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Abstract

A closure operation connected with Hall subgroups is introduced for classes of finite soluble groups, and
it is shown that this operation can be used to give a criterion for membership of certain special Fitting
classes, including the so-called 'central-socle' classes.

1991 Mathematics subject classification (Amer. Math. Soc): 20D10.

In this note a closure operation connected with Hall subgroups is introduced for classes
of finite soluble groups. It is shown that this operation can be used to give a criterion
for membership of certain special Fitting classes, namely the so-called 'central socle'
classes 2?n, and the classes en (<yVk): see Section 1 for definitions. Thus, for example,
let G be a finite soluble group and let a denote the set of primes which divide |soc(G)|;
we show (Theorem 2.6) that G G &„ if and only if the Hall r-subgroups of G belong
to 2tn for all sets r of the form x = a U {t} where t is a prime.

The paper has three sections. The first consists of preliminaries. In the second, the
classes 2?n are investigated, while the classes en{J/k) form the subject of the third.

1. Preliminaries

All groups considered here will belong to the class 5? of finite soluble groups: our
classes of groups are isomorphism-closed and contain all groups of order 1. A Fitting
class is a class of groups closed under the taking of subnormal subgroups and normal
products; a background to Fitting class theory can be found in [6, 10].

If G is a group and & is a Fitting class then G& denotes the ^"-radical of G,
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while Z(G) denotes the centre of G. The set of all primes is denoted by P, p will
always denote a prime and n will always denote some subset of P. Then 7r-soc(G)
denotes the product of the minimal normal 7r-subgroups of G, while soc(G) denotes
P-soc(G). Let & be a Fitting class, and define classes of groups as follows:

&„ = (G e y : TT-SOC(G) < Z(G)),

en{&) = (G e y : the G-chief n-factors below Gjr are central in G),

JV = (G e y : G is nilpotent),

yn = (G e y : G is a TT-group ).

In addition, we write 5° = ^>, while (1) denotes the class of groups of order 1.
It is well-known that both 3?n and en(<j?) are Fitting classes, and that 2fn is

subdirect-product-closed while en{^) is a Fischer class: see [6] for definitions, and
[12] for details. Both these families of classes, especially the former, have been
extensively studied and have often been used to furnish examples or counterexamples:
see, for example, [2, 4, 5, 7, 12].

Write Hall* (G) for the set of Hall ;r-subgroups of G, Hall(G) for the set of all Hall
subgroups of G, and Sylp(G) for the set of Sylow p-subgroups of G. Write Cm for
the cyclic group of order m.

Let 3C c y be a class of groups and & be a Fitting class. Define Hjr JT =
(G e y :3X e & andH e Hall(X) with H > X# such that G ~ H), and write
H.3T for H(i),£". It is not hard to check that H^ is a closure operation on classes
of groups in the sense that (i) 5 c H ^ f , (ii) H ^ f c H ^ if X c ^ , and
(iii) Hjr^T = HjjrHj? JT. If .2T = Hjr<r, we say that <T is Up-closed, while an
H-closed class is called Hall-closed: see [1, 2, 3, 8], and the references contained
therein, for results related to Hall-closure.

2. The central-socle classes

The section begins with Proposition 2.1, to the effect that 3fK is H^-closed, and
this is followed by Examples 2.2 to show that 3?n is not Hall-closed for n ^ 0. A
converse to Proposition 2.1 is proved as Proposition 2.5, and together these results
yield a criterion, Theorem 2.6, for membership of $?„. The section ends with a result,
not strictly connected with the H^ operation, in a similar spirit to 2.5.

2.1 PROPOSITION. Let n c P and letG e 2?n. Suppose that H is a Hall subgroup
ofG with H > soc(G). Then H e &„. Thus 2£n is H ^ -closed.
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PROOF. It is easy to check that 2?n = f]pe7T 2?p, and so we may without loss of
generality assume that ix = {p} for some p e P .

Suppose for a contradiction that G is a group of minimal order subject to

(i) G e 2fp; and
(ii) there exists a Hall subgroup of G which contains soc(G) but does not belong

to 3TP.

