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1. Introduction

The properties of ideals with a ¢xed Hilbert function have been studied extensively;
the most recent papers are [HP,G]. We study when an ideal has the same multigraded
Hilbert function as a given toric ideal.

Let n and d be positive integers with n > d andA � fa1; . . . ; ang a subset ofNd n f0g
with n different vectors. Let A be the matrix with columns ai and suppose that
rank�A� � d. Denote by NA the subsemigroup of Nd spanned by A. Consider
the polynomial ring S � k�x1; . . . ; xn� over a ¢eld k generated by variables
x1; . . . ; xn in Nd-degrees a1; . . . ; an, respectively. A homogeneous ideal M is called
A-graded if for all b 2 Nd

dimk��S=M�b� � 1 if b 2 NA ,
0 otherwise.

n
This means that S=M has the same multigraded Hilbert function as the toric ring
S=IA, where IA is the toric ideal equal to the kernel of the homomorphism
k�x1; . . . ; xn� ! k�t1; . . . ; td � mapping xi to tai � tai11 . . . taidd for 1W iW n. The para-
digms of A-graded ideals are the toric ideal and its initial ideals. An A-graded ideal
M is called coherent if there exist w 2 Qn and �c1; . . . ; cn� 2 �k��n such that the idealÿ
f �c1x1; . . . ; cnxn� j f 2M

�
equals the initial ideal inw�IA� of IA with respect to

the monomial order de¢ned by the weight vector w. If M is an initial ideal of
IA, then a construction from Gro« bner Bases Theory gives a £at family such that
the ¢ber over 1 is the toric ring S=IA and the ¢ber over 0 is S=M. What are the
other deformations of IA? The study of A-graded ideals was initiated by Arnold
[Ar], who realized that in the case d � 1; n � 3 the structure of such ideals is encoded
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into continued fractions. Further work in this case was done by Korkina, Post, and
Roelofs [Ko, KPR].

THEOREM 1.1 ([Ar, Ko, KPR]). If d � 1 and n � 3 then every A-graded ideal is
coherent.

The codimension of IA is nÿ d. In view of Lee's result that A has only coherent
triangulations if nÿ d � 2, it is conjectured in [St1, 6.1]:

CONJECTURE 1.2 (Sturmfels 1994). If codim�IA� � 2, then everyA-graded ideal is
coherent.

This conjecture provides description of the structure of the A-graded ideals and
shows that the isomorphism classes of A-graded ideals are in bijection with the
vertices of the state polytope. The ¢rst example of a noncoherent A-graded ideal
was found by Eisenbud; through a systematic computer search Sturmfels [St2,
Theorem 10.4] found that � x31; x1x2; x22; x2x3; x1x4; x21x23; x1x43; x2x34; x44 � is a
noncoherent A-graded monomial ideal for A � f1; 3; 4; 7g and in this case
codim�IA� � 3. So the above conjecture cannot be extended to codimensions higher
than two.

Our paper is devoted to a proof of Conjecture 1.2. The arguments in [Ar, Ko,
KPR] cannot be applied for nX 4; some of the dif¢culties when nX 4 are outlined
in [KPR, Section 8]. Our argument is broken into many steps and each step is pre-
sented in a lemma. It involves techniques from [Ar] and [PS], and relies on a detailed
analysis of the syzygies of the toric ideal IA and the syzygies of its Lawrence lifting
ideal.

2. Criterion for Coherence

Fix a set A and denote I � IA. In this section we provide two tools for the proof of
Conjecture 1.2: Lemma 2.1 gives a criterion for weak A-gradedness and
Lemma 2.2 gives a criterion for coherence. We also recall the construction of
Lawrence lifting.

We say that a homogeneous ideal M is weakly A-graded if for all b 2 Nd

dimk��S=M�b� W 1 if b 2 NA ,
0 otherwise.

n
Note that a weakly A-graded ideal is generated by binomials (that is polynomials
with at most two terms). Our ¢rst lemma shows that a weakly A-graded ideal is
generated by special binomials. A binomial xu ÿ xv in the toric ideal I is called primi-
tive if there are no proper monomial factors xu

0
of xu and xv

0
of xv such that

xu
0 ÿ xv

0 2 I . The set of all primitive binomials is ¢nite and is called theGraver basis.
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LEMMA 2.1 [PS2]. Let M be an ideal in S. The following are equivalent:

(a) The ideal M is weakly A-graded.
(b) If xu ÿ xv is a primitive binomial in I then either M contains at least one of the

monomials xu and xv or there is a p 2 k n 0 such that xu ÿ pxv 2M.

The Graver basis in the case d � 1; n � 3 considered by [Ar,Ko,KPR] is the star,
see [Ko, De¢nition 2.9]; in this case Lemma 2.1 corresponds to [Ko, 2.10].

Until the end of this section we will assume that nÿ d � 2, i.e. codim�I� � 2:
A vector u 2 Zn can be written uniquely as u � u� ÿ uÿ, where u� and uÿ have

nonnegative coordinates and supp�u�� \ supp�uÿ� � ; (here supp�u� � fi j the ith
coordinate of u is not 0g). Let B � �bij� be an integer �n� 2�-matrix such that
the following sequence is exact

0 ! Z2 ÿ!B Zn ÿ!A Zd :

Each vector a in Z2 corresponds to a binomial x�Ba�� ÿ x�Ba�ÿ in I , and every bino-
mial in I without monomial factors can be represented uniquely in this way.

LEMMA 2.2. Let codim�I� � 2 andM be anA-graded ideal in S. Let T � Z2 be a set
of vectors with the property that for some nonzero-vector s 2 Q2 we have hs; aiX 0 for
any a 2 T . Set

M0 �
�
fx�Ba�� ja 2 T ; hs; ai > 0g [ fx�Ba�� ÿ x�Ba�ÿ ja 2 T ; hs; ai � 0 g

�
:

If M0 is weakly A-graded and M0 �M, then M0 �M and M is coherent.
Proof. Let a 2 T . Let w 2 Qn be such that s � BTw (here BT is the transpose of B).

