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Secretive prime-power groups

of large rank

G.E. Wall

A question of L.G. Kovacs, Joachim Neubuser, B.H. Neumann (J.

Austral. Math. Soa. 12 (1971), 287-300) on the existence of

'secretive' prime-power groups of large rank is settled

affirmatively by proving the following result: given a prime p

and integer d 5 2 , there exists a finite p-group P with

cyclic centre and minimal number of generators d and having

the property that every element not in i t s Frattini subgroup has

a non-trivial power in i t s centre.

1. Introduction

In their paper, [2], Kovacs, Neubuser, Neumann introduce certain

(finite) 'secretive' groups, which conspire to 'hide' primes. The reader

is referred to the original paper for the precise definition. A general

impression of what secretive groups are like may be gained from the

following result.

0 ) ([2], Theorem 5.2). Let B be a finite, non-ay alia group. If

B has a representation over the field of complex numbers suah that no

element outside the Frattini subgroup <fr{B) has an eigenvalue 1 , then B

is secretive.

In fact, for present applications, only the following special case is

needed.
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(II) ( [2 ] , Corollary 5-k). Let B be a finite, non-ayolio group.

If the centre t,(B) is cyclic and if every element outside <j>(B) has a

non-identity power in £,{B) , then B is secretive.

The minimum number of generators of a group G is called the rank of

G and denoted by d(G) . For each prime p , Kovacs, Neubuser, Neumann

construct examples of secretive p-groups of rank 2 ; and they refer to

the construction of a secretive 2-group of rank 3 by I ,D. Macdonald.

The purpose of the present paper i s to se t t le the question, raised by the

same authors, of the existence of secretive p-groups of larger rank. The

following result v i l l be proved.

THEOREM. Let p be a prime and let d, m be integers such that

2 d 5 pm . Then there is a finite p-group B of rank d and exponent

p which satisfies the hypotheses of ( I I ) .

The Theorem and (II) yield an immediate answer to the question posed

above.

COROLLARY. For each prime p and integer d > 2 3 there exists a

(finite) secretive p-group of rank d .

2. A preliminary reduction

We assume henceforth that p, m, d are as in the Theorem. If G is

a finite p-group, let IT (G) denote the subgroup generated by the pm-th

powers of the elements of G .

We prove in this section that i t is sufficient to construct a finite

p-group P with the following two properties:

(2.1) d(P) = d ;

( 2 . 2 ) IT (P) has a subgroup Q of index p which is normal in P

and does not contain the p -th power of any element of P

outside <()(P) .

This assertion is an immediate consequence of the following result.

LEMMA 1. If the finite p-group P satisfies ( 2 .1 ) and ( 2 .2 ) but no
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proper quotient group of P does, then P satisfies the hypotheses of

( I I ) .

Proof. I t i s evident that P/Q s a t i s f i e s (2.1) and (2 .2) .

Therefore, by the hypothesis of the Lemma, Q = {l} . Thus, ir (P) has

order p and so i s a subgroup of ?(P) . I t now follows from (2.2) that

every element of P outside <f>(P) has a non-identity power (namely, the

p - th ) in C(P) • Clearly, P has rank d and exponent p ; and

since d 5; 2 , P i s non-cyclic.

I t remains to prove that £(P) i s cyc l ic . If th i s were not the case,

then ?(P) would have a subgroup M of order p different from IT (P) .

By (2 .2) , M c <j)(P) . I t i s now easily verified that P/M sa t i s f ies (2.1)

and (2 .2) , contrary to the hypothesis of the Lemma. Thus, j;(P) i s cyclic

and the proof i s complete.

3. Definite q-forms

Let F be the f ield of p elements. Let q be a positive integer

(in Section 4, we shall take q = p J . Let A be the associative algebra

(with identi ty) over F obtained by adjoining to F non-commuting

elements a , ..., a , such that the monomials in the a. of to t a l degreex d %

- q are l inear ly independent while a l l monomials of degree > q are zero.

In the present section, we study q-th powers in A .

