then Az denotes the center of this algebra under convolution multiplication.
If A is one of the (£/£) algebras [2, (28.34)], Az is the center of this algebra under
composition multiplication.

If feL\(G), the Fourier transform of/ is given by

and the Fourier series of / is

where aa = jGfxa dl. Such an / has absolutely convergent Fourier series
( /e K(G)) if
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||i = £ da\aa\ <co .

LEMMA 1.1. Let G be a compact group and A be one of the algebras
Lp(G) (1 ^ p < oo) or C(G). Then Az* = A*z.

PROOF. TO simplify notation we will at times consider Lp(G) (1 :S p g oo)
as a subset of M(G); i.e., fieLp(G) if dp = gdX where g eLp(G) and X is Haar
measure on G.

Let A be as in the statement of the theorem and let fi e A*z. Then y. restricted
to Az remains a bounded linear functional. To show A*z a Az* we need only
show the restriction mapping is one-to-one. It suffices to show that if pieA*z

and ju # 0, then n\ Az # 0. This, however, follows from the fact that n -> fi
is an isomorphism and tr fi(a) = Jc^d/i.

Now suppose SeAz*. By the Hahn-Banach theorem, S can be extended
to a linear functional, S', on A without increasing the norm. For feA, let
f"(x) = f(a~1xa). Since a ->/0"is continuous, a -* S'(f%) is a continuous func-
tion on G. Set

M(f) =J>
Then M is a linear functional on A, M(f) = S(f) for all feAz, and

M I = | SI = I S' | . Hence, there is a measure v e,4* such that M(J) = J*G/dv
for a l l / in .4. Since v * / = / * v for each/eC(G), veA*z. It follows that the
mapping /J -> // | 4 r carries 4*z onto 4Z*. An examination of the details shows
that this mapping is norm preserving and the lemma is proved.

2. Central Sidon sets and central Ap sets

In this section central Sidon sets and central Ap sets are defined and equiv-
alent characterizations of these sets are given. Theorems in this section should
be compared with those in [2, §37]. In particular the proofs of theorems 2.1,
2.2 and 2.3 are for the most part a carry over into our setting of the proofs given
by Hewitt and Ross [2, (37.2), (37.7) and (37.9)]. For this reason, instead of
giving complete proofs for these theorems, we will only indicate the ways in which
our proofs differ from the proofs given in [2].

For P c S , Cp(G) will denote the set of elements in the center of C(G)
(under convolution as multiplication) whose Fourier transforms are 0 oif P.
Call P a central Sidon set if

K(G).

It is immediate that every Sidon set in S is a central Sidon set [2, (37.1)].

THEOREM 2.1. Let f c L , The following assertions are equivalent:
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(i) P is a central Sidon set;
(ii) given E in (£^(P), there is a measure /j.eMz(G) such that fl(er) = Et

for all aeP;
(iii) given E in (£a(P), there is a function feL\{G) such that f (a) = £,

for all aeP;
(iv) UxP(G) c K(G);
(v) there exists a constant k such that
(vi) there exists a constant k such that
(vii) there exists a constant k such that

f
f
f

i £k
i ^ k

f\
f\
f\

xfor allfeLz
xP(G);

.for allf in CZ
P(G);

„ for all fin TP(G);
(viii) for each We TlaePsJa, eae{ — \,l}, there is a measure ueMz(G)

such that

(ix) for each We YlaBPeaIa, zne{ — 1,1}, there is a measure
such that

sup{||w;-/i(ff)| |#(o:ff6P}<l.

PROOF. The proof of our theorem is easily obtained by modifying the proof
of equivalent properties for Sidon sets [2, (37.2)]. This is done by replacing in
each instance (except in (ix) implies (i)) all functions and algebras by central
functions and central algebras. We mention several steps at which this modi-
fication may not be transparent. In the proof that (vii) implies (iv) we note that
the approximate identity used is contained in TZ(G). In the proof that (i) implies
(ii) we use the fact established in Lemma 1.1 that the dual of CZ(G) is MZ(G).
Finally, in the proof that (ii) implies (iii) we note that by the factorization theorem
[2, (32.22)],

REMARK. Dunkl and Ramirez [3] have shown that the dual object of an
infinite compact group is not a central Sidon set.

We next define and obtain equivalent properties for central Ap sets. Let P
be a subset of L, and let 1 < p ^ oo. Then P is said to be of type central Ap

or a central Ap set if every function in L\P{G) belongs to LZ
PP(G), i.e., if

L\P{G) = Lz
pP(G).