Then

hw; �Ba��i > hw; �Ba�ÿi if and only if hs; ai > 0;

hw; �Ba��i � hw; �Ba�ÿi if and only if hs; ai � 0:

Therefore,

inw�x�Ba�� ÿ x�Ba�ÿ � � x�Ba�� if hs, ai> 0,
x�Ba�� ÿ x�Ba�ÿ if hs, ai= 0.

�
By the de¢nition of M0 it follows that M0 � inw�I�. As M0 is weakly A-graded and
inw�I� is A-graded, it follows that M0 � inw�I�. On the other hand, M0 �M and
M is A-graded. Hence M0 �M and M is coherent. &

We remark that by [St2, Proposition 1.12] if w 2 Qn then there exists a w0 2 Qn

with positive coordinates such that inw0 �I� � inw�I�. Thus, in the de¢nition of
coherence and in the proofs we do not need to require that the weight vector
has positive coordinates.
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By [PS, Remark 3.2 and Theorem 3.7], we can choose the matrix B so that the
binomials corresponding to �1; 0� and �0; 1� are minimal generators of I . By [PS,
Theorem 6.1] I is a complete intersection exactly when I is minimally generated
by two elements. If I is not a complete intersection, then by [PS, Theorem 3.7]
the ideal I has a unique minimal system of Nd-homogeneous binomial generators
(up to multiplying each binomial with �1). We call a vector a 2 Z2 generating if
one of the following conditions is satis¢ed:

(1) I is a complete intersection and a 2 f��1; 0�;��0; 1�g;
(2) I is not a complete intersection and the binomial corresponding to a is contained

in a minimal system of generators of I.

We call a primitive if its binomial is primitive.

We need to recall the construction of Lawrence lifting. Let L be the matrix A O
1 1

� �
,

where 1 is the �n� n�-identity matrix and 0 is the �d � n�-zero matrix. The matrix
L is called the Lawrence lifting of A, and the toric ideal IL is called the Lawrence
lifting of I . Then IL is the ideal in k�x1; . . . ; xn; y1; . . . ; yn� generated by
f xuyv ÿ xvyu j xu ÿ xv 2 I g and codim�IL� � 2.

LEMMA 2.3. The elements yn ÿ 1; . . . ; y1 ÿ 1 form a k�x1; . . . ; xn; y1; . . . ; yn�=IL- reg-
ular sequence.

Proof. Fix an 1W iW nÿ 1. Denote by T the ideal in the polynomial ring
k�x1; . . . ; xn; y1; . . . ; yi� such that

k�x1; . . . ; xn; y1; . . . ; yi�=T � k�x1; . . . ; xn; y1; . . . ; yn�=
ÿ
IL � �yi�1 ÿ 1; . . . ; yn ÿ 1�� :

The ring k�x1; . . . ; xn; y1; . . . ; yn� is Nd�n-graded with the degrees of the variables
given by the columns of the matrix L. Deleting the last nÿ i coordinates in
Nd�n we induce anNd�i-grading in which deg�yi�1� � . . . � deg�yn� � 0. This induces
an Nd�i-grading on k�x1; . . . ; xn; y1; . . . ; yi� and the ideal T is Nd�i-homogeneous.
The elements 1 and yi have different degrees. Therefore, if f is a polynomial
and �yi ÿ 1�f 2 T , then f 2 T . &

By [St2, Theorem 7.1] IL has a unique system of minimal homogeneous binomial
generators. The Lawrence lifting is relevant to our work, because the images of
the minimal binomial generators of IL in k�x1; . . . ; xn; y1; . . . ; yn�=
�y1 ÿ 1; . . . ; yn ÿ 1� form the Graver basis of I , see [St2, Theorem 7.1 and
Algorithm 7.2]. We have the exact sequence

0 ! Z2 ÿÿÿÿÿÿÿÿ!
B
ÿB

� �
Z2n ÿÿÿÿÿÿÿÿÿÿÿ!

A O
1 1

� �
Zn�d :

Therefore, the primitive vectors for I are exactly the generating vectors for IL.
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When we say that a vector a is a generating vector, we mean that a is a generating
vector for the ideal I .

3. A-Graded Ideals for Codimension 2 Toric Varieties

Fix a setA, set I � IA, and denote by q the number of minimal generators of I . By IL
we denote the Lawrence lifting of I and by qL the number of minimal generators of
IL. In this section we prove Conjecture 1.2. Throughout the section we assume that
nÿ d � codim�I� � 2. We assume that the matrix B is chosen so that the binomials
corresponding to �1; 0� and �0; 1� are minimal generators of I ; such choice is possible
by [PS, Remark 3.2 and Theorem 3.7].

Let M be a weakly A-graded ideal and a 2 Z2. We say that a is an M-vector if
x�Ba�� 2M. We say that a is M-gluing if none of the monomials x�Ba�� ; x�Ba�ÿ is
in M; in this case there exists a pa 2 k n 0 such that x�Ba�� ÿ pax�Ba�ÿ 2M. Note that
the opposite vectors a and ÿa correspond to binomials which differ by sign only,
therefore either at least one of the vectors a and ÿa is anM-vector, or a isM-gluing.
Suppose that I is not a complete intersection: then by [PS, Theorem 3.4] for each
homogeneous minimal binomial generator f of I there exist exactly two monomials
in S of the same Nd -degree as f (these monomials are the terms of f ), hence if
M is an A-graded ideal and a is a generating non-M-gluing vector then exactly
one of the vectors a;ÿa is an M-vector. We say that two vectors ill-match if they
are both non-M-gluing and exactly one of them is an M-vector. We say that
two vectors a; b well-match if either a; b are M-vectors or ÿa;ÿb are M-vectors.
Throughout the section we will work under the following assumption: if at least
one of the vectors �1; 0�; �0; 1� is notM-gluing, then after renumbering the quadrants
and the basis vectors (if necessary) we have that �0; 1� is an M-vector and �1; 0� is
either M-gluing or an M-vector.

