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Geometric and Potential Theoretic Results on
Lie Groups
N. Th. Varopoulos

Abstract. The main new results in this paper are contained in the geometric Theorems 1 and 2 of Section 0.1
below and they are related to previous results of M. Gromov and of myself (cf. [11], [29]). These results are
used to prove some general potential theoretic estimates on Lie groups (cf. Section 0.3) that are related to my
previous work in the area (cf. [28], [34]) and to some deep recent work of G. Alexopoulos (cf. [3], [4]).

The subject has unfortunately by now become very technical. But an effort has been
made to make the introduction at least, of this paper, readable by a non-specialist. My
advice to a non-specialist who wants to read this paper is not to be intimidated by unknown
words and to read on.

I use throughout the convention that, in a formula, the letters C or c, possibly with suf-
fixes, indicate, possibly different, positive constants that are independent of the important
parameters of the formula.

0 Introduction

0.1 Geometric Results

Let G be some real connected Lie group and let Q be its radical (cf. [24]), i.e., the largest
connected soluble subgroup. Let us recall that G is amenable if and only if G/Q is compact
(cf. [23]).

Let e ∈ Ω ⊂ G be some compact neighbourhood of the neutral element e of G and let
us denote:

|g| = |g|G = inf{n ; g ∈ Ωn = Ω · Ω · · ·Ω}, g ∈ Q,

we can define then a left invariant distance on G by:

d(g, h) = |g−1h|.

Both | | and d(·, ·) depend of course on Ω, but they do so in an inessential way (cf.
[11], [29]). Let H ⊂ G be some closed connected subgroup of G then it is known (cf.
[29]) that there exist constants C such that

|h|G ≤ C|h|H ≤ exp(C|h|G + C) ; h ∈ H.

We shall say that the closed connected subgroup H ⊂ G is of strict exponential distortion if
there exist constants s.t.

exp(c|h|G) ≤ C|h|H + C, h ∈ H.
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We shall say that G is an R-group if for every closed connected subgroup H ⊂ G there exists
C such that

|h|H ≤ C|h|CG + C ; h ∈ H.

This is equivalent to the fact that the volume growth of G is polynomial (cf. [29], only one
of the two implications has been proved there. The other implication is essentially trivial
and it will not be used here), i.e., that for every Ω ⊂ G, compact Nhd of the identity of G,
we have:

Haar measure (Ωn) ≤ CnC ; n ≥ 1.

Let us assume now that G is an amenable simply connected Lie group and let A be the
class of all closed normal connected subgroups of G that are of strict exponential distortion
in G. We have:

Theorem 1 Let G be some connected amenable Lie group then A0 =
⋃

H∈A H, the union
of all closed connected normal subgroups of strict exponential distortion, is a closed connected
normal subgroup of G of strict exponential distortion in G.

We can speak thus of the maximal normal closed connected subgroup of strict exponen-
tial distortion.

Theorem 2 Let G be some simply connected amenable Lie group and let A0 ⊂ G be the
maximal normal closed connected subgroup of strict exponential distortion in G. Then there
exists GR ⊂ G some closed simply connected subgroup of G such that:

(i) GR is an R-group
(ii) G = A0 · GR (: set product in the group)
(iii) A0 ⊂ (A0 ∩N) · S where N is the nilradical of G and S is a (compact) Levi subgroup (cf.

[24]).

The fact that G is amenable is essential for the above two theorems to hold. Indeed we
have:

Theorem 3 Let G be some simply connected Lie group, let A ⊂ G be some normal closed
connected subgroup of strict exponential distortion in G and let GR ⊂ G some connected closed
subgroup that is an R-group. Let us assume that G = A · GR. Then G is amenable.

In Theorems 2 and 3 we have restricted ourselves to simply connected groups for sim-
plicity. Observe, however, that if π : G̃ → G is the simply connected cover of G and if
H ⊂ G is of strict exponential distortion, π−1(H) ⊂ G̃ is not necessarily of strict exponen-
tial distortion (e.g. G̃ = R, G = T = H), cf. Section 1.5.

0.2 Random Walks and Diffusion on Lie Groups. The Basic Definitions

Let G be some locally compact group we shall denote by [G,G] its “closed commutator”,
which can be defined to be the smallest normal closed subgroup H ⊂ G such that G/H is
abelian. When G is a connected Lie group we have

G/[G,G] ∼= Rn × Tm,
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(cf. [22]) where the compact torus Tm is uniquely determined. Furthermore, in this case
[G,G] is connected (for otherwise we can consider the component of the identity of [G,G]).
We can consider then

ϕ = p ◦ π : G −→
π

G/[G,G] −→
p

Rn,

and we shall say that µ ∈ P(G), a probability measure on G, is centered if the measure
µ̌ = ϕ̌(µ) ∈ P(Rn) is centered, i.e., if

∫
Rn

x dµ̌(x) = 0,

where the integral is assumed to be absolutely convergent.
Let µ ∈ P(G) be some probability measure on the locally compact group G. I shall

consider in this paper the random walk controlled by that measure. This, by definition, is
the Markov chain {Zn ∈ G ; n ≥ 1}:

∫
f (y)P[Zn ∈ dy//Zn−1 = x] = f ∗ µ(x) =

∫
f (xy−1) dµ(y).

We shall say that the above random walk is centered if µ ∈ P(G) is centered. For the above
notion to make sense G has to be a connected Lie group. In fact the notion of a centered
measure also makes sense for any connected locally compact group G for it is then known
that we can find K ⊂ G some compact normal subgroup such that G/K is a Lie group
(cf. [20]).

Similarly, if G is a connected Lie group we can consider

∆ = ∆0 + Y ; ∆0 = −
n∑

j=1

X2
j , X1, . . . ,Xn,Y ∈ g ;(0.1)

some left invariant second order differential operator on G that generates a continuous
diffusion {z(t) ∈ G ; t > 0}. The notations and the definitions in this paper will be as [32],
[28], [34], [27]. g denotes the Lie algebra of G so that X1, . . . ,Xn,Y are left invariant vector
fields on G. We shall assume that the fields X1, . . . ,Xn satisfy the Hörmander condition,
i.e., that they are generators of the Lie algebra g. We shall denote by

dg = d�g ; drg = dg−1 = m(g) dg

the left and the right invariant Haar measure on G, where m(g) is the modular function,
and we shall denote by φt (g) the convolution kernel of the semigroup Tt = e−t∆, i.e.,

Tt f (x) =

∫
pt (x, y) f (y) dy =

∫
φt (y−1x) f (y) dy ; f ∈ C∞0 (G).

The measure:

dµt (x) = φt (x)drx(0.2)
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is a probability measure on G such that

Tt f = f ∗ µt ; t > 0,(0.3)

and

Pe[z(t) ∈ dg] = dµt (g).(0.4)

If we discretize the time t = 1, 2, . . . we obtain therefore a random walk controlled by the
measure µ1 ∈ P(G). We shall say that the Laplacian ∆ in (0.1) is centered if and only if
the above random walk is centered. We say then that the diffusion {z(t) ∈ G ; t > 0} is
centered. It is easy to see (but this fact is not essential here), that if G is amenable, then ∆
in (0.1) is centered if and only if Y ∈ [g, q] + g0 where q is the radical of g and g0 is the Lie
algebra of some maximal compact subgroup of G (cf. Appendix).

