

Deformations of Codimension 2 Toric Varieties

VESSELIN GASHAROV and IRENA PEEVA*

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

(Received: 18 February 1999; in final form: 23 July 1999)

Abstract. We prove Sturmfels' conjecture that toric varieties of codimension two have no other flat deformations than those obtained by Gröbner basis theory.

Mathematics Subject Classification (2000). 13P10.

Key words: toric ideal, toric Hilbert scheme.

1. Introduction

The properties of ideals with a fixed Hilbert function have been studied extensively; the most recent papers are [HP,G]. We study when an ideal has the same multigraded Hilbert function as a given toric ideal.

Let *n* and *d* be positive integers with n > d and $\mathcal{A} = \{a_1, \ldots, a_n\}$ a subset of $\mathbb{N}^d \setminus \{0\}$ with *n* different vectors. Let *A* be the matrix with columns a_i and suppose that rank(\mathcal{A}) = *d*. Denote by $\mathbb{N}\mathcal{A}$ the subsemigroup of \mathbb{N}^d spanned by \mathcal{A} . Consider the polynomial ring $S = k[x_1, \ldots, x_n]$ over a field *k* generated by variables x_1, \ldots, x_n in \mathbb{N}^d -degrees a_1, \ldots, a_n , respectively. A homogeneous ideal *M* is called \mathcal{A} -graded if for all $b \in \mathbb{N}^d$

 $\dim_k((S/M)_b) = \begin{cases} 1 & \text{if } b \in \mathbf{NA}, \\ 0 & \text{otherwise.} \end{cases}$

This means that S/M has the same multigraded Hilbert function as the *toric ring* S/I_A , where I_A is the *toric ideal* equal to the kernel of the homomorphism $k[x_1, \ldots, x_n] \rightarrow k[t_1, \ldots, t_d]$ mapping x_i to $\mathbf{t}^{a_i} = t_1^{a_{i1}} \ldots t_d^{a_{id}}$ for $1 \le i \le n$. The paradigms of A-graded ideals are the toric ideal and its initial ideals. An A-graded ideal M is called *coherent* if there exist $w \in \mathbf{Q}^n$ and $(c_1, \ldots, c_n) \in (k^*)^n$ such that the ideal $(f(c_1x_1, \ldots, c_nx_n) | f \in M)$ equals the initial ideal $\mathbf{in}_w(I_A)$ of I_A with respect to the monomial order defined by the weight vector w. If M is an initial ideal of I_A , then a construction from Gröbner Bases Theory gives a flat family such that the fiber over 1 is the toric ring S/I_A and the fiber over 0 is S/M. What are the other deformations of I_A ? The study of A-graded ideals was initiated by Arnold [Ar], who realized that in the case d = 1, n = 3 the structure of such ideals is encoded

^{*} Partially supported by NSF.

into continued fractions. Further work in this case was done by Korkina, Post, and Roelofs [Ko, KPR].

THEOREM 1.1 ([Ar, Ko, KPR]). If d = 1 and n = 3 then every A-graded ideal is coherent.

The codimension of I_A is n - d. In view of Lee's result that A has only coherent triangulations if n - d = 2, it is conjectured in [St1, 6.1]:

CONJECTURE 1.2 (Sturmfels 1994). If $\operatorname{codim}(I_A) = 2$, then every A-graded ideal is coherent.

This conjecture provides description of the structure of the A-graded ideals and shows that the isomorphism classes of A-graded ideals are in bijection with the vertices of the state polytope. The first example of a noncoherent A-graded ideal was found by Eisenbud; through a systematic computer search Sturmfels [St2, Theorem 10.4] found that $(x_1^3, x_1x_2, x_2^2, x_2x_3, x_1x_4, x_1^2x_3^2, x_1x_4^3, x_2x_4^3, x_4^4)$ is a noncoherent A-graded monomial ideal for $A = \{1, 3, 4, 7\}$ and in this case $\operatorname{codim}(I_A) = 3$. So the above conjecture cannot be extended to codimensions higher than two.

Our paper is devoted to a proof of Conjecture 1.2. The arguments in [Ar, Ko, KPR] cannot be applied for $n \ge 4$; some of the difficulties when $n \ge 4$ are outlined in [KPR, Section 8]. Our argument is broken into many steps and each step is presented in a lemma. It involves techniques from [Ar] and [PS], and relies on a detailed analysis of the syzygies of the toric ideal I_A and the syzygies of its Lawrence lifting ideal.