We use the terminology from [PS] about the syzygies of I : the syzygies are rep-
resented by vectors, triangles, and quadrangles in Z2 with integer vertices and
one vertex ¢xed at the origin �0; 0�. We say that a sequence P � P1; . . . ;Pr of
quadrangles in the ¢rst or second quadrant is a chain if for 1W iW rÿ 1 the
quadrangle Pi�1 is a child of Pi in the master tree, see [PS, Construction 4.4].
For 1W iW r denote by ai; bi the edges of Pi and by gi the longer diagonal of
Pi. Then P is a chain exactly when for 1W iW rÿ 1 the edges of Pi�1 are either
ai; gi or bi; gi. When we say that the vectors a; b are edges of a quadrangle we always
mean `oriented edges' so that a� b is the longer diagonal of the quadrangle. For this
reason, we say that the vector �1; 1� is the longer diagonal of the unit square with
edges �1; 0�; �0; 1�, and that the vector �ÿ1; 1� is the longer diagonal of the unit square
with edges �ÿ1; 0�; �0; 1�. The next lemma contains several results from [PS] which we
will need.

DEFORMATIONS OF CODIMENSION 2 TORIC VARIETIES 229

https://doi.org/10.1023/A:1002049000431 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002049000431


LEMMA 3.1. (a) The ideal I is a complete intersection if and only if q � 2; I is not
Cohen-Macaulay if and only if qX 4 if and only if I has a syzygy quadrangle. (This
follows from [PS, Theorem 6.1].)

(b) Let qX 4 and d be a generating vector of I in the ¢rst or second quadrant dif-
ferent from ��1; 0�; �0; 1�. There exists a chain P1; . . . ;Pr of syzygy quadrangles such
that d is the longer diagonal of Pr and P1 is either the unit square with edges
�1; 0�; �0; 1� or the unit square with edges �ÿ1; 0�; �0; 1�. (This follows from [PS, proof
of Corollary 4.6].)

(c) Let P be a syzygy quadrangle. The edges and the diagonals of P are generating
vectors. Each of the four triangles with edges the edges of P and one of the diagonals
of P is a syzygy triangle [PS, Corollary 3.6].

(d) Suppose that q � 3. The generating vectors of I can be chosen to be ��1; 0�;
��0; 1� and either ��1; 1� or ��ÿ1; 1�. In the former case the two triangles with edges
�1; 0�; �0; 1�; �1; 1� are syzygy triangles; in the latter case the two triangles with edges
�ÿ1; 0�; �0; 1�; �ÿ1; 1� are syzygy triangles [PS, Remark 5.8].

LEMMA 3.2. Let M be an A-graded ideal. Let a; b; Z � a� b be generating vectors,
which are edges of a syzygy triangle.

(a) If a and b are M-gluing vectors, then Z is an M-gluing vector as well.
(b) If a is an M-gluing vector, but b is not, then Z well-matches b.
(c) If a and b well-match, then Z well-matches them.

Proof. Since qX 3 it follows from Lemma 3.1(a) that I is not a complete
intersection. By the construction of a syzygy triangle in [PS, (3.3),
Theorem 3.4, Corollary 3.6] we can choose three monomials m1;m2;m3 such that
m2 ÿm1 is a monomial multiple of x�Ba�� ÿ x�Ba�ÿ , m3 ÿm2 is a monomial multiple
of x�Bb�� ÿ x�Bb�ÿ , m3 ÿm1 is a monomial multiple of x�BZ�� ÿ x�BZ�ÿ , and
m1;m2;m3 are all the monomials in S with Nd-degree equal to the degree of a syzygy
triangle (this triangle is one of the two syzygy triangles with edges a; b; Z). Note that
if pa; pb; pZ 2 k n 0, then m2 ÿ pam1 is a monomial multiple of x�Ba�� ÿ pax�Ba�ÿ ,
m3 ÿ pbm2 is a monomial multiple of x�Bb�� ÿ pbx�Bb�ÿ , and m3 ÿ pZm1 is a monomial
multiple of x�BZ�� ÿ pZx�BZ�ÿ .

To prove (a) note that if a and b are M-gluing vectors but Z is not, then
m1;m2;m3 2M contradicting the A-gradedness of M. Next we prove (b). If Z is
M-gluing then we can apply (a) to ÿa; Z; b � ÿa� Z and conclude that b is
M-gluing, which is a contradiction. If Z is non-M-gluing and we assume that b
and Z ill-match then m1;m2;m3 are in M contradicting the A-gradedness of M.
So (b) is proved. It remains to prove (c). If a and b well-match and Z is an M-gluing
vector, then applying (b) to Z;ÿa; b � Zÿ a we get a contradiction. Therefore, Z
is not M-gluing. As M is A-graded, we have that at most two of the monomials
m1;m2;m3 are in M. Suppose that a and b are M-vectors. It follows that
m2;m3 2M. Therefore m1=2M and m3 ÿ pm1=2M for every p 2 k n 0. Hence
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x�BZ�ÿ=2M and x�BZ�� ÿ px�BZ�ÿ=2M for every p 2 k n 0. By A-gradedness it follows that
x�BZ�� 2M, so Z is anM-vector. Ifÿa;ÿb areM-vectors, then the previous argument
shows that ÿZ is an M-vector. So Z well-matches a; b. &

LEMMA 3.3. Let M be an A-graded ideal. Let P1; . . . ;Pr be a chain of syzygy
quadrangles. Denote by a; b the edges of P1 and by d the longer diagonal of Pr.

(a) If a and b are M-gluing vectors, then d is an M-gluing vector as well.
(b) If a is an M-gluing vector, but b is not, then d well-matches b.
(c) If a and b well-match, then d well-matches them.