Gaussian Estimates and the Reduction Let G be some connected Lie group, in this paper
we shall consider random walks that are controlled by the probability measure

dµ = ϕ(x)dx,

where the function ϕ ∈ L1(G ; dx) is assumed to satisfy one of the following additional
conditions:

(i) ϕ(x) ∈ C0(G), i.e., is continuous and compactly supported. We shall then say that the
corresponding random walk is compactly supported.

(ii) ϕ(x) is C∞ and satisfies the following Gaussian estimates

C− exp(−c−|x|
2) ≤ ϕ(x) ≤ C+ exp(−c+|x|

2) ; x ∈ G.(0.5)

For any choice of left invariant fields X1, . . . there exists a constant C such that

X1X2 · · ·Xkϕ ≤ C exp(−C|x|2) ; x ∈ G.(0.6)

We then say that µ is a Gaussian measure (cf. [27, Ch. 3]).
The importance of this definition lies in the fact that the measure µ1 attached to a left

invariant diffusion as in Section 0.2.(0.4) is Gaussian. The proof of this fact in full generality
is not trivial (cf. [27, Appendix A.4], [33]). If in (0.1) ∆ satisfies Y = 0 this fact can be
found in [32]. The main difficulty is the proof of the lower Gaussian estimate is (0.5) when
Y �= 0. The proof is easy when Y =

∑
Xi +

∑
[X j ,Xk] where the Xi ’s are the fields that

appear in∆0. If we work harder (cf. [34]), we can even prove a strict Gaussian estimate for
φt . More precisely for all ε > 0 we can set

c± = 1/(4± ε)

in (0.5); but then, of course, C± depend on ε.
The reason why centered Laplacians are important is, that for any Laplacian∆ as in (0.1),

we can find
χ : G→ R∗+,
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a multiplicative character on G, and a constant κ0 ≥ 0, such that

χ∆χ−1 = ∆c + κ0,

where ∆c is centered. A similar reduction to a centered probability measure can be done
by replacing µ ∈ P(G) by

ν =
χ · µ∫
G χdµ

(cf. [18]). This reduction requires that e ∈ (supp µ)0). For the rest of this paper all the
random walks and all the diffusions that will be considered will be centered, and either
compactly supported or Gaussian (i.e., the measure that controls the random walk will be
assumed Gaussian).

What corresponds to the convolution kernel in the case of a random walk is the function
φ̃n defined by

dµ∗n = d(µ ∗ µ ∗ · · · ∗ µ) = φ̃n(x)drx ; n ≥ 1, x ∈ G(0.7)

We shall finally say that the diffusion generated by∆ in (0.1) is symmetric if Y = 0. We
shall say that a probability measure µ ∈ G is symmetric if

dµ(x) = dµ(x−1)

we shall then say that the corresponding random walk is symmetric.

The Local Harnack Estimate Let K ⊂ G be some compact subset. Then there exists C > 0
such that

φt (k1xk2) ≤ Cφt+1(x) ; x ∈ G ; k1, k2 ∈ K, t ≥ 1.(0.8)

This for k1 = e is the standard Harnack estimate for the Heat diffusion kernel (cf. [32],
[34]). If the diffusion is symmetric we have

φt (x−1) = φt (x)m(x),

and in general we have
φt (x−1) = φ∗t (x)m(x),

where φ∗t is the heat diffusion kernel that corresponds to the Laplacian

∆∗ = ∆0 − Y.

From this (0.8) follows in full generality. The analogous “discrete Harnack” estimate that
holds for φ̃n is elementary and very easy to prove (cf. [34], [26]).

The above definitions and facts are useful because they clarify the general picture to the
reader. Many of the above facts however (and in particular the difficult lower estimate (0.5)
and the estimate (0.6), (0.8) for φt ) are inessential for the proofs of the main results of this
paper. My advice to the reader who is not an expert in the subject, is not to worry unduly
about the proofs of the above facts and simply to read on.
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0.3 Random Walks and Diffusion on Lie Groups. Statement of the Theorems

In this section G will denote some connected amenable real Lie group and

(Z) : z(t) ∈ G ; t > 0 (resp.: t = 1, 2, . . . )

will denote some centered diffusion (resp: centered random walk that is either compactly
supported or Gaussian). We have then:

Upper Gaussian Estimate

Pe[ sup
0<s<t

|z(s)| ≥ m] ≤ C exp

(
−

m2

ct

)
; m, t ≥ 1.(0.9)

This combined with the local Harnack estimate (0.8) yields the estimate

φt (g) ≤ exp

(
−
|g|2

ct

)
; g ∈ G, t > 1.(0.10)

We have an analogous result for φ̃n(g) (cf. [32] for estimates of this kind when the group
is unimodular, and cf. [21] for an interesting recent development in a slightly different
direction).

Lower Gaussian Estimate

Pe[ sup
0<s<t

|z(s)| ≤ m] ≥ C exp
(
−

t

cm2

)
; t,m ≥ 1.(0.11)

Surprisingly enough, the lower estimate (0.11) is essentially an automatic consequence
of the upper estimate (0.9) and the Makovian property of z(t) (t > 0).

Corollary 1 Let us assume that G is unimodular and that the diffusion (Z) is symmetric (i.e.,
Y = 0 in (0.1)). Then the heat diffusion kernel φt (g) satisfies:

φ2t (g) ≤ Cφt (e) exp

(
−
|g|2

ct

)
; t ≥ 1, g ∈ G.

Corollary 2 The convolution kernels φt (t > 0) or φ̃n (n = 1, 2, . . . ) [cf. (0.2), (0.7)] satisfy:

φt (e) ≥ C exp(−ct1/3) ; φ̃n(e) ≥ C exp(−cn1/3) ; t ≥ 1, n = 1, 2, . . . .

The Corollary 2 is an immediate consequence of the lower Gaussian estimate. Indeed if
we set m ∼ t1/3 in (0.11) and use the Harnack estimate (0.8) and (0.2), (0.4) we deduce
that there exists xt ∈ G (t ≥ 1) such that:

|xt | ≤ ct1/3 φt (xt ) ≥ C exp(−ct1/3).

By a repeated use (ct1/3− times) of the local Harnack estimate (0.8) we deduce the corollary.
If the diffusion or the random walk in the Corollary 2 is assumed to be symmetric, the
Corollary 2 is already known [1].
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Further Results and Comments

(A) If G is an R-group both the upper and the lower Gaussian estimate are easy conse-
quences of the recent work of G. Alexopoulos [3], [4].

(B) If G is an amenable C-group (cf. [34]) then the diffusion kernel satisfies

C−1 exp(−ct1/3) ≤ φt (e) ≤ C exp(−ct1/3) ; t ≥ 1.(0.12)

(C) If G is an amenable NC-group (cf. [34]) then the diffusion kernel satisfies

C−1t−ν ≤ φt (e) ≤ Ct−ν ; t ≥ 1,

where ν = ν(G ; ∆) depends on G and ∆ and satisfies ν(G ; ∆) = ν(G ; ∆0). This
means that ν is determined as in [34] by G and the driftless (symmetric) Laplacian
∆0, i.e., by the “quadratic component” of∆ = ∆0 + Y (cf. (0.1)). In other words, the
presence of a drift term Y does not change the behaviour of φt (e) for an NC-group, as
long as∆ is centered. This fact when G is an R-group is contained in the recent results
of G. Alexopoulos (cf. [3], [4]).