Let V denote the subspace spanned by the a. and V the subspace

spanned by the q-th powers of the elements of V . Then we have the

q-th power mapping

y : Vl * Vq ' W ( a ) = a<l *

By a q-form on V , we shall mean a function f : V -*• F of the

form

d -i i ,
lXf = I a, i\

or, in simpler notation,
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(3.1) f(a) =

where txi. € F .

LEMMA 2. f*t—*-f=f*o\i defines an isomorphism from the dual

space of V to the space of q-forms on V .

Proof. Using the re la t ions X? = X. , we may reduce each X= in

(3.1) to the form X^ , where the index row _̂ i s reduced; that i s ,

0 5 0 • - P-l ( i = 1, . . . , d) .
If

Thus,

fM = I e,xi

for a cer ta in set S of reduced index rows. Now, the monomial functions

fja) - Xi

corresponding to the p reduced index rows are l inear ly independent

(indeed, they form a basis for the vector space of all functions V •*• F J

I t follows that

(3 .2) f^ ( i f S)

form a basis for the space of 17-forms.

We have

Via) = aq = i

where a. denotes the sum of all monomials in a , ..., a, having partial

degree i, in <2, for & = 1, ..., d . Applying the same kind of

reduction as before, we see that

V(a) = I A Xi .

Since the functions (3-2) are l inear ly independent, i t follows that
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(3.3) A1 ( i € 5)

span V . However, these elements are clearly linearly independent and so

from a basis of V
<?

Now that we have constructed explicit bases for V and the space of

<7~forms, the rest of the proof is plain sailing and may be omitted.

DEFINITION. The q-form f is called definite when f{a) = 0

implies a = 0 .

LEMMA 3.1 If q i d , there exists a definite q-form on V .

Proof. Let K be an extension f ield of F of degree q . Embed V

(in any way) as subspace of K . Then the norm mapping

f(a) = NK/F(a) [a <= vj

is a definite q-form.

4. Completion of proof

Consider again the algebra A of the previous section and let &_

denote the ideal of A generated by a , ..., a, . If u € ji , then

t t
(l+u)P = 1 + IP = 1 for sufficiently large t . Thus, 1 + ji is a

(finite) p-group under multiplication. Let P be the subgroup generated

by the elements x. = 1 + a. (i = 1, , d) .

An element x of P is expressible in the form

( U . I ) x'x* . . . x/y

with y in the derived group, 6(P) ; and it is easily proved that

(U.2) x = 1 + a (mod af) ,

where a = X a + . . . + Ajo, . I t follows from (k.2) that the integers X.

in (l*.l) are uniquely determined (mod p) . We conclude that

1 A well known resul t of Chevalley, [ J ] , shows, on the other hand, that
there are no defini te q-forms on V when q < d .
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( U . 3 ) x € <f>(P) *=* a = 0 ,

(h.k) \P : <j)(P)| = 1^1 = pd .

Assuming now t h a t

(U.5) q = p" ,

we shall verify that P satisfies (2.1) and (2.2).

That P satisfies (2.1) follows immediately from (U.U). The proof

for (2.2) is less evident. The element x in (lt.2) has the form

1 + a + b , where b (. â  . Then xq = 1 + (a+2>)^ = 1 + cfl because

a5 + 1 = 0 . It follows easily that

IT (P) = fl+U I D f 7 1 c £(P) .

777 <y —'

Suppose now that f is a definite <7-form; such exist by Lemma 3

because of our initial assumption that d — p • Then, by Lemma 2, there

exists a linear functional /* on V such that f(a) = f*[aq) for all

a € V . Let

Q = {l+y | v € ker /*} .

It is evident that Q is a subgroup of TI (P) of index p and, since

TT (P) c c(P) , Q i s normal in P . Suppose the element x in (it.2) i s

not in <$>(P) . Then a # 0 and so, since / i s def ini te ,

f*[cfl) = f(a) * 0 . I t follows that x* = \ + cfi ^ Q . This completes the

ver i f ica t ion that P sa t i s f i e s (2 .2) .

We have now constructed a f ini te p-group P satisfying (2 .1 ) , (2.2)

and t h i s , by the considerations of Section 2, establishes our Theorem.
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