Proof. For 1W iW r denote by gi the longer diagonal of Pi and by ai; bi its edges.
Note that for 1W iW rÿ 1 the edges of Pi�1 are either ai; gi or bi; gi. By
Lemma 3.1(c) ai; bi; gi � ai � bi are generating vectors, which are edges of a syzygy
triangle. We argue by induction on i: at each step of the induction we apply
Lemma 3.2. &

Next we prove Conjecture 1.2 in two special cases:

LEMMA 3.4. Let M be anA-graded ideal in S. Suppose that both �1; 0� and �0; 1� are
M-gluing vectors. Then M is toric isomorphic to the toric ideal I.

Proof. First, we will show that all generating vectors areM-gluing vectors. This is
clear if q � 2. If q � 3 then apply Lemmas 3.1(d) and 3.2(a). Suppose that qX 4. Let
d be a generating vector in the ¢rst or second quadrant. Choose a chain P1; . . . ;Pr of
syzygy quadrangles as in Lemma 3.1(b), so the edges of P1 are either �1; 0�; �0; 1� or
�ÿ1; 0�; �0; 1� and d is the longer diagonal of Pr. The edges of P1 are M-gluing,
so applying Lemma 3.3(a) to the chain P1; . . . ;Pr we get that d is M-gluing.

For each generating vector d let pd 2 k n 0 be a constant such that
x�Bd�� ÿ pdx�Bd�ÿ 2M. Consider the ideal

M0 �
�
f x�Bd�� ÿ pdx�Bd�ÿ j d is a generating vector g

�
� M :

We will show that if xu and xv are two monomials in S of the same Nd-degree then
there exists a nonzero constant p such that xu ÿ pxv 2M0. We can write

xu ÿ xv �
Xs
i�1

xwi � x�Bdi�� ÿ x�Bdi�ÿ � ;

where x�Bdi�� ÿ pdix
�Bdi�ÿ is a minimal generator of I for 1W iW s, xu � xw1x�Bd1�� ,

xv � xwsx�Bds�ÿ , and xwix�Bdi�ÿ � xwi�1x�Bdi�1�� for 1W iW sÿ 1. Now set
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p �Qs
i�1 pdi . Then we have

xu ÿ pxv �
Xs
i�1

Yiÿ1
j�0

pdj

 !
xwi � x�Bdi�� ÿ pdix

�Bdi�ÿ � ;

(here pd0 � 1). Since x�Bdi�� ÿ pdix
�Bdi�ÿ 2M0 for 1W iW s, it follows that

xu ÿ pxv 2M0. The constant p is nonzero as pdi 6� 0 for 1W iW s. Therefore, M0

is weakly A-graded. As M is A-graded, we conclude that M0 �M. Note that M
contains no monomials. By [St1, Lemma 10.12] it follows that M is toric isomorphic
to the toric ideal I . &

LEMMA 3.5. If the Lawrence lifting IL is Cohen-Macaulay and M is an A-graded
ideal in S, then M is coherent.

Proof. By Lemma 3.4 we can assume that at least one of the vectors �1; 0�; �0; 1� is
not M-gluing. After renumbering the quadrants and the basis vectors (if necessary)
we can assume that �0; 1� is anM-vector and �1; 0� is eitherM-gluing or anM-vector.

By Lemma 3.1(a) the Cohen^Macaulayness of IL is equivalent to 2W qLW 3. Let
P be the set consisting of the generating vectors for IL. Recall from Section 2 that
the primitive vectors for I are exactly the generating vectors for IL. For a vector
s 2 Q2 in the ¢rst quadrant set T s � f a j a 2 P; hs; aiX 0 g and

Ms �
�
fx�Ba�� ja 2 T s; hs; ai > 0g [ fx�Ba�� ÿ x�Ba�ÿ ja 2 T s; hs; ai � 0 g

�
:

The idealMs is weaklyA-graded by Lemma 2.1, therefore Lemma 2.2 can be applied
to s; T s;Ms;M if Ms �M. We will ¢nd an s 2 Q2 such that Ms �M.

Suppose that qL � 2. Choose s � �0; 1� if �1; 0� is M-gluing and s � �1; 1�
otherwise. If �1; 0� is M-gluing then we scale the variables so that
x�B�1;0��� ÿ x�B�1;0��ÿ 2M. Then clearly Lemma 2.2 can be applied, so M is coherent.

Let qL � 3. Applying Lemma 3.1(d) to IL we have that the generating vectors of IL
can be chosen to be ��1; 0�;��0; 1� and either ��1; 1� or ��ÿ1; 1�. Thus, P is either
f��1; 0�;��0; 1�;��1; 1�g or f��1; 0�;��0; 1�;��ÿ1; 1�g.

Suppose that q � 3. Choose

s �
�0; 1� if �1; 0� is M-gluing;
�1; 1� if �ÿ1; 1� is either non-generating or M-gluing;
�2; 1� if �ÿ1; 1� is generating and ÿ �ÿ1; 1� is an M-vector;
�1; 2� if �ÿ1; 1� is a generating M-vector:

8>><>>:
There is at most oneM-gluing generating vector; if such vector exists we denote it by
x and scale the variables so that x�Bx�� ÿ x�Bx�ÿ 2M. Applying Lemma 3.2 we con-
clude that Ms �M and then we apply Lemma 2.2 to s; T s;Ms;M. Therefore M
is coherent.
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For the rest of the proof suppose that 2 � q < qL � 3. As in [PS, Construction 5.2],
we write the binomials corresponding to �1; 0� and �0; 1� in the form

e � x�B�1;0��� ÿ x�B�1;0��ÿ � xu�xtxp ÿ xuÿxsxr;

f � x�B�0;1��� ÿ x�B�0;1��ÿ � xv�xsxp ÿ xvÿxtxr;

where in each binomial the two monomials are relatively prime, and

�u� v�� � u� � v�; �u� v�ÿ � uÿ � vÿ;
�uÿ v�� � u� � vÿ; �uÿ v�ÿ � uÿ � v�:

Hence the binomials corresponding to �1; 1� and �ÿ1; 1� have the form

x�B�1;1��� ÿ x�B�1;1��ÿ � x�u�v��x2p ÿ x�u�v�ÿx2r ;

x�B�ÿ1;1��� ÿ x�B�ÿ1;1��ÿ � x�uÿv�ÿx2s ÿ x�uÿv��x2t :