The results in (B) and (C) generalize to centered random walks also. When the diffusion
is symmetric (B) and (C) is the content of [34], [35]. With the exception of the lower
estimate (0.12) the details of the above generalizations will not be given in this paper. The
reason is that once we have the results of [3], [4] the above generalizations are, if lengthy
and tedious, essentially routine, and it is only the lower estimate (0.12) that needs new
ideas.

0.4 Various Generalizations

General Connected Locally Compact Groups Let us place ourselves now in the more gen-
eral setting of a general connected amenable locally compact group. If we use the main
approximation theorem (we have already invoked that theorem to define a centered mea-
sure for a general connected locally compact group cf. [20]) we can generalize, in a natural
and obvious way, the C − NC classification in this more general setting. Furthermore,
all the above results generalize automatically (i.e., they can be deduced at once from the
corresponding Lie group results) in this setting.

What is perhaps more interesting is that the connectedness is essential for the above
circle of ideas to work. Indeed let W be the wreath product [12]

W =
(∑
γ∈X

Zγ
)
�� Γ (: semidirect product),

where X = Γ ∼= Zk (for some k ≥ 1), Zγ ∼= Z and where the action of Γ on X is given by
translation. W is of course soluble and finitely generated but, as the interested reader can
readily verify for himself, the above estimates break down for W .

Generalizations to Non-Amenable Groups Let now G be a general connected real Lie
group, i.e., we no longer assume that G is amenable. Let also∆ = ∆0 +Y be some centered
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Laplacian as in (0.1). To estimate the corresponding diffusion kernel φt (g) (cf. (0.2), (0.3)),
we shall need two new parameters.

First we shall need to use λ the spectral gap of∆ which can be defined by (cf. [27])

λ = inf{(∆ f , f ) ; f ∈ C∞0 (G), ‖ f ‖2 = 1}

where both ‖ ‖2 and the scalar product is taken in L2(G, drg).
We shall also need to define the fundamental spherical function ϕ0 on G. Let Q be the

radical of G and let S = G/Q which is a semisimple real Lie group which we shall assume
to be non-compact. Let us factor out the center S/Z = S1 and let K ⊂ S1 be some max-
imal compact subgroup. The Harish-Chandra spherical functions ϕλ(λ ∈ HomR[a ; C];
where n + a + k is the Iwasawa decompostion of the Lie algebra of S) can then be defined (cf.
[13], [10]). The fundamental spherical function ϕ0 (i.e., λ = 0, ϕ0 is sometimes denoted
by Ξ cf. [10]) is particularly important. ϕλ define (: unique up to inner automorphisms)
functions on G (indeed a different choice of the maximal compact subgroup K ⊂ S1 will
change ϕλ(x) into ϕλ(gxg−1) for some fixed g ∈ G). In particular, the fundamental spher-
ical function ϕ0(g) (g ∈ G) can be uniquely defined (up to inner automorphism) on G. We
have then the following generalization of (0.10) and of Corollary 2.

φt (g) ≤ Ce−λtϕ0(g) exp

(
−
|g|2

ct

)
; t ≥ 1.(0.13)

φt (e) ≥ Ce−λt−ct1/3

; t ≥ 1.(0.14)

The estimate (0.14) for a driftless Laplacian (i.e., Y = 0) is contained in [27] and is
clearly unimprovable.

The upper estimate (1.13) is also in some sense unimprovable. At least this is the case
when G is semisimple. Indeed the behaviour of ϕ0(g) is very well understood and is expo-
nential at infinity (cf. [13], [10]). In the special cases when an explicit formula is known
(cf. [9]) the estimate (0.13) is unimprovable up to a polynomial factor of the form

tA(1 + |g|)B ; A,B ∈ R.

The methods of the proofs of (0.13), (0.14) are an easy generalization of the methods in
this paper. But what is used in addition is the general technology that has been developed
in [27]. The proofs of (0.13) and (0.14) will therefore not be given here since this would
force us to introduce too much additional background material. These proofs will be given
in [31], cf. also [5].

The Role of the Amenability Condition Let G be some locally compact group that is not
amenable then no upper Gaussian estimate such as (0.9) can possibly hold in any form
whatsoever. The reason is that when G is not amenable, the random walks considered
in (0.9) satisfy almost surely:

lim
n→∞

|z(n)|G
n

> 0

(The existence of the limit is guaranteed by the subadditive ergotic theorem). This fact is
very well known to the experts and is easy to prove (cf. [17], [25]).
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1 Proof of the Geometric Results

1.1 Algebraic Considerations

We shall follow very closely the ideas and even the notation of [27, Sections 1.1–1.4].
Let g be some real Lie algebra, let n ⊂ q ⊂ g be the radical and the nilradical and let us

assume that g is amenable. This implies that there exists s ⊂ g a semisimple subalgebra of
compact type such that

g = q + s, q ∩ s = {0}.

This is but the standard Levi decomposition together with the definition of amenability.
As shown in [6], [27], [2], we can then find h ⊂ q some nilpotent subalgebra such that:

q = n + h, [h, s] = {0}.

The key to our construction is to consider the real root space decomposition of n under the
action of h (cf. [27])

n = n0 ⊕ n1 ⊕ · · · ⊕ nk,

where n j �= {0} (1 ≤ j ≤ k) is the sum of all the root space of n under the action of h with
roots that have the same (fixed) non-zero real part. n0 is the sum of all the root spaces with
pure imaginary roots and n0 could be {0}. We clearly have

[n j , s] ⊂ n j , 0 ≤ j ≤ k.(1.1)

It follows that:
gR = n0 + h + s

is a subalgebra and since all the roots of the action of h on n0 are pure imaginary, gR is an
R-algebra and every Lie group that corresponds to gR is an R-group (cf. [29]). We shall
denote also by

a = Alg(n1 ⊕ · · · ⊕ nk) ⊂ n

the algebra generated by n j (1 ≤ j ≤ k), so that:

g = a + gR.

It follows from (1.1) that a is an ideal of g

a � g ; g/a = gR/gR ∩ a = g∗,(1.2)

where g∗ is an R-algebra.
The algebraic considerations that follow are interesting because they “complete the pic-

ture”, but they are not essential for the proof of our theorems. We have

a = (n0 ∩ a)⊕ n1 ⊕ · · · ⊕ nk.

This is because
n1 ⊕ · · · ⊕ nk ⊂ a ⊂ n.
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We have:
a ∩ n0 ⊂ [a, a].

This holds because h acts on a∩n0 with pure imaginary roots and therefore in the projection

π : a→ a/[a, a] = π(n1 ⊕ · · · ⊕ nk)

a∩ n0 has to go to zero since the roots of the action of h on π(n1⊕ · · · ⊕ nk) are never pure
imaginary. It follows that

a = (n0 ∩ [a, a])⊕ n1 ⊕ · · · ⊕ nk,

and since
[h, n j] = n j ; 1 ≤ j ≤ k

we have
a ⊂ [g, g].

Since on the other hand (trivially):

[a, g] ⊂ a ; [g, g] ⊂ a + [gR, gR],

we conclude that
[g, g] = a + [gR, gR].

When g is an NC-group, we have

n0 ∩ a = gR ∩ a = {0}.

A close analysis of the algebra n0∩a is essential for the good understanding of the geometry
of the Lie group (cf. [30]) but we shall not go into the details any further.