Let H be a Hall subgroup of G with H > soc(G) but H $ %. Write r = {/ e
P : / | \H\}\ then H e Hallr(G), F(G) e yx, F(G) < H, and OT(G) = 1. Since
yp' <= 2p, then p € T. Let M < G with F(G) < M: this is possible because
H < G. Then F(M) = F(G) < M C\ H e Hallr(M), and so M n H e J2£ by
minimality. In particular, H •£ M. Thus G = MH and |G : M| = <7 € r. Because
// £ Jp, there exists L • < H with L <E yp and L ^ Z{H). Because F(G) < //,
then [F(G), L] < F{G) n L < / / . Now CG(F(G)) < F(G), because G is soluble,
and so F(G) n L > 1 because L > 1. Since L • < H, it follows that L < F{G). In
particular, L < M C\ H. Now L is an irreducible //-module. Since (M n / / ) < / / ,
then by Clifford's Theorem, [9, 3.4.1] or [11, V.17.3], we have

for some n e N, where each (/, is an irreducible (M n //)-module. But this means that,
as a normal subgroup of M n //, L is a direct product of minimal normal subgroups.
Thus L < /?-soc(M n H). But M n H e 3fp and so

(1) L<Z(MHH).

But L • < H and L ^ Z(//); thus

(2) / / /(M n H) ~ Q acts faithfully and irreducibly on L e ^ .

In particular, p ^ q.
Let / = (L* : g e G), the normal closure of Lin G. We have/ < F(G) < MHH

because L < F(G). Then (1) implies that L < Z( / ) .ButZ(/) < G and s o / = Z(/)
is abelian and must now be a p-group, as it is generated by commuting conjugates of
L.

Let Si € Hallr(G). By orders we have G = HSy and M > Si, whence, remem-
bering that L < // , we have

By the Frattini argument, using the conjugacy of Hall subgroups, we have G =
MNG(Si). But |G : M\ = q, and so there exists a ^-element «j e NG(S]) such that
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G = Af(«i). Again by Hall's Theorem, there exists a e G with n\ € H. Write
n =n\ e H\M and 5 = 5f. Then n e W/,(S), G = / /S and / = (LJ : s e 5). It
follows that

(3) L is contained in no proper S-invariant subgroup of / .

We have S(n) < G because n e NH(S) ; also, S(n) e 5?^ because p e T, S € yp'
and \n\ = qa with q =fi p. Now / is a normal, abelian p-subgroup of G and so by
[9,5.2.3] we have

(4) / = [/, S(n)] x Cj(S{n)).

Since J < G, there exists J° • < G with / ° < / . Then / ° < p-soc(G) < Z(G)
andsoCy(5(n>) > / ° > l.Thusf/, 5(n>] < / b y (4). But [/, S(«>] is5(n)-invariant
and so 5(n) centralises the non-trivial group / / [ / , S{n)]. But then any subgroup lying
between [/, S{n)] and / must be 5-invariant. By statement (3) above, it follows that
[J,S{n)]L = /.But then

1 ± / / [ / , S(/i>] = [/, S(n)]L/[J, S{n)] ~ L/(L n [/, S(n)]),

and since all relevant subgroups here are (n)-invariant then the isomorphism is an
(«)-isomorphism. But («) centralises / / [ / , S(n)], and so (n) must centralise a non-
trivial factor group of L. However, n e H\M whence H = (M D H)(n) and so by
statement (2), L must be a faithful, irreducible module for (n)/{nq) ~ Q , contrary to
what we have just seen. This completes the proof.

2.2 EXAMPLES. The main aim of these examples is to show that 2?n is not Hall-
closed, so that some such condition as ' / / > soc(G)' is needed in 2.1. Examples of
classes (i) not H^-closed, and (ii) not H^-closed, will be given in 3.2.

(i) Suppose that p, q and r are distinct primes. It is well-known that there exists a
group G with a unique chief series whose factors have orders (reading 'from the top')
of the form p, qa and rfi, respectively. Then |soc(G)| = rp.
(a) Now suppose that n with 0 C n C P (proper inclusions) is given. We show
that J^ is not Hall-closed. Choose q € n and r e P\n. Then G e $?„. Let
H e Hall(p,q)(G); then H has a non-central 7r-socle of order qa, so H £ 2?n-
(b) In Proposition 2.1, it is natural to ask whether the conclusion still holds if the
condition ' / / > soc(G)' is replaced by ' / / > 7r-soc(G)'. It need not. For take
n = {p,q}. Then G € J£ , while if H e Halljr(G) then H > n-soc(G) although