Note that every Ap set is also a central Ap set [2, (37.6)].

THEOREM 2.2. Suppose that P c S and 1 < q < p < oo. The following as-
sertions are equivalent:

(i) P is of type central Ap;
(ii) Lz

pP{G) = L*P(G);

(iii) there is a constant k such that

(iv) there is a constant k such that

(v) MZ
P(G) = Lz

pP(G).

£k\\f\\qfor all / e r p ( G ) ;

' f \\p ^ k \\ f \\, for allf eTz
P(G);
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PROOF. Again the proof follows easily from the proof for equivalent prop-
erties for Ap sets [2, (37.7)]. We need only mention that in the proof that(iv)
implies (v) we need the fact that for/e Lz

p(G),

(2.2.1) | / | | p = sup{\\f * h\\p: h e r*(G), 1^11^1};

see [4, (35.11)].

REMARK. If 1 < q < p ^ oo and P is a central Ap set, then P is also a central
Aq set. This is obvious from the definition and the inclusion

VP{G) <= L\{G).

For 1 < p < oo, p' denotes the number for which \\p + lip' = 1.

THEOREM 2.3. Suppose that P <= E and 1 < p < oo . The following assertions
are equivalent:

(i) P is of type central Ap;
(ii) for each geLp.{G), there is an heL^G) such that g(&) = h{<r) for

all creP;
(iii) for each geLp,(G), there is an heC\G) such that g(o) = h{a) for

all aeP.
If p> 2, the above are equivalent to:

(iv) for geUp'(G), we have

PROOF. Again the proof follows easily from the proof of equivalent prop-
erties for Ap sets [2, (37.9)]. In (i) implies (ii) we need the fact that the dual of
Vp(G) is Lz

p.(G); see Lemma 1.1. In (ii) implies (iii) we apply the factorization
theorem [2, (32.22)] to obtain

Finally to obtain (iv) implies (i), we use formula (2.2.1).
We now indicate a relationship between central Sidon sets and central Ap

sets.

THEOREM 2.4. Let G be a compact group with dual object £ and let P
be a central Sidon subset of"L such that N = sup{da: asP) < oo. Then P is
a Ap set and hence a central Ap set for all p in ]1, oo[.

REMARK. The corresponding theorems for Sidon and Ap sets holds even if
N = oo. It is due to Figa-Talamanca and Rider [4, Corollary 9]; an alternative
proof is given by Hewitt and Ross [2, (37.10)]. In section 4 below we give an
example which shows that the hypothesis N < oo is necessary. It should be noted
that our conclusion states that P is a Ap set and not simply a central Ap set.
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PROOF. Let s be an arbitrary integer such that s > max{2,l/2j>}. By the prop-
erties of Ap sets [2, (37.7) and (37.8)], it suffices to show that there is a con-
stant k' (depending on s) such that

( 2 . 4 . 1 ) l / | M / c ' | / | 2 f o r a l l / e r P ( G ) .

The mapping \i -> {il{o))aep is plainly a bounded linear mapping of M\G)
into (^(.P). Since P is a central Sidon set, (2.1.ii) shows this mapping carries
MZ(G) onto (£^(P). By a corollary to the open mapping theorem [2, (E.2)],
there is a constant k such that for each £eG^(P), there exists a fieMz(G) such
that

(2.4.2) I ju I g fc IE || „ and £(a) = Ea for all c e P.

Now consider / in TP(G), and write

/ ( * ) = E

Let G be the group fXreP^ where Ta = T, the circle group. For teG, write
t = (fj where | (ff| = 1. Define

F(t,x) = E dJMAUl),
<reP

for ( t , x ) e C x G . It is easily checked that F is continuous on G x G. Using
(2.4.2), we obtain for each teG a measure nteMz(G) such that \\fi, ^k and
fit(o) = tala for all aeP. Let//*) = F(f,x) for all xeG. It is easily checked
that /(a) = p.t{o)ft{o) for all cr 6 S. The uniqueness of Fourier-Stieltjes trans-
forms implies t h a t / = nt*ft for all teG. A simple calculation yields

(2.4.3)

It is easily checked that t -*• \\ft \ll is a continuous function on G. Hence, we
can integrate the inequality (2.4.3) over G. We use the fact [2, (36.2.U)] that

jjF(t,x)\2sdt ^

and Fubini's theorem to obtain

(2.4.4) ||/ Hi ^ k2sjjis
S\ ( jj F(t,x)\2dtjdx.