1.2 A Reduction of the Geometric Theorems

All the notation of the previous section will be preserved, and we shall consider G some
simply connected Lie group whose Lie algebra is g. The analytic subgroup A ⊂ G that
corresponds to a is a subgroup of N ⊂ G, the nilradical of G, and is therefore a normal
closed simply connected subgroup. The analytic subgroup GR ⊂ G that corresponds to gR

is also closed and simply connected. Indeed GR is the semidirect product:

GR = QR �� S ⊂ Q �� S = G,

where Q is the radical of G and S is the Levi subgroup of G that corresponds to s. And QR

is the subgroup of Q that corresponds to n0 + h ⊂ q and is therefore closed and simply
connected (cf. [24]). It is clear that

G = A · GR.(1.3)

We also have:

Basic Proposition A has strict exponential distortion in G.
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Both Theorems 1 and 2 follow from the above proposition because it implies that A · S
has strict exponential distortion and that A · S contains every closed normal connected
subgroup of G of strict exponential distortion. Indeed let A1 ⊂ G be such a subgroup and
let ξ ∈ q ∩ a1 where a1 is the Lie algebra of A1. We have then:

| Exp(tξ)|G ≤ C log(|t| + C) ; t ∈ R.

This implies that ξ ∈ a for otherwise H = π
(
Exp(tξ)

)
is a nontrivial one parameter

subgroup of the radical of the simply connected group G∗ that corresponds to g∗ (cf. (1.2);
π denotes here the canonical projection G→ G∗). Therefore, H is closed and ∼= R and the
fact that G∗ is an R-group implies that

|π
(
Exp(tξ)

)
|G∗ ≥ |t|

c −C ; t ∈ R.

This contradiction shows that a1 ∩ q ⊂ a.
Since, on the other hand, A1 is normal (this is the first point that we use the normality)

and since S is compact A1 · S = Ã1 is also a closed connected subgroup of strict exponential
distortion. From the above considerations applied to Ã1 it follows therefore that:

Connected component (Ã1 ∩ Q) ⊂ A,

and since Ã1 = (Ã1 ∩ Q) · S it follows that

A1 ⊂ Ã1 ⊂ A · S.

Observe also that if A0 is as in Theorem 1, then the above shows that A0∩N = A0∩Q =
A, and that A0 is the largest normal connected subgroup of G that lies inside A · S. (A · S is
not necessarily a normal subgroup.)

1.3 Distances on Nilpotent Groups

Let N be some connected nilpotent group let n be the corresponding Lie algebra and let
ξ1, . . . , ξq ∈ n be a fixed set of generators of that algebra. We shall denote then:

gi(t) = Exp(tξi) ∈ N ; i = 1, . . . , q, t ∈ R,

and we have:

Proposition The elements gi(t) (i = 1, . . . , q, t ∈ R) are generators of N.

This fact is not trivial but it is a standard consequence of the Backer-Campbell-Hausdorff
formula (cf. [24, Section 2.15]), and its inverse, the Zassenhaus formula (cf. [19, Th. 5.21]).
The reader could also consult [15], [32] where an explicit use of the above fact is made.

By an obvious compactness argument or directly by going through the proof we can
refine the above proposition by putting “bounds” to the “generation of the element g ∈ N”.
We have:

Lemma 1.1 Let N, ξ j ∈ n, g j(t), j = 1, . . . , q (t ∈ R) be as above and let K ⊂⊂ N be some
compact subset of N. Then there exists C ≥ 1 such that for all g ∈ K we have

g = gi1 (t1) · · · gi p (tp)

for some 0 ≤ p ≤ C, i1, . . . , i p = 1, . . . , q and t j ∈ R, |t j | ≤ C, 1 ≤ j ≤ p.
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The above proposition can be improved even further and we have

Lemma 1.2 Let N, ξ j ∈ n, j = 1, . . . , q (t ∈ R) be as above then there exists C > 0 such
that every element g ∈ N can be written

g = gi1 (t1) · · · gi p (tp)

for some 0 ≤ p ≤ C, i1, . . . , i p = 1, . . . , q and

|ti | ≤ C|g|N ; 1 ≤ i ≤ p.

It is of course possible to procede directly with the proof of Lemma 1.2, but it is prefer-
able to deduce it from Lemma 1.1 with the use of a simple algebraic device. Indeed let us
assume that n is nilpotent of order s, i.e., that [n, [n, [n · · · ] · · · ] · · · ] (s-times)≡ 0, and let
us consider ñ the free nilpotent algebra of order s generated by the free generator ζ1, . . . , ζq
(the same number as the ξ’s in n) cf. [16]. A unique homomorphism can then be defined
by

ϕ : ñ→ n ; ϕ(ζ j) = ξ j , 1 ≤ j ≤ q.

This induces a homomorphism
ϕ : Ñ → N

from Ñ , the simply connected Lie group that corresponds to ñ, onto the original group N .
If we recall the obvious fact that for every g ∈ N we can find g̃ ∈ Ñ such that

ϕ(g̃) = g ; |g̃|Ñ ≤ C|g|N ,

we deduce that it suffices to prove the Lemma 1.2 for the group Ñ and the generators
ζ1, . . . , ζq of the Lie algebra ñ. But for the group Ñ and the generators ζ1, . . . , ζq, the
Lemma 1.2 is an automatic consequence of Lemma 1.1. The reason is that ñ and Ñ have a
natural dilation structure. More explicitly, the mapping

ñ � ζ j → λζ j ∈ ñ ; λ > 0, 1 ≤ j ≤ q

extends to a unique algebraic homomorphism

δλ : ñ→ ñ ; δλ : Ñ → Ñ

that has the additional property

|δλ(g)|Ñ = λ|g|Ñ ,

for an appropriate definition of | |Ñ (cf. [8], [32]). An appropriate dilation will therefore
bring any g ∈ Ñ to the compact unit Nhd of Ñ

K = {g ∈ Ñ ; |g|Ñ ≤ 1},

and the Lemma 1.1 applies. This completes the proof.
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If we use the Lemma 1.2, we see that to prove the Basic Proposition it suffices to prove
the following

Reduction With all the notations as before there exists some C such that for all 1 ≤ j ≤ k
and for all ξ ∈ n j with |ξ| ≤ 1 (here we have fixed in any way whatsoever some norm | |
on the vector space g) we have

| Exp(tξ)|Q ≤ C log(|t| + C) ; t ∈ R.(1.4)

Towards that we can push the reduction even further: We can fix the 1 ≤ j ≤ k in (1.4)
and reduce the group Q to Q1 ⊂ Q, which is the group that corresponds to the Lie algebra

q = {n, τ} ;

where τ ∈ h is such that L ∈ h∗, the real part of the roots of n j , satisfy

L(τ ) < 0.(1.5)

The intuitive reason why (1.4) holds should be quite obvious to any reader that has some
experience with geometric considerations:

Indeed what happens is that the vectors ξ and τ determine some “hyperbolic section”.
In abusive, but intuitively correct terms, if we pretend that we are working in the “two
dimensional subspace” of Q that is “determined” by ξ and τ , then, by the negative curvature
of that subspace, the length of the geodesic between e and Exp(Tξ) is ∼ log T. This idea
will be made formally correct in the next two sections.

1.4 An Elementary Formula

The considerations in this section should be entirely trivial to the expert in the subject. Such
a reader should refer directly to the formula (1.7) below and move on.