(ii) We now show that 2? = Sf? is not Hall-closed: the above example is of no
avail for this purpose.
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Let 5 denote the group SL(2, 3) and let Z denote Z(S), the centre of S. Then
Z = soc(S) has order 2. Let T denote a cyclic group of order 5, and form the
regular wreath product W = SV/TT (see [11,§1.15]). We may write W as asemidirect
product W = [S*]T, where S*, the 'base group', is a direct product of 5 copies of
S. Then Z* = Z(5*) is the corresponding direct product of the respective centres of
the 5 copies of S, and has order 25. Now [Z*, T] has order 24 and is normal in W.
Write W = W/[Z*, T]. Then W has a unique minimal normal subgroup, namely
Z* = Z*/[Z*, T], and Z* = Z(W). In particular, W € 2f = 2TP. But W has a Hall
{3, 5}-subgroup H of order 355 and H ~ C3wrC5. Now, C3wrC5 has two minimal
normal subgroups: a central subgroup of order 3 and a non-central subgroup of order
34. Thus H £ 2" and so Sf is not Hall-closed.

We next prove some results converse in sense to 2.1.

2.3 L E M M A . Suppose that G e y and that M < G with \G : M\ = q and
M e 2?p where p,q e P. Suppose that p-soc(G) < M. Let H e Hall r (G) where
{p, ? ) ? i c p . Then if H e 2fp it follows that G e 2fp.

PROOF. We may suppose that p-soc(G) ^ 1. Let N • < G with JV e ^ , . Then A?
is an irreducible G-module; thus by Clifford's Theorem, N is a completely reducible
M-module. But then N < p-soc(M) < Z(M). Thus M < CG(N) and so N is
an irreducible G/M-module. Since \G : M\ = q € r, then G = MH, and so iV
is an irreducible H/(M n //)-module. But then N < p-soc(H) < Z(H). Thus
CC(N) > MH = G and the assertion follows.

2.4 NOTATION. If G e ^ , write aG = {s e P : s | |soc(G)|}.

2.5 PROPOSITION. Let G e y and n e P. Suppose that Hallr(G) c ^ /or a//
r C P of the form r = oG U {/} w/wre r e P. T/ien G G ^ .

PROOF. It will suffice to prove that G G 2FP for all p e n n CTG. If soc(G) = G
there is nothing to prove and so we assume that soc(G) < G. Let M < • G with
M > soc(G) and write |G : M| = q e P.

We claim that aG = aM. For suppose that s e oM; then there exists K • < M with
A: G ̂ . The normal closure A"G satisfies ^ s 3 KG < M, and so there exists L<G
with L < KG. Thus s e aG. Next suppose that s e aG. Then there exists K • < G
with A" e ^ , and tf < M because M > soc(G). Thus there exists L • < M with
L < K, whence 5 G CTM, and CTG = aM.

Let T be of the form r = CTM U {?} = CTG U {?}, where f G P. Let Hx e Hallr(M)
and let H e HallT(G) with / / , = / / n M . B y hypothesis, H € ^ and so Hx z 2?n.
By the minimality of G, it follows that M e 2?n.

https://doi.org/10.1017/S144678870003860X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003860X


[6] A Hall-type closure property 209

Now write r0 = aG U {q\ and fix H e Hallro(G). Let p e n n oG be arbitrary.
Then H e 2fp, M e 3TP, and {p, q) c r0; it follows from Lemma 2.3 that G e J£,
and the proof is complete.

Putting together Propositions 2.1 and 2.5, we obtain the promised criterion for
membership of the central-socle classes as follows.

2.6 THEOREM. LetG e yandn c P. Then G e 2fn if and only if Hall, (G) c J?
for all x c P of the form x = aG U {/} vwY/i f 6 P.

We now give another result in the spirit of 2.5.

2.7 PROPOSITION. Let G e y and i r c p . Suppose that Hallr(G) c %n for all
sets of primes x with \x\ < 2. Then G £ ^ , .

PROOF. Because ^ = f]pen 3fp, we may without loss of generality assume that
n = {p}. Suppose for a contradiction that G is a counterexample of minimal order.
Then p-soc(G) < G and there exists M < • G with M > p-soc(G). If x c P
with |T| = 2 and if H € Hallr(M), then H = M n //, where //, € Hallr(G), and
so H e 2?p. Thus M e fp by minimality. Write \G : M\ = q e P. Now the
Hall {p, <7}-subgroups of G belong to 2fp by hypothesis, and the result follows from
Lemma 2.3.

3. The classes

This section has a similar structure to Section 2. It is proved in Proposition 3.1
that en(jY

k) is H^-closed, and this is followed by some relevant examples (3.2).
Proposition 3.3 is a converse to Proposition 3.1, and together these results yield a
criterion, Theorem 3.4, for membership of the classes e7l(lyVk). Again the section
finishes with a result, Proposition 3.5, not strictly connected with the Hjr operation,
being an analogue for certain classes en(&) of Proposition 2.7.