2. Criterion for Coherence

Fix a set A and denote $I = I_A$. In this section we provide two tools for the proof of Conjecture 1.2: Lemma 2.1 gives a criterion for weak A-gradedness and Lemma 2.2 gives a criterion for coherence. We also recall the construction of Lawrence lifting.

We say that a homogeneous ideal M is weakly A-graded if for all $b \in \mathbb{N}^d$

$$\dim_k((S/M)_b) \leqslant \begin{cases} 1 & \text{if } b \in \mathbf{N}\mathcal{A} \\ 0 & \text{otherwise.} \end{cases}$$

Note that a weakly \mathcal{A} -graded ideal is generated by binomials (that is polynomials with at most two terms). Our first lemma shows that a weakly \mathcal{A} -graded ideal is generated by special binomials. A binomial $\mathbf{x}^u - \mathbf{x}^v$ in the toric ideal *I* is called *primitive* if there are no proper monomial factors $\mathbf{x}^{u'}$ of \mathbf{x}^u and $\mathbf{x}^{v'}$ of \mathbf{x}^v such that $\mathbf{x}^{u'} - \mathbf{x}^{v'} \in I$. The set of all primitive binomials is finite and is called the *Graver basis*.

LEMMA 2.1 [PS2]. Let M be an ideal in S. The following are equivalent:

- (a) The ideal M is weakly A-graded.
- (b) If x^u − x^v is a primitive binomial in I then either M contains at least one of the monomials x^u and x^v or there is a p ∈ k \ 0 such that x^u − px^v ∈ M.

The Graver basis in the case d = 1, n = 3 considered by [Ar,Ko,KPR] is the *star*, see [Ko, Definition 2.9]; in this case Lemma 2.1 corresponds to [Ko, 2.10].

Until the end of this section we will assume that n - d = 2, i.e. $\operatorname{codim}(I) = 2$.

A vector $u \in \mathbb{Z}^n$ can be written uniquely as $u = u_+ - u_-$, where u_+ and u_- have nonnegative coordinates and $\operatorname{supp}(u_+) \cap \operatorname{supp}(u_-) = \emptyset$ (here $\operatorname{supp}(u) = \{i \mid \text{the } i\text{th} \text{ coordinate of } u \text{ is not } 0\}$). Let $B = (b_{ij})$ be an integer $(n \times 2)$ -matrix such that the following sequence is exact

 $0 \rightarrow \mathbf{Z}^2 \xrightarrow{B} \mathbf{Z}^n \xrightarrow{A} \mathbf{Z}^d.$

Each vector α in \mathbb{Z}^2 corresponds to a binomial $\mathbf{x}^{(B\alpha)_+} - \mathbf{x}^{(B\alpha)_-}$ in *I*, and every binomial in *I* without monomial factors can be represented uniquely in this way.

LEMMA 2.2. Let $\operatorname{codim}(I) = 2$ and M be an A-graded ideal in S. Let $\mathcal{T} \subset \mathbb{Z}^2$ be a set of vectors with the property that for some nonzero-vector $s \in \mathbb{Q}^2$ we have $\langle s, \alpha \rangle \ge 0$ for any $\alpha \in \mathcal{T}$. Set

$$M' = \left(\{ \mathbf{x}^{(B\alpha)_+} | \alpha \in \mathcal{T}, \langle s, \alpha \rangle > 0 \} \cup \{ \mathbf{x}^{(B\alpha)_+} - \mathbf{x}^{(B\alpha)_-} | \alpha \in \mathcal{T}, \langle s, \alpha \rangle = 0 \} \right).$$

If M' is weakly A-graded and $M' \subseteq M$, then M' = M and M is coherent.

Proof. Let $\alpha \in \mathcal{T}$. Let $w \in \mathbf{Q}^n$ be such that $s = B^T w$ (here B^T is the transpose of B). Then

$$\langle w, (B\alpha)_+ \rangle > \langle w, (B\alpha)_- \rangle$$
 if and only if $\langle s, \alpha \rangle > 0$,

 $\langle w, (B\alpha)_+ \rangle = \langle w, (B\alpha)_- \rangle$ if and only if $\langle s, \alpha \rangle = 0$.