Since q � 2 by Lemma 3.1(a) we have that I is a complete intersection. By [PS,
Remark 3.2] it follows that one of the binomials e and f contains a term, which
is coprime to each of the terms in the other binomial. This implies that either xs

or xt is 1, and also that either xp or xr is 1. We consider the following two cases:

Case 1. Both �1; 0� and �0; 1� are M-vectors
Clearly, Lemma 2.2 can be applied if��ÿ1; 1� are generating vectors for IL. Suppose
that ��1; 1� are generating vectors for IL. Since either xt or xs is 1, it follows that the
monomial x�B�1;1��� � x�u�v��x2p is divided by either the monomial x�B�1;0��� � xu�xtxp

or by the monomial x�B�0;1��� � xv�xsxp. Thus, x�B�1;1��� 2M, so �1; 1� is anM-vector.
Choose s � �1; 1�. We have shown that Ms �M. So we can apply Lemma 2.2 to
s; T s;Ms;M. Therefore M is coherent.

Case 2. The vector �0; 1� is an M-vector and �1; 0� is M-gluing
By Lemma 2.1 it follows that there exists a nonzero constant p such that
x�B�1;0��� ÿ px�B�1;0��ÿ 2M. After scaling the variables (if necessary) we can assume
that p � 1, so e 2M. We will show that �1; 1�; �ÿ1; 1� are M-vectors.

We have that either xt or xs is 1. If xs is 1, then the monomial x�B�1;1��� � x�u�v��x2p

is divided by the monomial x�B�0;1��� � xv�xsxp, so x�B�1;1��� 2M. If xt is 1, then we get
the equalities

x�B�1;1��� ÿ �xv�xp�e � x�u�v��x2p ÿ �xv�xp�e

� �xv�xp��xuÿxsxr� � �xuÿxr�x�B�0;1��� 2M :

But e 2M, hence x�B�1;1��� 2M. By a similar argument, using that either xr or xp is 1,
we will show that x�B�ÿ1;1��� 2M. If xp is 1, then the monomial x�B�ÿ1;1��� � xuÿxv�x2s

is divided by the monomial x�B�0;1��� � xv�xsxp, so x�B�ÿ1;1��� 2M. If xr is 1, then we
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have the equalities

x�B�ÿ1;1��� � �xv�xs�e � xuÿxv�x2s � �xv�xs�e

� �xv�xs��xu�xtxp� � �xu�xt�x�B�0;1��� 2M :

But e 2M, hence x�B�ÿ1;1��� 2M.
Choose s � �0; 1�. We have shown that Ms �M. Therefore we can apply

Lemma 2.2 to s; T s;Ms;M. Hence M is coherent. &

Starting from here until Theorem 3.15 we assume that IL is not Cohen-Macaulay;
by Lemma 3.1(a) this is equivalent to qL X 4. Also, by Lemma 3.1(a) there exists at
least one syzygy quadrangle for IL. By [PS, Corollary 4.3], a syzygy quadrangle
for I is also a syzygy quadrangle for IL. Thus the homology tree of I (which exists
exactly when qX 4) is contained in the homology tree of IL.

We say thatQ is a Lawrence quadrangle ifQ is in the ¢rst or second quadrant and it
is a syzygy quadrangle for IL but is not a syzygy quadrangle for I .

DEFINITION 3.6. Let Q be a syzygy quadrangle for IL. We say that Q is a minimal
Lawrence quadrangle if Q is in the ¢rst or second quadrant and one of the following
two conditions is satis¢ed:

(1) q � 2 and Q is either the unit square with edges �1; 0�; �0; 1� or the unit square
with edges �ÿ1; 0�; �0; 1�.

(2) qX 3, Q is not a syzygy quadrangle for I, and the two triangles with sides the
edges of Q and the shorter diagonal of Q are syzygy triangles for I.

In some of the proofs we use an equivalent form (derived using Lemma 3.1) of the
above de¢nition which states that:

(10) If q � 2 then the minimal Lawrence quadrangles are the unit squares with edges
�1; 0�; �0; 1� and �ÿ1; 0�; �0; 1�.

(20) If q � 3 and �1; 1� is a generating vector, then the minimal Lawrence quadrangles
are the unit square with edges �ÿ1; 0�; �0; 1� and the syzygy quadrangles for IL
among the quadrangles with edges �1; 0�; �1; 1� and �1; 1�; �0; 1�.

(30) If q � 3 and �ÿ1; 1� is a generating vector, then the minimal Lawrence
quadrangles are the unit square with edges �1; 0�; �0; 1� and the syzygy
quadrangles for IL among the quadrangles with edges �ÿ1; 0�; �ÿ1; 1� and
�ÿ1; 1�; �0; 1�.

(40) If qX 4 thenQ is a minimal Lawrence quadrangle if and only ifQ is a child (in the
homology tree of IL ) of a syzygy quadrangle for I and Q is not a syzygy
quadrangle for I.
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LEMMA 3.7. Let qL X 4 and d be a primitive non-generating vector for I in the ¢rst or
second quadrant. There exists a chainQ1; . . . ;Qr of syzygy quadrangles for IL starting
with Q1 a minimal Lawrence quadrangle and such that d is the longer diagonal of Qr.