To prove (1.4) we have to start from a general formula on the differential of the product
in a Lie group G. Let M be some manifold and let

φi : M → G ; i = 1, 2

be two C∞ mappings. Let us also denote

Lg ,Rg : G→ G ; Lg(x) = gx, Rg(x) = xg, x, g ∈ G,

the left and right translation operator on G. We shall consider the product mapping

M � m→ F(m) = φ1(m) · φ2(m) ∈ G,

where · indicates the group product.
First of all if φi(m) = e, i = 1, 2 it is clear (by the Backer-Campbell-Hausdorff formula

among other things) that:

dφi : TmM → g ; dF = dφ1 + dφ2.
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For every fixed m0 ∈ M we have therefore

dF0 = d
(
φ−1

1 (m0)φ1(m)φ2(m)φ−1
2 (m0)

)
= d
(
φ−1

1 (m0)φ1(m)
)

+ d
(
φ2(m)φ−1

2 (m0)
)

= dLφ−1
1
◦ dφ1 + dRφ−1

2
◦ dφ2 ; ∀ξ ∈ Tm0 M.

Where both the left and the right hand side of the above formula are evaluated on ξ ∈
Tm0 M. On the other hand:

F = φ1(m0)F0φ2(m0)

so that:
dF = dLφ1 ◦ dRφ2 ◦ dF0 = dRφ2 ◦ dLφ1 ◦ dF0.

We finally obtain the formula

dF = dRφ2 ◦ dφ1 + dLφ1 ◦ dφ2(1.6)

where both sides of (1.6) are linear mappings:

Tm0 M → Tφ1φ2(m0)G.

Let us perform now:
Lφ−1

2
◦ Lφ−1

1
= L(φ1φ2)−1 : G→ G

and let us recall that:

Ad g = dRg ◦ dLg−1 = dLg−1 ◦ dRg : g→ g.

These give:
dL(φ1φ2)−1 ◦ dF = Ad(φ2)[dLφ−1

1
◦ dφ1] + dLφ−1

2
◦ dφ2.

What we have therefore is

Formula for the Differential of the Product If we identify TgG with g by left translation,
we have:

d(φ1 · φ2) = Ad(φ2) ◦ dφ1 + dφ2(1.7)

We shall make use of the above formula in the special case when M ⊂ R and

φ1(t) = Exp
(
ϕ1(t)ξ

)
, φ2(t) = Exp

(
ϕ2(t)ζ

)
; ϕi(t) ∈ R, i = 1, 2,

where ξ, ζ ∈ g. We obtain then:

d(φ1 · φ2) = ϕ ′2(t)ζ + ϕ ′1(t) exp
[
ad
(
ϕ2(t)ζ

)]
ξ(1.8)

because:
Ad(Exp x)y = exp[ad x]y.
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1.5 Proof of (1.4)

Let all the notations be as in 1.2 (especially (1.4), (1.5)). We shall prove the estimate (1.4)
by considering an appropriate mapping

f : [0,T]→ Q ; f (s) = Exp
(
ϕ1(s)ξ

)
Exp
(
ϕ2(s)τ

)
,(1.9)

for an appropriate choice of ϕ1, ϕ2 ∈ C∞[0,T] that satisfy:

ϕ1(s) = 0, 0 ≤ s ≤ 10 ; ϕ1(s) ≡ T, T − 10 ≤ s ≤ T,

ϕ2(0) = ϕ2(T) = 0 ; f (0) = e, f (T) = Exp(Tξ) ∈ Q,(1.10)

|ϕ ′2| ≤ C log(|T| + C).(1.11)

The only additional condition that we have to impose onϕ1, ϕ2 is that ϕ1 is “almost linear”
in [10,T − 10] and that

ϕ2(s) = C log(|T| + C) ; s ∈ [1,T − 1].(1.12)

This is clearly compatible with (1.10), (1.11).
If we apply (1.8) and take into account (1.5) we see that for an appropriate choice of the

constants in (1.12) we have:

∣∣∣∣d f

(
∂

∂s

)∣∣∣∣
TQ

≤ CT−10 ; s ∈ [1,T − 1],(1.13)

where TQ is as usual the tangent bundle of Q. From this it follows that the length (in the
appropriate Riemannian structure on Q) of the path (1.9) is less than C log(|T| + C) and
(1.4) follows.

The proof of (1.13) is an easy exercise in the computation of the norm of a positive
power of a matrix of the form

T =




t11

t22 ti j

. . .
0 tnn




where |tii | = λ > 0, |ti j | ≤ M (i, j = 1, 2, . . . , n). Indeed we have

‖Tm‖ ≤ ‖λm(I + T∗)m‖ ≤ CMCλm−C ; m = 1, 2, . . .

where C only depends on the dimension of the space and where T∗ = (t∗i j ) with

t∗i j = 0, i ≥ j t∗i j = λ
−1|ti j |, i < j.

(The details are obvious cf. [27, Section 1.5].)
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The Case when G is Non-Simply Connected Let us denote by Ā, GR ⊂ G the closure
of the analytic subgroups A and GR of Section 1.2. Then Ā ⊂ N and therefore Ā =
A · M where M is a compact central subgroup of N . By adapting the above argument
we can easily show that Ā has strict exponential distortion in G. The group GR on the other
hand is clearly an R-group (cf. [14], [29]). One can also adapt the argument in Section 1.2
(cf. [14] and the Appendix) and deduce that any normal closed connected subgroup of
strict exponential distortion is contained in ĀG0, where G0 is a compact subgroup. This
easily implies Theorem 1 for general connected Lie groups and even for connected locally
compact groups (cf. [20]).

1.6 The Section

The results of this section are geometrically interesting because they complete the general
picture and because they can also be used to give an alternative approach to the potential
theoretic results of the next section. But since no direct use of these results will be made in
this paper, the proofs, which are essentially routine, will not be given.

Let G be some connected R-Lie group and let N ⊂ G be its nilradical and let K ⊂ N be
some normal (in G) closed connected subgroup. We say that Σ ⊂ G, some Borel subset, is
a section of K if G = K · Σ in a (1-1) way. More precisely, we have

σ : G/K → Σ ⊂ G −→
π

G/K,(1.14)

where π is the canonical projection and σ is a Borel mapping such that

π ◦ σ = Id(G/K).(1.15)

For any x1, . . . , xn ∈ G/K we clearly have

σ(x1) · σ(x2) · · ·σ(xn) = ϕ(x1, . . . , xn) · σ(x1 · · · xn) ; n ≥ 1,(1.16)

where the “·” indicate the group product in G/K or in G as the case might be, and ϕ = ϕn :
C∞(G/K × · · · × G/K ; K), i.e., ϕ ∈ K.

It is not entirely trivial but easy to show that Σ can be chosen so that for all c > 0 (or
equivalently for all c > 0 small enough) there exists C > 0 such that

|ϕ(x1, . . . , xn)|K ≤ CnC + C ; n ≥ 1, |x j | ≤ c, 1 ≤ j ≤ n.