Therefore,

$$in_{w}(\mathbf{x}^{(B\alpha)_{+}}-\mathbf{x}^{(B\alpha)_{-}}) = \begin{cases} \mathbf{x}^{(B\alpha)_{+}} & \text{if } \langle s, \alpha \rangle > 0, \\ \mathbf{x}^{(B\alpha)_{+}}-\mathbf{x}^{(B\alpha)_{-}} & \text{if } \langle s, \alpha \rangle = 0. \end{cases}$$

By the definition of M' it follows that $M' \subseteq in_w(I)$. As M' is weakly \mathcal{A} -graded and $in_w(I)$ is \mathcal{A} -graded, it follows that $M' = in_w(I)$. On the other hand, $M' \subseteq M$ and M is \mathcal{A} -graded. Hence M' = M and M is coherent.

We remark that by [St2, Proposition 1.12] if $w \in \mathbf{Q}^n$ then there exists a $w' \in \mathbf{Q}^n$ with positive coordinates such that $\operatorname{in}_{w'}(I) = \operatorname{in}_{w}(I)$. Thus, in the definition of coherence and in the proofs we do not need to require that the weight vector has positive coordinates.

By [PS, Remark 3.2 and Theorem 3.7], we can choose the matrix *B* so that the binomials corresponding to (1, 0) and (0, 1) are minimal generators of *I*. By [PS, Theorem 6.1] *I* is a complete intersection exactly when *I* is minimally generated by two elements. If *I* is not a complete intersection, then by [PS, Theorem 3.7] the ideal *I* has a unique minimal system of N^d-homogeneous binomial generators (up to multiplying each binomial with ± 1). We call a vector $\alpha \in \mathbb{Z}^2$ generating if one of the following conditions is satisfied:

- (1) *I* is a complete intersection and $\alpha \in \{\pm(1, 0), \pm(0, 1)\};$
- (2) I is not a complete intersection and the binomial corresponding to α is contained in a minimal system of generators of I.

We call α *primitive* if its binomial is primitive.

We need to recall the construction of Lawrence lifting. Let *L* be the matrix $\begin{pmatrix} A & 0 \\ 1 & 1 \end{pmatrix}$, where **1** is the $(n \times n)$ -identity matrix and **0** is the $(d \times n)$ -zero matrix. The matrix *L* is called the *Lawrence lifting* of *A*, and the toric ideal I_L is called the Lawrence lifting of *I*. Then I_L is the ideal in $k[x_1, \ldots, x_n, y_1, \ldots, y_n]$ generated by $\{\mathbf{x}^u \mathbf{y}^v - \mathbf{x}^v \mathbf{y}^u | \mathbf{x}^u - \mathbf{x}^v \in I\}$ and codim $(I_L) = 2$.

LEMMA 2.3. The elements $y_n - 1, \ldots, y_1 - 1$ form a $k[x_1, \ldots, x_n, y_1, \ldots, y_n]/I_L$ -regular sequence.

Proof. Fix an $1 \le i \le n-1$. Denote by T the ideal in the polynomial ring $k[x_1, \ldots, x_n, y_1, \ldots, y_i]$ such that

$$k[x_1, \ldots, x_n, y_1, \ldots, y_i]/T = k[x_1, \ldots, x_n, y_1, \ldots, y_n]/(I_L + (y_{i+1} - 1, \ldots, y_n - 1)).$$

The ring $k[x_1, \ldots, x_n, y_1, \ldots, y_n]$ is \mathbb{N}^{d+n} -graded with the degrees of the variables given by the columns of the matrix L. Deleting the last n-i coordinates in \mathbb{N}^{d+n} we induce an \mathbb{N}^{d+i} -grading in which $\deg(y_{i+1}) = \ldots = \deg(y_n) = 0$. This induces an \mathbb{N}^{d+i} -grading on $k[x_1, \ldots, x_n, y_1, \ldots, y_i]$ and the ideal T is \mathbb{N}^{d+i} -homogeneous. The elements 1 and y_i have different degrees. Therefore, if f is a polynomial and $(y_i - 1)f \in T$, then $f \in T$.