We now compute the inner integral in (2.4.4). For fixed xeG, we have, using
Plancherel's theorem applied to the group G and [2, (D.39.ii)],
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f \F(t,x)\2dt = f | I djMAaU
a

x)\
2dt

JG JG asP

d2,\tr(Aau:)\2

aeP

sP

| | | | 2
as P as P

Thus (2.4.4) may be recast as

This implies (2.4.1) and the theorem is proved.

3. Riesz polynomials

In this section we show the existence of central Sidon sets by the method
of Riesz polynomials following the proof given by Rider [5]. In particular we
show that if there is an integer P such that {a e S | da< P} is infinite, then S
contains an infinite central Sidon set. For other results along this line see Hewitt
and Zuckerman [6] and Rider [5].

Let £ = {<Ti,cr2,---} be a countable subset of S . For <reS and for positive
integers m, s and N let RS(E,a,N, m) be the number of subsets {T 1 5 -" ,T S } of £
satisfying

Tfc = ffBfc or <7̂  for some ank in E,

(k = l , 2 , - - , s ) , nt<n2< ••• <ns^ N, and

IJG
Let

00

RS(E, a, N) = E m - RS(E, a, N, m),

and
RM(E,&)= lim Rs(E,a,N).

JV-»oo

Let 1 denote the representation which is identically one.

LEMMA 3.1. Suppose P and B are positive integers with B ^ P satisfying:
(i) d,SP for all oeE,
(ii) 1£E,

(iii) If aeE and a #CT, then d$E, and

(iv) RS(E,1)^BS, (5 = 1,2,-).

T/ien

https://doi.org/10.1017/S1446788700009654 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009654


68 Willard A. Parker [7]

(v) £ (2B)-SRS(E,a) ^ IP for all oeE.

In particular, Rs(E,o) ^ 2P(2B)S ^ (4BP)S.

PROOF. Let fi = 1/(2B) and let

fi \ — ft ~Px«(x) + PXo(x) if "•* # <?k,
11 4- fiv fv"> ;f «- ^
I 1 ^ PKa\X) II Ok = (7^ .

Form the Riesz products,

Since a product of irreducible characters decomposes into a sum of irreducible
characters, we can write

PN(x) = 1 + 2 CN(a)X(,(x).

A straightforward calculation shows

In particular,

^ ( 1 ) = 2 P*Rs(E,l) £ 2
s=l s=l

Since |)S^| ^ 1/2 and PN is real valued, PN is non-negative. Thus

1 PN||I = J P*dA = ^ ( 1 ) = 1 + CN(l) ^ 2.

A computation of the Fourier transform of PN yields

for a =£ 1. Also for CT ̂  1, it is easily seen that

lim Q(<7) = 2 Rs{E,o)Ps.

Since

\PN{e)\L ?k | P w | i , 2 (2B)-si?s(£)(T) ^ 2P.

THEOREM 3.2. Let E be an infinite subset of £ and 5 and P be positive
integers such that
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(i) da ^ P for all aeE, and
(ii) Rs(E,l) ^ Bs (s = 1,2,"-).

Then £ u E is a central Sidon set, and so E is a central Sidon set.

PROOF. Without loss of generality B 2: P and by the last lemma we may
assume RS(E, a) ^ Bs for all a e £ . Also we may assume £ is countable since E
is central Sidon if and only if every countable subset of £ is central Sidon. Finally
we assume that if a e E and a ^ a then a £ E (this does not change E U E) and
for the time being we assume 1 £ £ .

We will show EUE satisfies (2.1.viii), that is for each

We [ ] £A> £ f f e{ - l , l } ,
aeEuE

there is a measure /i eMz(G) such that

(3.2.1) sup{| Wa — /2(«r)|L : < r e £ u £ } < l .

Now let We Y\asE<lEeJa be fixed. Let 0 < 5 < 1/F2. Write

£j = {cre£: sa = eg}, and

£ 2 = {a eE: sa = — £g}.

Then E is the disjoint union of £x and £ 2 ,

E2C\E = 0 and £ t n £ = {<r e E: a = a} .