3.1 PROPOSITION. Let n c P and k 6 N , i t > 0 . Let G e en{jVk). Suppose
that H is a Hall subgroup of G with H > G^k. Then H e en(^Vk). It follows that

k is H^v* -closed.

PROOF. Because en{^Vk) — f]p€7I^P(^/k), we may without loss of generality
assume that n = {p} where p e P.

The proof is by induction on k. If k — 0 then ^Vk = 1 and ep(\) = 5?\ the
conclusion clearly holds in this case. We thus suppose that the result holds for all
Go € ep(jV

k») for all k0 < k, and for all G, e ep{^k) with | d | < |G|.
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Writer = {q e P : q \ | / / | } ; then// e Hallr(G). If A is a group, write A, = Aj,-,,
the ^ - rad ica l of A; then G* e yr and Gt < Or(G) < H, where Or(G) denotes
the ^-radical of G. Since yp, e ep(j¥

k), then // € ep(J/k) if p £ r, and so we
may without loss assume that per.

Choose M <\G with M > Gk and write \G : K\ = q eP. Then M e ep{jVk),
M n // € Hallr(M) and Mk = Gk < M Pi H. By the induction hypothesis we
have M D H € ep(J/k)\ in particular, M n // 7̂  // and so G = M//. Further, all
M n //-chief p-factors below (M D //)* are M n //-central. Since MP\H < H then
by Clifford's Theorem, any //-chief p-factor, X/ y say, below (M O //)^ is completely
reducible as an M D //-module and, being then a sum of M Pi //-trivial modules, must
itself be M n //-trivial. Thus,

(5) The //-chief p-factors below (M n / / ) t are M n //-central.

There are now two cases to consider.
Case (I). Suppose that Hk £ M; then H = (M n / /) / /*. Let X/K be an //-chief

p-factor in Hk in an //-chief series which refines H > Hk > Hk_{ > 1. By the
Jordan-Holder theorem, we may restrict attention to a fixed chief series.

We firstly claim that X/ Y is trivial as an M D //-module. If X < (M n / / ) t =
Mn// t , thenX/risMn//-centralby(l) .Ifr ^ MthenX/y ~w (XDM)/(YnM);
the latter is still //-chief and so again is M D //-trivial by (1). In the remaining case
we have Y < M, X ^ M and F = X n M; then we have [X, M n //] < X n M = 7
and again X/y is M n //-trivial; this justifies our claim.

Suppose that X/ Y lies below //*_i; then X/ F is //-central because H e ep(<yK*~')
by the induction hypothesis and the fact that ep(<yVk) c ep{jVk~l). Suppose, on the
other hand, that X/Y lies between Hk and //*_i. By Clifford's Theorem, X/Y is
completely reducible as an Hk -module and so must be a sum of Hk -trivial submodules
because Hk/Hk_x is nilpotent; thus X/ Y is a trivial //*-module. But // = (M fl H)Hk,
and since X/K is trivial for M n // , it must be trivial for H. It follows that H e
ep(ts¥k), as required.

Case (II). Suppose now that Hk<M; then Hk = (M D / / ) t . Now Gk < OT(G) n
#* < (Or(G)), < Gt, whence Gk = Or(G) n Hk.

Let F e Sylp(//t), and write J = (Pg : g e G), the normal closure of P in G;
note that J < M. Let R be a Hall p-complement in Gk\ then /? = RGk~\/Gk-\ is
the unique p-complement in Gk/Gk-\ e J/, and so R < G/Gk-\. Now R € Hk

and so, since Hk/Hk^ e J¥, we have [/?, /*] < //*_i. But [/?, P] < Gt because
/? < Gt < G, and so

[R, P]<Gkn //t_, = or(G) n //, n //*_, = G*. , .

But then P < Cc(R) < G and so J < CG(R) n M. Now let x e J be a p'-element.
The G-chief p-factors between Gk and G ^ are G-central because G € ep(^K*), and
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so are centralised by x. But then x, being a //-element, must centralise the Sylow p-
subgroup of Gk/Gk^\, by [9,5.3.2]. But x e J already centralises the /^-complement
RGk-\/Gk-\ of Gk/Gk-i, and sox centralises Gk/Gk-\. But G*/G*_i is the Fitting
subgroup of G/Gk-\, and so x e Gk by [9,6.1.3]. But this implies that JGk/Gk

must be a p-group. Since Gk e yr and p e x, it follows that J e J ^ . But now
J < OT(G) and P < OT(G)nHk = Gk. But then /> e Sylp(Gt) andsop / | / / t : G*|.