Proof. Recall from Section 2 that the primitive vectors for I are exactly the gen-
erating vectors for IL. By Lemma 3.1(b) we have that there exists a chain
Q0 � Q01; . . . ;Q0s of syzygy quadrangles for IL starting with Q01 a unit square and
such that d is the longer diagonal of Q0s. To complete the proof it will be enough
to show that Q0 contains a minimal Lawrence quadrangle. We use the de¢nition
of a minimal Lawrence quadrangle given by (10), (20), (30), (40) in De¢nition 3.6.
It is easy to see that Q0 contains a minimal Lawrence quadrangle if qW 3. Suppose
that qX 4. By [PS, Corollary 4.3] the homology tree of I is contained in the hom-
ology tree of IL and they have the same root. Therefore, the chain Q0 contains a
minimal Lawrence quadrangle. &

CONSTRUCTION 3.8. Let a; b 2 Z2 and g � a� b. Set

xp � gcd�x�Ba�� ; x�Bb�� � ; xt � gcd�x�Ba�� ; x�Bb�ÿ � ;

xs � gcd�x�Ba�ÿ ; x�Bb�� � ; xr � gcd�x�Ba�ÿ ; x�Bb�ÿ � :

As in [PS, Construction 5.2], a; b correspond to two binomials in I which we write in
the form e � xu�xtxp ÿ xuÿxsxr and f � xv�xsxp ÿ xvÿxtxr so that the two
monomials in each binomial are relatively prime and

�u� v�� � u� � v�; �u� v�ÿ � uÿ � vÿ;

�uÿ v�� � u� � vÿ; �uÿ v�ÿ � uÿ � v�:

Thus, the binomials corresponding to the vectors a; b; g are:

xu�xtxp ÿ xuÿxsxr; xv�xsxp ÿ xvÿxtxr;

�xu�xp��xv�xp� ÿ �xuÿxr��xvÿxr�: �3:9�

LEMMA 3.10. LetM be anA-graded ideal in S and IL the Lawrence lifting of I. Let Q
be a Lawrence quadrangle, a; b the edges of Q and g its longer diagonal. In the notation
of Construction 3.8 we have that at least one of the monomials xs and xt is equal to 1.

Proof. First we will prove the lemma in the case when Q is a minimal Lawrence
quadrangle. We consider two cases:

Case 1. The ideal I is a complete intersection
By (10) in De¢nition 3.6 we have that Q is a unit square and the binomials e and f
correspond to its edges. By [PS, Remark 3.2] it follows that one of the binomials
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contains a term, which is coprime to each of the terms in the other binomial. This
implies that either xs or xt is 1.

Case 2. The ideal I is not a complete intersection
By Lemma 3.1(a) we get that qX 3 in this case. Thus, Q satis¢es condition (2) in
De¢nition 3.6. As in [PS, Construction 5.2] we have that the longer and shorter
diagonals of Q are represented respectively by the binomials

g � x�u�v��x2p ÿ x�u�v�ÿx2r ; h � x�uÿv��x2t ÿ x�uÿv�ÿx2s:

Denote by F the minimal free resolution of k�x1; . . . ; xn�=I over the ring
S � k�x1; . . . ; xn�. Let G be the minimal free resolution of
k�x1; . . . ; xn; y1; . . . ; yn�=IL over k�x1; . . . ; xn; y1; . . . ; yn� which is constructed as in
[PS, Theorem 5.5]. Set

�G � G
 k�x1; . . . ; xn; y1; . . . ; yn�=�y1 ÿ 1; . . . ; yn ÿ 1� :
By [PS, Constructions 5.1, 5.2 and Theorems 5.4, 5.5], we have the following complex

0! S ÿÿÿÿ!

ÿxs
xt

xr

ÿxp

0BB@
1CCA
S4ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ!

xv�xp xvÿxr ÿxvÿxt ÿxv�xs
xuÿxr xu�xp xuÿxs xu�xt

ÿxt ÿxs 0 0
0 0 xp xr

0BB@
1CCA

S4ÿÿÿÿÿÿÿÿ!�e f g h�
S; �3:11�

which is a subcomplex of �G and the basis elements of the free modules in (3.11) are
basis elements in �G as well.

We assume that the minimal free resolution F is constructed as in [PS,
Theorem 5.5]. By [PS, Corollary 4.3], if qX 4 then the homology tree of I is con-
tained in the homology tree of IL which induces an inclusion of F in �G. If q � 3
we apply [PS, Remark 5.8] to get an inclusion of F in �G. Lemma 2.3 implies that
�G is a (possibly non-minimal) free resolution of k�x1; . . . ; xn�=I over k�x1; . . . ; xn�.
By [Ei, Theorem 20.2], F is a direct summand in �G. Now consider (3.11). The basis
element in (3.11) in homological degree 3 corresponds to the quadrangle Q via [PS,
Constructions 5.1, 5.2 and Theorem 5.4]. On the other hand, the basis elements
in F in homological degree 3 correspond to the syzygy quadrangles for I via [PS,
Constructions 5.1, 5.2 and Theorems 5.4, 5.5]. Since Q is not a syzygy quadrangle
for I and since �G has length 3 it follows that the matrix of the third differential
in (3.11) contains an invertible element, that is, one of the monomials
xs; xt; xr; xp is 1. The monomials xr and xp are entries in the matrix

ÿxvÿxt ÿxv�xs
xuÿxs xu�xt

0 0
xp xr

0BB@
1CCA ;

which appears as a submatrix of the second differential in (3.11); this matrix gives the
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action of the differential on the two triangles with edges e; f ; h. By the choice of Q
these two triangles are syzygy triangles for I . Hence the above matrix is contained
in the differential of the minimal free resolution F, therefore it cannot have invertible
entries. So xr and xp are not invertible. It follows that at least one of the monomials xs

and xt is equal to 1.
Thus, the lemma is proved in the case when Q is a minimal Lawrence quadrangle.

Order the Lawrence quadrangles so that if P is a child of P0 in the homology tree
of IL (see [PS, Construction 4.5]) then P0 � P. We will ¢nish the proof by induction
on this order. Let Q be an arbitrary Lawrence quadrangle. Applying Lemma 3.7
to the longer diagonal of Q we get that there exists a chain Q1; . . .Qr of Lawrence
quadrangles starting with a minimal Lawrence quadrangle Q1 and Q � Qr. If
r � 1 then Q is a minimal Lawrence quadrangle and we are done. Suppose that
r > 1 and denote Q0 � Qrÿ1. Applying Construction 3.8 to Q0 we obtain monomials
xs
0
; xt

0
; xp

0
; xr

0
; xu

0
� ; xu

0
ÿ ; xv

0
� ; xv

0
ÿ . Let a0; b0 and g0 be the two edges and the longer diag-

onal of Q0. Then the two edges of Q are either a0; g0 or b0; g0. We consider these two
cases separately:

Subcase 1. Let a0; g0 be the edges of Q.