One can easily deduce that Σ is a “polynomial section” in the following sense:

Definition of a Polynomial Section Let G be some connected Lie group and let K ⊂ G be
some normal closed subgroup and Σ ⊂ G some section of K in G in the sense of (1.14),
(1.15) and let ϕ = ϕn be defined as in (1.16). We say that Σ is a polynomial section if there
exist constants C > 0 such that:

|σ(x)|G ≤ C|x|G/K + C ; x ∈ G/K,

|ϕ(x1, . . . , xn)|K ≤ (Σ|x j |G/K + n)C + C ; n ≥ 1, x1, . . . , xn ∈ G/K.

https://doi.org/10.4153/CJM-2000-019-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-019-x


428 N. Th. Varopoulos

When G is not an R-group, the existance of polynomial sections to one of its normal sub-
groups is a rare event indeed. But by Theorem 2 of Section 0.1 we can deduce from the
R-group case the following:

Proposition Let G be some simply connected amenable Lie group and let A ⊂ G be its max-
imal normal subgroup of strict exponential distortion. Then A admits a polynomial section
in G.

Similarly, when G is not simply connected, then the subgroup Ā of Section 1.5 admits a
polynomial section.

1.7 The Basic Geometric Transformation

This section is a preparation to the potential theoretic results that will be given in the second
part of this paper. Let G be some connected amenable Lie group (simply connected or not).
Let G̃→ G be the simply connected cover of G and let

A ⊂ G̃ ; GR ⊂ G̃

the two subgroups that correspond to G̃ as in the Basic Proposition of Section 1.2. GR

acts by inner automorphism and we can therefore consider the semidirect product and the
homomorphisms

G = A �� GR → G̃→ G.(1.17)

By the argument of Sections 1.2–1.4 (repeated in G) it follows that A is of strict exponential
distortion in G. In this context the important thing to observe is that both for the upper
and for the lower Gaussian estimates (0.9), (0.11) it suffices to give the proof for the group
G and that these estimates “go through the factorization π : G→ G of (1.17)”.

Indeed if dµ = ϕ(x)dx, ϕ(x) ∈ C∞0 , is some compactly supported symmetric proba-
bility measure and if ∆ is some symmetric Laplacian on G, we can lift them to a centered
measure µ ∈ P(G) and to a centered Laplacian∆ such that

π̌(µ) = µ ; dπ(∆) = ∆.

When G is already simply connected one can, just as easily, lift a general centered Laplacian
(cf. Appendix). It is a trifle less obvious to lift general Gaussian measures but we shall not
worry about this difficulty here.

To work on the group G we shall use the following:

Basic Transformations Let

x j = a jg j ∈ G ; a j ∈ A, g j ∈ GR, j = 1, 2, . . . .

The “partial products” can then be transformed as follows:

sn = x1 · · · xn = (a1ag1

2 ag1g2

3 · · · ag1g2···gn−1
n )g1 · · · gn = a∗ng1 · · · gn,(1.18)
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where we use the standard notation for any Lie group G:

xy = yxy−1 ; x, y ∈ G.

In this context it is very easy to verify that if x ∈ N lies in some normal closed subgroup of
G we have:

|xy |N ≤ C|x|N exp(C|y|G + C),

with constants that are independent of x and y but depend of course on N and G. [: it
suffices to write x = x1 · · · xp, (x j ∈ N) y = y1 · · · yq, with |x j |N ≤ 1, |y j |G ≤ 1, p ∼ |x|N ,
q ∼ |y|G].

What makes the transformation (1.18) important is that if we start from the information

|x j |G ≤ K ; |g1 · · · g j |GR ≤ M ; 1 ≤ j ≤ n,(1.19)

for some K,M ≥ 1, then we can conclude that:

|a j |A ≤ exp(CK) ; |a
g1···g j−1

j |A ≤ exp(CK + CM) ; |a∗n |A ≤ exp(CK + CM + log n)

with constants that are independent of K and M. By the strict exponential distortion of A
in G, we conclude therefore that the hypothesis (1.19) implies that

|sn|G ≤ C(M + K + log n).(1.20)

The estimate (1.20) will be basic for our potential theoretic applications.

The Proof of Theorem 3 Let G = Q �� (S1⊕· · ·⊕Sk); S j = simple group, (1 ≤ j ≤ k) be
the Levi decomposition of G. We shall show that all the factors S j (1 ≤ j ≤ k) are compact
and this will prove the Theorem. Indeed for each 1 ≤ j ≤ k, S j is not distorted in G, i.e.,
|x|G ≈ |x|S j , x ∈ S j . If, on the other hand, S1, say, is not compact, we must have S1 ⊂ A
because G/A is an R-group. This gives a contradiction and completes the proof.

2 The Potential Theoretic Results

2.1 The Gaussian Estimates for the Kernel

Let X be some metric space assigned with the distance d(·, ·). We shall consider time ho-
mogeneous Markov chains on X

Z : z(n) ∈ X ; n = 1, 2, . . . ,

and we shall say that Z satisfies the Gaussian estimate if:

Px

[
d
(
z(n), x

)
≥ m
]
≤ C exp

(
−

m2

Cn

)
; x ∈ X, m ≥ 1, n = 1, 2, . . . .(2.1)

For constants C > 0 that are independent of x, m and n.

https://doi.org/10.4153/CJM-2000-019-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-019-x


430 N. Th. Varopoulos

Let now dx be some measure on X we can then define the kernel of the chain with respect
to dx by

pn(x, y)dy = Px[z(n) ∈ dy] ; x, y ∈ X, n = 1, 2, . . . .

We shall say that the chain Z is reversible with respect to dx if the kernel pn(x, y) is bi-
markovian, i.e., if ∫

pn(x, y) dx ≤ 1 ; n ≥ 1, y ∈ X.

We can define then the reversed chain

z∗(n) ∈ X ; n = 1, 2, . . . ,(Z∗)

by
Px[z∗(n) ∈ dy] = p∗n (x, y)dy ; n = 1, 2, . . . , x, y ∈ X,

where by definition:

p∗n(x, y) = pn(y, x) ; x, y ∈ X, n = 1, 2, . . . .

The first thing to observe is that the Gaussian estimate (2.1) implies (in fact is equivalent
to) a functional estimate that we shall now describe:

Let ϕ ∈ L∞(X) be some bounded function that satisfies the following Lipschitz condi-
tion

|ϕ(x)− ϕ(y)| ≤ d(x, y) ; x, y ∈ X.(Lip)

Let us also consider the submarkovian operator

Tn f (x) =

∫
pn(x, y) f (y) dy ; x ∈ X, n = 1, 2, . . . ; f ∈ L∞(X).

Then the chain Z satisfies the upper Gaussian estimate (2.1) if and only if

‖e−λϕTneλϕ‖∞→∞ ≤ exp(cnλ2 + c) ; λ ∈ R ; n = 1, 2, . . .(2.2)

with constants c > 0 that are independent of λ, n or ϕ.
The operator above is the composition of the following three operators (and in that

order):

1) Multiplication by the L∞ function eλϕ

2) Action by the submarkovian operator Tn

3) Multiplication by the L∞ function e−λϕ.

‖ ‖p→q indicates, of course, as usual the Lp(X ; dx) → Lq(X, dx) norm. Observe also
that the kernel of e−λϕTneλϕ with respect to dx is

pn(x, y) exp
[
λ
(
ϕ(y)− ϕ(x)

)]
.
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By choosing some bounded regularization of the distance

ϕ(y) = min[m, d(x, y)], y ∈ X

(with fixed x), we see that (2.2) implies that

eλm

∫
d(x,y)≥m

pn(x, y) dy ≤ C exp(cnλ2) ; m ≥ 1, n = 1, 2, . . . , λ ∈ R, x ∈ X.

Optimizing over λ we see that the Gaussian estimate (2.1) follows.