Let ^o be a G-chief series between Gk and 1, and let ^ be an //-chief series which
refines Hk > Gk > 1 and which refines ^ below Gk. Now all the G-chief p-factors
in ^o are G-central because G e ep{^Yk)\ thus they all have order p and so must be
//-chief; moreover, they give us all the /^-factors in ^ because p/\Hk : Gk\. But
now H e ep{jVk), and the proof is complete.

3.2 EXAMPLES, (i) This example is to show that ep(jY
2) is not H^-closed. Let

p,q,r and s be distinct primes. There exists a group G with a unique chief series
whose factors have orders (reading 'from the top') of the form q, pa ,r& and sy

respectively. Then G € ep{jV2) because \G^n\ = sYrP. Let H e Hall(G) with
\H\ = sYpaq. Then | / / ^ | = sypa and H <£. ep(jV

2). However, H > G^, and so
ep(jV

2) is not H^-closed.
(ii) This example shows that ep(yn) is not H^-closed when n C P with \n \ > 2.

Let G be the group of Example 2.2(i) with [p, q] c n, r £ n, and H e Hall^(G).
Then H > On{G) = \. Now G € eq{S"n) while H £ eq(yn). Thus 3.1 is not valid
if we replace jVk by an arbitrary Fitting class &.

The next result is an analogue of Proposition 2.5, being converse in sense to 3.1;
it is valid for arbitrary ejr(^') and not just for the classes en(jV

k) : as we have just
seen, 3.1 is not valid for arbitrary en (

3.3 PROPOSITION. Let G e y and n c P. Let & be a Fitting class. Suppose
that Hallr(G) c en(&) for all x c P of the form x = pG U {/} where t e P and

PG = {seP:s\ \G,\). Then G €

PROOF. Suppose for a contradiction that G is a counterexample of minimal order.
Then G? < G as otherwise ac contains all primes dividing \G\ and so G e ep(&) by
hypothesis. Let M < • G with M > G&, and write |G : M\ = q. Then M^ = G^,
and so pM = pG. If / / e Hallt(M) then / / = //, n M for some M € HallT(G) and
so M e ^(^") by minimality. Because G ^ e^(^"), there exists a G-chief TZ-factor
X/Y below G^ which is not G-central. By Clifford's Theorem, X/Y is completely
reducible as an M-module, and so X/ Y is M-central because M e en {^). Thus X/ Y
is faithful and irreducible for G/M ~ Cq. Let H e Hallr(G) where T = pG U {̂ r}.
Then G = M//. Thus X/K is faithful and irreducible for / / / ( / / D M) ~ G/M, and
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so is non-trivial for H. Now H > H& > G& > X > Y, and so X/Y is //-central
because H e en{&), in contradiction to the preceding statement. The result follows.

Putting together Propositions 3.1 and 3.3, we obtain our criterion for membership
of the classes en{^Vk) as follows.

3.4 THEOREM. Let G e <¥*, JV <ZP and k eN,k >0. Then G e en(^
k) if and

only ; /Hall r(G) c en(^yk)for all x c P of the form x = pG U {t} where t e P and

The next result is an analogue of Proposition 2.7 for the classes en

3.5 PROPOSITION. Let G e y and i C P . Let & be a Hall-closed Fitting class.

Suppose that HallT(G) c en(^)for all x c P with \x\ < 2. Then G e

PROOF. The proof is by induction on \G\, the result being trivial if \G\ = 1. If
M < • G and r c P with |T| < 2 then Hall,(M) c eA&) and so M e en{&) by
induction. It follows that G contains a unique maximal normal subgroup, which we
call M; then M > G' and \G : M\ = q e P. Let now X/Y be a G-chief n-factor
below G.?. If X £ M then X = G and F = M by the unicity of M < • G, and
then X/y is certainly G-central. Suppose that X < M. Then X/F is below M&,
and by Clifford's Theorem must be M-central. Now X/Y e yp for some pen.
Let H e Hallr(G) where x = {p,q}. Then G = MH and X/F is a module for
/ / / / / n M ~ G/M. But X < y / / and so X = X n TH = y(X n / / ) , whence

Now Mg: n / / € Hallr(Mjr) c J?, the final inclusion because & is Hall-closed, and
s o X n / / < M j ? n / / < //jr. But / / e ^ ( ^ " ) , and it follows that X/Y is //-central
and thus G-central, as required.
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