Applying Construction 3.8 to Q we get that

xs � gcd�x�Ba0�ÿ ; x�Bg0�� � � gcd�xv0� ; xs0 � ;

xt � gcd�x�Ba0�� ; x�Bg0�ÿ � � gcd�xv0ÿ ; xt0 � :

By the induction hypothesis the lemma holds for Q0, that is, either xs
0
or xt

0
is 1.

Hence, either xs or xt is 1.

Subcase 2. Let b0; g0 be the edges of Q.

Applying Construction 3.8 to Q we get that

xs � gcd�x�Bb0�ÿ ; x�Bg0�� � � gcd�xu0� ; xt0 � ;

xt � gcd�x�Bb0�� ; x�Bg0�ÿ � � gcd�xu0ÿ ; xs0 � :

By the induction hypothesis the lemma holds forQ0, that is, either xs
0
or xt

0
is 1. Hence

either xs or xt is 1. &

We obtain an analogue to Lemma 3.2 for Lawrence quadrangles:

LEMMA 3.12. LetM be anA-graded ideal in S. Let Qbe a Lawrence quadrangle, a; b
the edges of Q, and g its longer diagonal.
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(a) If a; b well-match then g well-matches them.
(b) If a is M-gluing and b is not M-gluing, then g well-matches b.

Proof. The vectors a; b; g correspond to binomials in I which we write as in (3.9).
By Lemma 3.10, we have that either xt or xs is 1 in (3.9). It follows that at least
one of the monomials x�Ba�� ; x�Bb�� divides x�Bg�� and also that at least one of the
monomials x�Ba�ÿ ; x�Bb�ÿ divides x�Bg�ÿ . Therefore, (a) holds. It remains to prove part
(b). Since a is M-gluing by hypothesis, after scaling the variables (if necessary)
we can assume that

e � x�Ba�� ÿ x�Ba�ÿ � xu�xtxp ÿ xuÿxsxr 2M :

First we consider the case when b is an M-vector, that is x�Bb�� � xv�xsxp 2M. If
xt � 1, then we have

x�Bg�� ÿ �xv�xp�e � �xu�xp��xv�xp� ÿ �xv�xp�e

� �xv�xp��xuÿxsxr� � x�Bb�� �xuÿxr� 2M ;

and as e 2M we get that x�Bg�� 2M. If xs � 1, then we have xv�xp � x�Bb�� 2M, so
x�Bg�� � �xu�xp��xv�xp� 2M. Thus, g well-matches b.

Now consider the case when ÿb is an M-vector, that is x�Bb�ÿ � xvÿxtxr 2M. If
xs � 1, then we have

x�Bg�ÿ � �xvÿxr�e � �xuÿxr��xvÿxr� � �xvÿxr�e

� �xvÿxr��xu�xtxp� � x�Bb�ÿ �xu�xp� 2M ;

and as e 2M we get that x�Bg�ÿ 2M. If xt � 1, then xvÿxr � x�Bb�ÿ 2M, so
x�Bg�ÿ � �xuÿxr��xvÿxr� 2M. Thus, g well-matches b. &

Lemmas 3.3 and 3.12 imply the following result:

LEMMA 3.13. Let M be an A-graded ideal. Let rX 1 and P1; . . . ;Pr be a chain of
syzygy quadrangles for IL in the ¢rst or second quadrant. Denote by a; b the edges
of P1 and by d the longer diagonal of Pr.

(a) If a and b well-match, then d well-matches them.
(b) If a is an M-gluing vector, but b is not, then d well-matches b.

Proof. Let s be the smallest number such that Ps is a Lawrence quadrangle, or set
s � r� 1 if the chain contains no Lawrence quadrangle. If sX 2 then apply
Lemma 3.3 to the chain P1; . . . ;Psÿ1. The proof is completed by induction: if
Lemma 3.13 holds for P1; . . . ;Pj for some r > jX sÿ 1 then by Lemma 3.12 it
follows that Lemma 3.13 holds for P1; . . . ;Pj�1 as well. &
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LEMMA 3.14. Let M be an A-graded ideal in S. Suppose that at least one of the
vectors �1; 0�; �0; 1� is not M-gluing (so by assumption �0; 1� is an M-vector and
�1; 0� is either an M-vector or M-gluing) and that IL is not Cohen^Macaulay. Con-
sider the set P of all primitive vectors for I in the ¢rst and second quadrants.

(a) Let a; b 2 P be in the second quadrant and the angle between a and �ÿ1; 0� be
smaller than the angle between b and �ÿ1; 0�. Suppose that a is either an M-vector
or M-gluing. Then b is an M-vector.

(b) There exists at most one M-gluing vector in the intersection of P and the second
quadrant.

Proof. Denote by G the set of all generating vectors for I in the ¢rst or second
quadrant. First, we prove that (a) holds if a; b 2 G and qW 3. If q � 2 then we
are done by the assumption that �0; 1� is an M-vector. If q � 3, then apply
Lemmas 3.1(d) and 3.2.

Recall from Section 2 that the primitive vectors for I are the generating vectors
for IL.

Suppose that �ÿ1; 0� isM-gluing. Applying Lemma 3.1(b) to IL, and then applying
Lemma 3.13, we conclude that all primitive vectors in the ¢rst or second quadrant
which are different from ��1; 0� are M-vectors; in particular, Lemma 3.14 holds.
Now suppose that �ÿ1; 0� is not M-gluing and therefore by assumption �1; 0� is
an M-vector.

By [PS, Corollary 4.7] there exists a total order � on the vectors in P such that if P
is a syzygy quadrangle for I or a minimal Lawrence quadrangle then its longer diag-
onal is bigger in the order � than its edges. The ¢rst vectors in the order are
�0; 1�; �1; 0�; �ÿ1; 0� and we can assume that �0; 1� � �1; 0� � �ÿ1; 0�. This induces
a partial order on the set of pairs of elements in P in the following way: Let
s; s0; t; t0 2 P. Suppose that s � s0 and t � t0. We say that fs; s0g � ft; t0g if
s � t and s0 � t0.