Conversely, let us assume that the Gaussian estimate (2.1) holds for the chain Z, let us
fix x ∈ X and let

Fn(ξ) = Px

[
d
(
z(n), x

)
≥ ξ
]
≤ c exp

(
−
ξ2

cn

)
; x ∈ X, n = 1, 2, . . . , ξ ≥ 0.(2.3)

We clearly have:

|(e−λϕTneλϕ) f (x)| ≤

∫
X

exp
[
λ
(
ϕ(y)− ϕ(x)

)]
Px[z(n) ∈ dy]

for any f ∈ L∞ with ‖ f ‖∞ ≤ 1. We can therefore bound:

‖e−λϕTneλϕ‖∞→∞ ≤ −

∫ ∞
0

exp(λξ)dFn(ξ) ≤ Cλ

∫ ∞
0

exp

(
λξ −

ξ2

cn

)
dξ ; λ > 0,

where the second estimate follows from (2.3) and a simple integration by parts. The es-
timate (2.2) follows upon performing the above integration. We also have the following
simple but important:

Proposition Let us assume that the chain Z is reversible with respect to the measure dx on X
and that both Z and Z∗ satisfy the Gaussian estimate (2.1). The kernel pn(x, y) satisfies then:

p2n(x, y) ≤ C sup
z
{pn(x, z)pn(z, y)}1/2 exp

(
−

d2(x, y)

cn

)
; x, y ∈ X, n = 1, 2, . . . .

(2.4)

The proof is very easy. Set

Pn(x, y) = sup
z
{pn(x, z)pn(z, y)}1/2 ; q(λ)

n (x, y) = pn(x, y) expλ
(
ϕ(x)− ϕ(y)

)
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where n = 1, 2, . . . , λ ∈ R and ϕ satisfies (Lip). We have

p2n(x, y) =

∫
pn(x, z)pn(z, y) dz ≤ Pn(x, y)

∫
p1/2

n (x, z)p1/2
n (z, y) dz ;

x, y ∈ X, n = 1, 2, . . . .

q(λ/2)
2n (x, y) ≤ Pn(x, y)

∫ (
q(λ)

n (x, z)q(λ)
n (z, y)

)1/2
dz

≤ Pn(x, y)

(∫
q(λ)

n (x, z) dz

)1/2(∫
q(λ)

n (z, x) dz

)1/2

≤ Pn(x, y)‖eλϕTne−λϕ‖1/2
∞→∞ ‖e

λϕT∗n e−λϕ‖1/2
∞→∞

≤ CPn(x, y)ecλ2n ; x, y ∈ X, n = 1, 2, . . . , λ ∈ R.

This gives of course

p2n(x, y) ≤ CPn(x, y)ecλ2n−cλ(ϕ(x)−ϕ(y))

and upon optimizing over ϕ and λ we obtain (2.4).
The above proposition has a partial converse. Indeed if we assume that for some D > 0

we have:

Vx(n) =

∫
d(x,z)≤n

dz ≤ cnD ; pn(x, y) ≤ Cn−D/2 exp

(
−

d2(x, y)

cn

)
;

n = 1, 2, . . . , x, y ∈ X.

(2.5)

Then an easy integration argument shows that the estimate (2.1) holds for Z. In fact, the
conditions (2.5) implies the following stronger estimate

Px

[
sup

0≤ j≤n
d
(
z( j), x

)
≥ m
]
≤ C exp

(
−

m2

cn

)
.(2.6)

The argument to prove this is well known (cf. [34, III, Section 1.3]).
The estimates (2.5) for a centered compactly supported random walk on a Lie group G

of polynomial volume growth are contained in the recent work of G. Alexopoulos [3], [4].
Similarly, in [3], [4] one also finds the continuous time version of these estimates for cen-
tered diffusions on such a group G:

pt (x, y) ≤ ct−D/2 exp

(
−

d2(x, y)

ct

)
; t ≥ 1, x, y ∈ G.(2.7)

If the diffusion is symmetric the estimate (2.7) is well known (cf. [32]).
For a centered diffusion on a Lie group of polynomial volume growth G we also have

the continuous time analogue of (2.6):

Px

[
sup

0<s<t
d
(
z(t), x

)
≥ m
]
≤ C exp

(
−

m2

ct

)
; x ∈ G ; m, t ≥ 1.(2.8)

https://doi.org/10.4153/CJM-2000-019-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-019-x


Theoretic Results on Lie Groups 433

This continuous time variant (2.8), if the diffusion is symmetric, can be proved exactly
as (2.6) (because the small time behaviour of pt (x, y) is known cf. [34]). For a general
centered diffusion the small time behaviour creates an extra difficulty that has to be dealt
with (cf. [27, Appendix A.14]).

Let us now quite generally make the assumption that the Markov chain (Z) is (strictly)
Markovian, i.e., that

Tn1 = 1, n ≥ 1.

Then clearly if (Z) satisfies the Gaussian estimate (2.1), we can find some c0 > 0 such that

Px

[
d
(
z(t), x

)
≤ c0t1/2

]
= 1− Px

[
d
(
z(t), x

)
> c0t1/2

]
≥ c−1

0 ; x ∈ X, t = 1, 2, . . . .

(2.9)

And if the stronger estimate (2.6) holds, we can even find c1 ≥ c0 and ε0 > 0 such that

Px

[
d
(
z(t), x

)
≤ c0t1/2 ; sup

0≤s≤t
d
(
z(s), x

)
≤ c1t1/2

]
≥ ε0 ; x ∈ X, t = 1, 2, . . . .

(2.10)

In other words, we can bound from below the probability that at time t we are in the ball
of radius c0t1/2 without having exited from the (say much larger : c1 � c0) ball of radius
c1t1/2. The analogous facts clearly also hold for a continuous time parameter.

If we are given now t,m ≥ 1 with t/m2 � 1, we can iterate the above operation [t/m2]-
times. [More explicitly, the operation goes as follows: at time t ∼ m2 we return to the
ball of radius R1 ∼ m without having exited from the much larger ball R2 � R1 (but still
with R2 ∼ m).] The Markov property then applies and we obtain automatically the lower
Gaussian estimate:

Px

[
sup

0<s<t
d
(
z(s), x

)
≤ m
]
≥ C exp

(
−

t

m2

)
; m ≥ 1, t = 1, 2, . . . .

The analogous result for a continuous time parameter clearly also holds.
Observe, finally, that the above considerations easily adapt to time inhomogeneous

Markov chains and to time inhomogeneous random walks on groups. But we shall not
elaborate.

2.2 The Proof of the Upper and the Lower Gaussian Estimate on an Amenable Lie Group

As already pointed out, in the special case when the Markov chains are symmetric or when
G is simply connected, for the proofs of the upper and lower Gaussian estimates (0.9),
(0.11) it suffices to restrict our attention to a Lie group G of the form:

G = A �� GR,(2.11)

where GR is an R-group and where A is strictly exponentially distorted in G. We shall not,
a priori, make the assumption that G is amenable but this a posteriori (as already pointed
out at the end of Section 0) will turn out to be the case.
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The Compactly Supported Random Walks on G Let G be as in (2.11) and let π : G→ GR

be the canonical projection. Let {z(n) ∈ G ; n = 1, 2, . . . } be the random walk generated
by the centered measure µ ∈ P(G) that satisfies:

supp µ ⊂ Be(K) = {g ∈ G ; |g|G ≤ K}.

We shall then consider the projected random walk

{ż(n) = π
(
z(n)
)
∈ GR ; n ≥ 1}.