Choose A; ^ 2suchthat2/(fc-l) < <5and let jS = l/(fcB2). Write £ t = {aua2,-}
and let

Clearly \Pk%ah\ ^ 0 ^ 1/2 (k = 1,2,-). Let

x) if fft ^ ff^,

Again we form the Riesz product
N

pN(x) = n J
k = 1

Then
IV N

Pf/ = 1 + Zw PkY-.au "I" *-"

where

^ £ RAE,<r,N)F = iRs{E,aWS £
s=2 5=2 s=2

1)) g ll(k(k-l)B2)<p5l2.
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Since PN ;> 0, we have

Since PN e L\{G) for all N and M\G) = C\G)* (Lemma 1.1), Alaoglu's theorem
implies that

{HEM\G):\H\\ g 1+^5/2}

is weak-* compact. Hence there is a subnet {Pa} of {PN}™ = i and a nx eMz{G)
such that

1 /i, I ^ 1 +
and Px -» /Z! in the weak-* topology. Routine calculations show that if CT e £j u Eu

and that if 1 ^ a^Et\JE1 , then

l#<x)|L
In a similar manner by constructing Riesz polynomials using E2,

Pu = KAJp-2> and fk(x) = 1 + J

we get a measure fi2 eM*(G) satisfying

||/*2| ^ 1+P5/2,

|| A2(ff) - ifiP-\la | ^ < ̂ / 2 for all

and

Now let /i = P 2 ^ - 1 ^ ! - ?>2). If oeE KJE,

and if 1 # a£

Finally we take care of 1. If 1 e E, select a multiple a of the trigonometric poly-
nomial 1 so that

If 1 £ £ , select a multiple a of 1 so that

(M + al)A

Replacing /i by /i + cd, we now have
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\\(l^)-eJa\Ua><p25 f o r a11 Te£U£and

\\(i((j)\\^<P25 for all aei ; \ (£U£).

Since 6 < P~2, p. satisfies (3.2.1) and E U£ is a central Sidon set.

COROLLARY 3.3. IfE satisfies the hypothesis of theorem 3.2 and F is a central
Sidon set, then £ U F is a central Sidon set. In particular any finite union
of sets satisfying the hypothesis of theorem 3.2 is a central Sidon set.

PROOF. Repeat Rider's proof for Abelian G [5, (1.6)].

COROLLARY 3.4. If Ec'L is infinite and

(i) sup{rfff: aeE} < oo,

then E contains an infinite central Sidon set.

PROOF. Since (i) holds, it is possible to construct by induction a sequence
of subsets {Fn} of E such that for each n the cardinality of Fn is n, Fn c Fn+1

and Rs(Fn,l) = 0, (s = 1,2,-) . Let F = U*" iF«- T h e n F c E a n d satisfies
the hypothesis of theorem 3.2.

4. I-sets

In this section we generalize the notion of independence as defined for
Abelian groups. It will be shown that subsets of S which satisfy this generalized
independence property are central Sidon sets. An interesting example shows
there are central Sidon sets which are not Sidon sets.

Let I, II, HI, and IV be the usual quadrants of the complex plane. The axes
are considered to lie in their adjacent quadrants and the origin to lie in all four
quadrants. Note that if aell and fie III, then a)?e/ U7F.

Let £ be a subset of S. We say that E is an I-set if

(4.0.1) HE,

and if for every finite subset $ of £ and for every ordered partition
$ = O , U $ 2 U $ 3 ($! # 0) there is an xeG such that

(4-0.2) Xa(x) = da if r e * ! ,

(4.0.3) r.a{x)ell if <reO)2, and

(4.0.4) xa(x)eIII if oe®3.

REMARK. By using the compactness of G and the continuity of characters
(4.0.2)-(4.0.4) can be replaced by:

For every e > 0, there is an x e G such that (4.0.3) and (4.0.4) hold and

(4.0.2') \Xa(x)-dJ<e.
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Using this and a result on independent characters [7, page 98], it can be shown
that independent subsets of the dual group of a compact Abelian group which
do not contain 1 are /-sets. This justifies our calling /-sets generalized independent
sets.

The main theorem of this section shows that /-sets are central Sidon sets.

THEOREM 4.1. Let G be a compact group and let P be an I-set in X. Then
P is a central Sidon set.

PROOF. Le t / = 2<reFa(Txffe Tp(G) where oca # 0 for aeF and F is a finite
subset of P. Note that

By elementary consideration it is possible to choose a complex number 9 such
such that 04 = 1 and a subset S of F such that

S = {aeF:Re(aa6) ^ 0} and

Re ( Z 4,0a.) £ 1/4 2 d,|aB| = l ^ f / ^ .