By [St2, Theorem 7.1] I_L has a unique system of minimal homogeneous binomial generators. The Lawrence lifting is relevant to our work, because the images of the minimal binomial generators of I_L in $k[x_1, \ldots, x_n, y_1, \ldots, y_n]/(y_1 - 1, \ldots, y_n - 1)$ form the Graver basis of I, see [St2, Theorem 7.1 and Algorithm 7.2]. We have the exact sequence

$$0 \rightarrow \mathbf{Z}^2 \xrightarrow{\begin{pmatrix} B \\ -B \end{pmatrix}} \mathbf{Z}^{2n} \xrightarrow{\begin{pmatrix} A & \mathbf{O} \\ \mathbf{1} & \mathbf{1} \end{pmatrix}} \mathbf{Z}^{n+d} .$$

Therefore, the primitive vectors for I are exactly the generating vectors for I_L .

When we say that a vector α is a generating vector, we mean that α is a generating vector for the ideal *I*.

3. A-Graded Ideals for Codimension 2 Toric Varieties

Fix a set A, set $I = I_A$, and denote by q the number of minimal generators of I. By I_L we denote the Lawrence lifting of I and by q_L the number of minimal generators of I_L . In this section we prove Conjecture 1.2. Throughout the section we assume that n - d = codim(I) = 2. We assume that the matrix B is chosen so that the binomials corresponding to (1, 0) and (0, 1) are minimal generators of I; such choice is possible by [PS, Remark 3.2 and Theorem 3.7].

Let *M* be a weakly *A*-graded ideal and $\alpha \in \mathbb{Z}^2$. We say that α is an *M*-vector if $\mathbf{x}^{(B\alpha)_+} \in M$. We say that α is *M*-gluing if none of the monomials $\mathbf{x}^{(B\alpha)_+}$, $\mathbf{x}^{(B\alpha)_-}$ is in *M*; in this case there exists a $p_{\alpha} \in k \setminus 0$ such that $\mathbf{x}^{(B\alpha)_{+}} - p_{\alpha}\mathbf{x}^{(B\alpha)_{-}} \in M$. Note that the opposite vectors α and $-\alpha$ correspond to binomials which differ by sign only, therefore either at least one of the vectors α and $-\alpha$ is an *M*-vector, or α is *M*-gluing. Suppose that I is not a complete intersection: then by [PS, Theorem 3.4] for each homogeneous minimal binomial generator f of I there exist exactly two monomials in S of the same N^d-degree as f (these monomials are the terms of f), hence if M is an A-graded ideal and α is a generating non-M-gluing vector then exactly one of the vectors α , $-\alpha$ is an *M*-vector. We say that two vectors *ill-match* if they are both non-M-gluing and exactly one of them is an M-vector. We say that two vectors α , β well-match if either α , β are M-vectors or $-\alpha$, $-\beta$ are M-vectors. Throughout the section we will work under the following assumption: if at least one of the vectors (1, 0), (0, 1) is not *M*-gluing, then after renumbering the quadrants and the basis vectors (if necessary) we have that (0, 1) is an *M*-vector and (1, 0) is either *M*-gluing or an *M*-vector.

We use the terminology from [PS] about the syzygies of *I*: the syzygies are represented by vectors, triangles, and quadrangles in \mathbb{Z}^2 with integer vertices and one vertex fixed at the origin (0, 0). We say that a sequence $\mathbb{P} = P_1, \ldots, P_r$ of quadrangles in the first or second quadrant is a *chain* if for $1 \le i \le r-1$ the quadrangle P_{i+1} is a child of P_i in the master tree, see [PS, Construction 4.4]. For $1 \le i \le r$ denote by α_i, β_i the edges of P_i and by γ_i the longer diagonal of P_i . Then \mathbb{P} is a chain exactly when for $1 \le i \le r-1$ the edges of P_{i+1} are either α_i, γ_i or β_i, γ_i . When we say that the vectors α, β are edges of a quadrangle we always mean 'oriented edges' so that $\alpha + \beta$ is the longer diagonal of the unit square with edges (1, 0), (0, 1), and that the vector (-1, 1) is the longer diagonal of the unit square with edges (-1, 0), (0, 1). The next lemma contains several results from [PS] which we will need.