The basic transformations in Section 1.6 (esp. (1.20)) shows then that:

Pe[ sup
0≤ j≤n

|z( j)|G ≤ C(m + K + log n)// sup
0≤ j≤n

|ż( j)|GR ≤ m] = 1.(2.12)

The upper Gaussian estimate for z(n) follows therefore from the corresponding result for
ż(n). The term log n is irrelevant here since in the upper Gaussian estimate we may assume
that m ≥ c

√
n. This completes the proof of (0.9) and (0.11) for compactly supported

random walks.

The Gaussian Random Walks Let us now assume that the random walk {z(n) ∈ G ;
n ≥ 1} is centered and Gaussian, e.g. generated by some centered Laplacian (cf. Sec-
tion 0.2). We shall then modify the conditional probability (2.12) of the basic transfor-
mation of Section 1.6 as follows:

Pe[ sup
0< j≤n

|z( j)|G ≤ C(m + K + log n)// sup
0< j≤n

|ż( j)|GR ≤ m, sup
0< j≤n

|z−1( j)z( j − 1)|G ≤ K]

= 1 ; m,K ≥ 1, n = 1, 2, . . . .

(2.13)

By the upper Gaussian estimate (0.5) we have on the other hand:

Pe[ sup
0< j≤n

|z−1( j)z( j − 1)|G ≥ K]

≤ exp(−cK2 + log n) ; K ≥ 1, n = 1, 2, . . . .

(2.14)

Now in the estimate (0.9) we may assume without loss of generality that m ≥ c
√

n. Let
us then set K = ε0m in (2.14), (2.13) for an appropriate ε0 > 0. We see then that the
estimate (0.9) for the random walk {z(n) ∈ G} follows by the corresponding result for
{ż(n) ∈ GR} (cf. (2.8)).

Having proved the upper Gaussian estimate (0.9), the estimate (0.11) follows automat-
ically by the considerations of the previous section because the left invariant diffusion
semigroup e−t∆ is clearly Markovian [The function u(t, g) = e−t∆1(g) is independent
of g ∈ G]. The Corollary 1 follows from the Proposition in Section 2.1.

The General Case The proof in the general case, when G is not simply connected, is almost
identical but we have to argue on the product G = Ā · Σ where Σ is a polynomial Borel
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section of the subgroup Ā (: notations of Sections 1.5, 1.6) rather than with the semidi-
rect product (2.11). The complications caused by the fact that Σ is not a subgroup are
easily dealt with by the properties of the polynomial section. The details will be left to the
interested reader who should start by adapting the Basic Transformation of Section 1.7.

Final Remark For the proof of our Gaussian estimates we have made use of the results of
G. Alexopoulos [3], [4] for groups of polynomial growth. It is worth pointing out however
that only the upper Gaussian estimates of [3] and [4] were used and that these upper Gaus-
sian estimates can be obtained directly without the deep and difficult Harnack estimate that
Alexopoulos proves in [3], [4].

The reason why these upper Gaussian estimates are easier to prove is that in a group
of polynomial volume growth G, for fixed x, y ∈ G, d(x, y) = δ � 1, one can find an
appropriate ϕ that satisfies (Lip) as above, and which has the additional properties

‖e−λϕe−t∆eλϕ‖2→2 ≤ Cect(λ2+ λδ ) ; λ > 0

|ϕ(x)− ϕ(y)| ∼ δ = d(x, y)

where∆ is some fixed centered Laplacian. From this, by the uniform estimates of the kernel
(cf. [33, Th. 3]) and standard methods (cf. [7]) one deduces (2.6) and (2.7) for G and∆.

The construction of the above functionϕ is easy if G is nilpotent. For a general G it takes
some doing. But still it is easier, I feel, than the global Harnack estimate of Alexopoulos.

Appendix

Let G be some connected Lie group and let H be the class of all closed normal subgroups
H such that G/H ∼= Ra for some a ≥ 0. It is clear that the intersection of two subgroups in
H also lies in H and that the component of the identity of a subgroup in H also lies in H.
There exists therefore a minimal element in H that is connected and which we shall denote
by H0. Let h0 � g be the Lie algebra of H0 which is an ideal in g, the Lie algebra of G. It is
clear that the Laplacian∆ = ∆0 + Y in (0.1) is centered if and only if Y ∈ h0.

Let us denote by q � g the radical of g and let s be some Levi subgroup. The obvious fact
that

h0 ⊃ [g, g] + s = [g, q] + s

clearly implies that when G is simply connected then

h0 = [g, q] + s.

When G is not simply connected the situation is more complicated. Let C ⊂ Q be some
maximal connected compact analytic subgroup of the radical of G (cf. [14]), then H0 ⊃ C
and therefore, if we denote by c the Lie algebra of C we have:

h0 ⊃ [q, g] + c + s = h1.

h1 is an ideal in g. Let us denote by H1 the analytic subgroup generated by h1 and let h1 be
the Lie algebra of H1 the closure of H1. We then have:

h0 = h1.(*)
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Indeed, first of all, if we quotient by the maximal central torus, we can easily reduce the
proof of (*) to the case when the nilradical is simply connected. Let then S be some Levi
subgroup of G and let

θ : G̃ = Q �� S→ G

be the canonical mapping. Then H̃1 the analytic subgroup generated by h1 in G̃ is closed
because [q, g] lies in the nilradical; furthermore, G̃/H̃1

∼= Ra (a ≥ 0) (cf. [14, XV, 3.7]). It
follows that G/H1

∼= G̃/θ−1(H1) ∼= Rb (0 ≤ b ≤ a) therefore H1 ⊃ H0. This proves (*)
because the opposite inclusion is obvious. It follows in particular that when G is amenable
and S is compact (i.e., in the context of this paper) we have h0 = h1.

The choice of the Levi subalgebra s and of the maximal compact subalgebra c ⊂ q in the
definition of h1 was arbitrary. When G is amenable, by taking conjugates, it follows that we
can choose both S and C to lie inside some maximal compact subgroup G0 ⊂ G. Since on
the other hand clearly the Lie algebra g0 of G0 satisfies g0 ⊂ h0 we finally obtain:

h0 = [g, q] + g0.

Another geometric fact that we used (in Section 1.5) is this. Let G be some R-group and
let h ⊂ Lie(G) be some ideal that has the following property: There exists C > 0 s.t. for all
n ≥ 1 and all γ1, . . . , γn ∈ h, |γ j | ≤ 1, 1 ≤ j ≤ n, we have:

| Exp(γ1) · · · Exp(γn)|G ≤ C log(n + C).(**)

Then Exp(h) is precompact in G. The first step towards the proof is to show that h + s

satisfies (**) for any Levi subalgebra s. This reduces the problem to the case when G is
soluble and h is a subalgebra. The details will be left to the reader.

References
[1] G. Alexopoulos, Fonctions harmoniques bornées sur les groupes résolubles. C. R. Acad. Sci. Paris Sér. I Math.

305(1987), 777–779.
[2] , An application of homogenization theory to harmonic analysis: Harnack inequalities and Riesz trans-

forms on Lie groups of polynomial growth. Canad. J. Math. (4) 44(1992), 691–727.
[3] , Sous-laplaciens et densités centrées sur les groupes de Lie à croissance polynomiale du volume.
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4, place Jussieu
75005 Paris
France

https://doi.org/10.4153/CJM-2000-019-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-019-x