Let
S3 = {aeF\S: Im(aff0) ^ 0} and S2 = {<r eF\S: Im(aa6) < 0} .

Then SU S2 US 3 is an ordered partition of F . By the definition of/-set, there
exists an x in G such that

Z.W = da if

Xa(x)eII if cre,S2, and

f(x)eIII if <7eS3.

Since 6ocaeIII if aeS2 and 0affe// if o-eS3, we see that Re(0aoxff(x)) ^ 0 for
aeS2 US3. Also Re(0a(Txff(x)) = Re(0affK ^ 0 if aeS. Thus

| | / | | u ^ \f(x)\ S Re(0/(x)) = Re( 2 0a,X(7<»)

^ Re ( 2 0aoZff(x)) = Re ( 2 O a ^ )
s s

^ 1/4 2^ |aJ = 1/41/11,.
F

Since/was an arbitrary element of Tp(G), P is a central Sidon set by (2.1.vii).

COROLLARY 4.2. Lef {Gx}aieA be set of compact groups and for each <xeA
let Ua be a non-one continuous irreducible unitary representation of Ga. Let
G = YISJAG* and let 7ra be the projection of G onto Ga. Let ax be the equiv-
alence class of Uao na for each aeA. Then P = {ax: txeA} is a central Sidon
set.
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p

PROOF. It suffices to show P is an /-set. Let <D be a finite subset of P. Let
$ = $ ! U $ 2 U $ 3 be any ordered partition of <S>. Let /„ be the character of Ux

for cceA. Then the character of ax is xx°
 Ka- Define the element x = (xx)eG

as follows:

xx is the identity of Ga if ax e Q>t or of ox is not in O;

xx is such that x«(x«) = 0 if az e<52 U ®3 and dfft[ ^ 1 (this is possible
by a theorem of Gallagher [8]);

xa is such that xx(
xx) e II if ° a e *̂ 2 > <̂r» = 1 > a n d fa is not identically 1;

xx is such that xa(^a)e//7 if CT, e $ 3 , daa = 1, and CT,, is not identically 1.

Then x is well defined and

Xa(x)= da if ffeOi,

Zff(x)e/7 if <re<S>2, and

Xa(x)eIII if

Since <& was an arbitrary finite subset of P , P is an /-set and hence a central
Sidon set.

EXAMPLE 4.3. (See the remarks concerning Theorem 2.4.) For each n = l ,2, •••
let Gn = S£/(2); see [2, §29]. Let

For each n = 1,2, •••, let Un be a continuous irreducible unitary representation
of Gn of dimension n. Let xn be the character of Un. Let an be the projection
of G onto Gn. Let an be the equivalence class of Un o ?cn.

The character xffn of crn is xn°
 nn- Thus for positive r ,

f kJ r ^. = f \ln\'dl.
JG JGn

It follows [4, (37.21.b)] that |xf f j[2 = 1 and ||x,n||4 = «1 / 4- Since ^ e TE(G),
E = {ff1,<72,-"}isnotacentralA4set(2.2.iii),a A4set, nor a Sidonset [2,(36.10)].
However, £ is a central Sidon set by (4.2).

5. Open questions

The results of this paper by no means answer all the questions which can
be raised with regard to central Sidon and central Ap sets. The following questions
might be pursued to advantage.
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5.1. Are there any compact groups whose dual objects contain no infinite
central Sidon set? It is known that there is a group whose dual object contains
no infinite central A4 sets, namely, SU(2). However, it is not known whether the
dual object of SU(2) contains an infinite central Sidon set.

Note added in proof: Since the submission of this paper, question 5.1 has
been answered. Many groups have dual objects which lack infinite central Sidon
sets see Rogozin [9].

5.2. Given that a subset P of £ is a central Sidon set (or a central Ap set),
is there some additonal condition which, if imposed on P, would imply that P
is a Sidon set (a Ap set)? A natural condition to try would be

(i) sup{da: a eP} = N < co .

Of course, if N = 1 or P is finite the question has an obvious answer. A closely
related question is: Must an infinite set P satisfying (i) contain an infinite Sidon
subset?

5.3. Are there any non Abelian, non finite compact groups such that every
central Sidon set is a Sidon set?

5.4. The definition of /-sets is not entirely satisfactory. Can a better defin-
ition be devised? Also, in the Abelian case, what is the relation of /-sets to other
independence notions such as dissociate sets?

This paper is based on a portion of the author's doctoral dissertation written
at the University of Oregon under the direction of Professor Kenneth A. Ross.
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