LEMMA 3.1. (a) The ideal I is a complete intersection if and only if q = 2; I is not Cohen-Macaulay if and only if $q \ge 4$ if and only if I has a syzygy quadrangle. (This follows from [PS, Theorem 6.1].)

(b) Let $q \ge 4$ and δ be a generating vector of I in the first or second quadrant different from $\pm(1, 0), (0, 1)$. There exists a chain P_1, \ldots, P_r of syzygy quadrangles such that δ is the longer diagonal of P_r and P_1 is either the unit square with edges (1, 0), (0, 1) or the unit square with edges (-1, 0), (0, 1). (This follows from [PS, proof of Corollary 4.6].)

(c) Let P be a syzygy quadrangle. The edges and the diagonals of P are generating vectors. Each of the four triangles with edges the edges of P and one of the diagonals of P is a syzygy triangle [PS, Corollary 3.6].

(d) Suppose that q = 3. The generating vectors of I can be chosen to be $\pm(1, 0)$, $\pm(0, 1)$ and either $\pm(1, 1)$ or $\pm(-1, 1)$. In the former case the two triangles with edges (1, 0), (0, 1), (1, 1) are syzygy triangles; in the latter case the two triangles with edges (-1, 0), (0, 1), (-1, 1) are syzygy triangles [PS, Remark 5.8].

LEMMA 3.2. Let *M* be an *A*-graded ideal. Let α , β , $\eta = \alpha + \beta$ be generating vectors, which are edges of a syzygy triangle.

- (a) If α and β are *M*-gluing vectors, then η is an *M*-gluing vector as well.
- (b) If α is an M-gluing vector, but β is not, then η well-matches β .
- (c) If α and β well-match, then η well-matches them.

Proof. Since $q \ge 3$ it follows from Lemma 3.1(a) that *I* is not a complete intersection. By the construction of a syzygy triangle in [PS, (3.3), Theorem 3.4, Corollary 3.6] we can choose three monomials m_1, m_2, m_3 such that $m_2 - m_1$ is a monomial multiple of $\mathbf{x}^{(B\alpha)_+} - \mathbf{x}^{(B\alpha)_-}$, $m_3 - m_2$ is a monomial multiple of $\mathbf{x}^{(B\beta)_+} - \mathbf{x}^{(B\beta)_-}$, $m_3 - m_1$ is a monomial multiple of $\mathbf{x}^{(B\beta)_+} - \mathbf{x}^{(B\beta)_-}$, $m_3 - m_1$ is a monomial multiple of $\mathbf{x}^{(B\eta)_+} - \mathbf{x}^{(B\eta)_-}$, and m_1, m_2, m_3 are all the monomials in *S* with \mathbf{N}^d -degree equal to the degree of a syzygy triangle (this triangle is one of the two syzygy triangles with edges α , β , η). Note that if $p_{\alpha}, p_{\beta}, p_{\eta} \in k \setminus 0$, then $m_2 - p_{\alpha}m_1$ is a monomial multiple of $\mathbf{x}^{(B\alpha)_+} - p_{\alpha}\mathbf{x}^{(B\alpha)_-}$, $m_3 - p_{\beta}m_2$ is a monomial multiple of $\mathbf{x}^{(B\beta)_+} - p_{\beta}\mathbf{x}^{(B\beta)_-}$, and $m_3 - p_{\eta}m_1$ is a monomial multiple of $\mathbf{x}^{(B\eta)_+} - p_{\eta}\mathbf{x}^{(B\eta)_-}$.

To prove (a) note that if α and β are *M*-gluing vectors but η is not, then $m_1, m_2, m_3 \in M$ contradicting the *A*-gradedness of *M*. Next we prove (b). If η is *M*-gluing then we can apply (a) to $-\alpha, \eta, \beta = -\alpha + \eta$ and conclude that β is *M*-gluing, which is a contradiction. If η is non-*M*-gluing and we assume that β and η ill-match then m_1, m_2, m_3 are in *M* contradicting the *A*-gradedness of *M*. So (b) is proved. It remains to prove (c). If α and β well-match and η is an *M*-gluing vector, then applying (b) to $\eta, -\alpha, \beta = \eta - \alpha$ we get a contradiction. Therefore, η is not *M*-gluing. As *M* is *A*-graded, we have that at most two of the monomials m_1, m_2, m_3 are in *M*. Suppose that α and β are *M*-vectors. It follows that $m_2, m_3 \in M$. Therefore $m_1 \notin M$ and $m_3 - pm_1 \notin M$ for every $p \in k \setminus 0$. Hence