Let a; b 2 P be in the second quadrant and the angle between a and �ÿ1; 0� be
smaller than the angle between b and �ÿ1; 0�. By Lemma 3.1(b) applied to IL, there
exists a chain P � P1; . . . ;Pr such that P1; . . . ;Pr are syzygy quadrangles for IL,
P1 is the unit square with edges �ÿ1; 0�; �0; 1�, and a is the longer diagonal of
Pr. Similarly, by Lemma 3.1(b) there exists a chain T � T1; . . . ;Ts such that
T1; . . . ;Ts are syzygy quadrangles for IL, T1 is the unit square with edges
�ÿ1; 0�; �0; 1� and b is the longer diagonal of Ts. Then T1 � P1. Denote by R the
last common quadrangle in P and T. Let i; j be such that 1W iW s; 1W jW r
and R � Pj � Ti. Let m; n be the edges of R and x � m� n be its longer diagonal.
Suppose that the angle between m and �ÿ1; 0� is smaller than the angle between
n and �ÿ1; 0�. By [PS, Construction 4.4], if i < s then the edges of Ti�1 are n; x
and also if j < r then the edges of Pj�1 are x; m.
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We will prove (a) by induction on the considered order. Part (a) holds if b � �0; 1�
since �0; 1� is an M-vector by assumption. Assume that b 6� �0; 1�. Since a is either
M-gluing or an M-vector and �1; 0� is an M-vector, it follows that a 6� �ÿ1; 0�.

Since m � a we have that fm; bg � fa; bg. If m is either M-gluing or an M-vector,
then by the induction hypothesis we have that b is an M-vector. Suppose that
ÿm is an M-vector. If ÿx is an M-vector or x is M-gluing, then applying
Lemma 3.13 to the chain Pj�1; . . . ;Pr we conclude that ÿa is an M-vector which
is a contradiction. Therefore, x is an M-vector. Since n � x � a; b we have that
fn; xg � fa; bg; hence by the induction hypothesis it follows that n is an M-vector.
Therefore, applying Lemma 3.13 to the chain Ti�1; . . . ;Ts we conclude that b is
an M-vector. Thus, (a) is proved.

Now we prove (b). Suppose that there exist more than one M-gluing vectors in the
intersection of P and the second quadrant. Let a; b be the two smallest (in the order
�) M-gluing vectors which are in P and in the second quadrant. Suppose that
the angle between a and �ÿ1; 0� is smaller than the angle between b and �ÿ1; 0�.
Note that a 6� �ÿ1; 0� and b 6� �0; 1�. Suppose that a � x (in the above notation).
Since a; b are chosen to be the two smallest M-gluing vectors and n � b, n � a it
follows that n is not M-gluing. Applying Lemma 3.13 to the chain Ti; . . . ;Ts we
conclude that b is notM-gluing which is a contradiction. Hence a 6� x. Similar argu-
ment shows that b 6� x. Then x; m; n are smaller than each of a; b; hence x; m; n are not
M-gluing. Therefore, at least one of the pairs fx; mg, fx; ng, and fm; ng consists of
well-matching vectors. If x; m well-match, then applying Lemma 3.13 to the chain
Pj�1; . . . ;Pr we get that a is not M-gluing which is a contradiction. If x; n or m; n
well-match, then applying Lemma 3.13 to the chain Ti�1; . . . ;Ts or Ti; . . . ;Ts

respectively, we get that b is not M-gluing which is a contradiction as well.
Therefore, there cannot exist two M-gluing vectors in the intersection of P with
the second quadrant. &

We are ready to prove our main result.

THEOREM 3.15. If codim�IA� � 2 and M is an A-graded ideal in S, then M is
coherent.

Proof. If �1; 0� and �0; 1� are M-gluing then apply Lemma 3.4. If IL is
Cohen^Macaulay, then apply Lemma 3.5. Suppose that IL is not Cohen^Macaulay
and that at least one of the vectors �1; 0�; �0; 1� is not M-gluing. Recall that in this
case after renumbering the quadrants and the basis vectors (if necessary) we assume
that �0; 1� is an M-vector and �1; 0� is either M-gluing or an M-vector. As in
Lemma 3.14 consider the set P consisting of the primitive vectors for I in the ¢rst
and second quadrants. The primitive vectors for I are the generating vectors for
IL. Applying Lemma 3.1(b) to IL, and Lemma 3.13 (if q � 3 then applying also
Lemmas 3.1(d) and 3.2) we conclude that every vector Z 6� �1; 0�, which is in the
intersection of P and the ¢rst quadrant is an M-vector. Combining this fact with
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Lemma 3.14 we see that there exists a vector s 2 Q2 such that the following three
conditions are satis¢ed:

(i) if a 2 P and ha; si > 0 then a is an M-vector;
(ii) if a 2 P and ha; si < 0 then ÿa is an M-vector;
(iii) if a 2 P and ha; si � 0 then a is M-gluing.

If there exists a vector z 2 P such that hs; zi � 0 then for some nonzero constant
p 2 k n 0 we have x�Bz�� ÿ px�Bz�ÿ 2M. After scaling the variables (if necessary)
we can assume that p � 1. Hence, condition (iii) above becomes:

(iii0) if a 2 P and ha; si � 0 then x�Ba�� ÿ x�Ba�ÿ 2M.
Set

T � f a j hs; aiX 0 and either a or ÿ a is in P g ;

M0 �
�
fx�Ba�� ja 2 T ; hs; ai > 0g [ fx�Ba�� ÿ x�Ba�ÿ ja 2 T ; hs; ai � 0 g

�
:

The ideal M0 is weakly A-graded by Lemma 2.1. By (i),(ii),(iii0) we have that
M0 �M. Applying Lemma 2.2 to M, M0, s, and T we get that M is coherent.&
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