 $\mathbf{x}^{(B\eta)_{-}} \notin M$ and $\mathbf{x}^{(B\eta)_{+}} - p\mathbf{x}^{(B\eta)_{-}} \notin M$ for every $p \in k \setminus 0$. By \mathcal{A} -gradedness it follows that $\mathbf{x}^{(B\eta)_{+}} \in M$, so η is an M-vector. If $-\alpha$, $-\beta$ are M-vectors, then the previous argument shows that $-\eta$ is an M-vector. So η well-matches α , β .

LEMMA 3.3. Let M be an A-graded ideal. Let P_1, \ldots, P_r be a chain of syzygy quadrangles. Denote by α, β the edges of P_1 and by δ the longer diagonal of P_r .

- (a) If α and β are *M*-gluing vectors, then δ is an *M*-gluing vector as well.
- (b) If α is an M-gluing vector, but β is not, then δ well-matches β .
- (c) If α and β well-match, then δ well-matches them.

Proof. For $1 \le i \le r$ denote by γ_i the longer diagonal of P_i and by α_i , β_i its edges. Note that for $1 \le i \le r-1$ the edges of P_{i+1} are either α_i , γ_i or β_i , γ_i . By Lemma 3.1(c) α_i , β_i , $\gamma_i = \alpha_i + \beta_i$ are generating vectors, which are edges of a syzygy triangle. We argue by induction on *i*: at each step of the induction we apply Lemma 3.2.

Next we prove Conjecture 1.2 in two special cases:

LEMMA 3.4. Let M be an A-graded ideal in S. Suppose that both (1, 0) and (0, 1) are M-gluing vectors. Then M is toric isomorphic to the toric ideal I.

Proof. First, we will show that all generating vectors are *M*-gluing vectors. This is clear if q = 2. If q = 3 then apply Lemmas 3.1(d) and 3.2(a). Suppose that $q \ge 4$. Let δ be a generating vector in the first or second quadrant. Choose a chain P_1, \ldots, P_r of syzygy quadrangles as in Lemma 3.1(b), so the edges of P_1 are either (1, 0), (0, 1) or (-1, 0), (0, 1) and δ is the longer diagonal of P_r . The edges of P_1 are *M*-gluing, so applying Lemma 3.3(a) to the chain P_1, \ldots, P_r we get that δ is *M*-gluing.

For each generating vector δ let $p_{\delta} \in k \setminus 0$ be a constant such that $\mathbf{x}^{(B\delta)_{+}} - p_{\delta}\mathbf{x}^{(B\delta)_{-}} \in M$. Consider the ideal

$$M' = \left(\left\{ \mathbf{x}^{(B\delta)_+} - p_{\delta} \mathbf{x}^{(B\delta)_-} \, | \, \delta \text{ is a generating vector } \right\} \right) \subseteq M \,.$$

We will show that if $\mathbf{x}^{\mathbf{u}}$ and $\mathbf{x}^{\mathbf{v}}$ are two monomials in S of the same \mathbf{N}^{d} -degree then there exists a nonzero constant p such that $\mathbf{x}^{\mathbf{u}} - p\mathbf{x}^{\mathbf{v}} \in M'$. We can write

$$\mathbf{x}^{\mathbf{u}} - \mathbf{x}^{\mathbf{v}} \,=\, \sum_{i=1}^{s} \, \mathbf{x}^{\mathbf{w}_{i}} (\, \mathbf{x}^{(B\delta_{i})_{+}} \,-\, \mathbf{x}^{(B\delta_{i})_{-}}\,)\,,$$

where $\mathbf{x}^{(B\delta_i)_+} - p_{\delta_i} \mathbf{x}^{(B\delta_i)_-}$ is a minimal generator of I for $1 \le i \le s$, $\mathbf{x}^{\mathbf{u}} = \mathbf{x}^{\mathbf{w}_1} \mathbf{x}^{(B\delta_1)_+}$, $\mathbf{x}^{\mathbf{v}} = \mathbf{x}^{\mathbf{w}_s} \mathbf{x}^{(B\delta_s)_-}$, and $\mathbf{x}^{\mathbf{w}_i} \mathbf{x}^{(B\delta_{i})_-} = \mathbf{x}^{\mathbf{w}_{i+1}} \mathbf{x}^{(B\delta_{i+1})_+}$ for $1 \le i \le s-1$. Now set $p = \prod_{i=1}^{s} p_{\delta_i}$. Then we have

$$\mathbf{x}^{\mathbf{u}} - p\mathbf{x}^{\mathbf{v}} = \sum_{i=1}^{s} \left(\prod_{j=0}^{i-1} p_{\delta_j} \right) \mathbf{x}^{\mathbf{w}_i} (\mathbf{x}^{(B\delta_i)_+} - p_{\delta_i} \mathbf{x}^{(B\delta_i)_-}),$$

(here $p_{\delta_0} = 1$). Since $\mathbf{x}^{(B\delta_i)_+} - p_{\delta_i}\mathbf{x}^{(B\delta_i)_-} \in M'$ for $1 \le i \le s$, it follows that $\mathbf{x}^{\mathbf{u}} - p\mathbf{x}^{\mathbf{v}} \in M'$. The constant p is nonzero as $p_{\delta_i} \ne 0$ for $1 \le i \le s$. Therefore, M' is weakly \mathcal{A} -graded. As M is \mathcal{A} -graded, we conclude that M' = M. Note that M contains no monomials. By [St1, Lemma 10.12] it follows that M is toric isomorphic to the toric ideal I.

LEMMA 3.5. If the Lawrence lifting I_L is Cohen-Macaulay and M is an A-graded ideal in S, then M is coherent.

Proof. By Lemma 3.4 we can assume that at least one of the vectors (1, 0), (0, 1) is not *M*-gluing. After renumbering the quadrants and the basis vectors (if necessary) we can assume that (0, 1) is an *M*-vector and (1, 0) is either *M*-gluing or an *M*-vector.

By Lemma 3.1(a) the Cohen-Macaulayness of I_L is equivalent to $2 \le q_L \le 3$. Let \mathcal{P} be the set consisting of the generating vectors for I_L . Recall from Section 2 that the primitive vectors for I are exactly the generating vectors for I_L . For a vector $s \in \mathbf{Q}^2$ in the first quadrant set $\mathcal{T}_s = \{\alpha \mid \alpha \in \mathcal{P}, \langle s, \alpha \rangle \ge 0\}$ and

$$M_{s} = \left(\{ \mathbf{x}^{(B\alpha)_{+}} | \alpha \in \mathcal{T}_{s}, \langle s, \alpha \rangle > 0 \} \cup \{ \mathbf{x}^{(B\alpha)_{+}} - \mathbf{x}^{(B\alpha)_{-}} | \alpha \in \mathcal{T}_{s}, \langle s, \alpha \rangle = 0 \} \right).$$

The ideal M_s is weakly A-graded by Lemma 2.1, therefore Lemma 2.2 can be applied to s, \mathcal{T}_s, M_s, M if $M_s \subseteq M$. We will find an $s \in \mathbb{Q}^2$ such that $M_s \subseteq M$.

Suppose that $q_L = 2$. Choose s = (0, 1) if (1, 0) is *M*-gluing and s = (1, 1) otherwise. If (1, 0) is *M*-gluing then we scale the variables so that $\mathbf{x}^{(B(1,0))_+} - \mathbf{x}^{(B(1,0))_-} \in M$. Then clearly Lemma 2.2 can be applied, so *M* is coherent.

Let $q_L = 3$. Applying Lemma 3.1(d) to I_L we have that the generating vectors of I_L can be chosen to be $\pm(1, 0), \pm(0, 1)$ and either $\pm(1, 1)$ or $\pm(-1, 1)$. Thus, \mathcal{P} is either $\{\pm(1, 0), \pm(0, 1), \pm(1, 1)\}$ or $\{\pm(1, 0), \pm(0, 1), \pm(-1, 1)\}$.

Suppose that q = 3. Choose

 $s = \begin{cases} (0, 1) & \text{if } (1, 0) \text{ is } M\text{-gluing,} \\ (1, 1) & \text{if } (-1, 1) \text{ is either non-generating or } M\text{-gluing,} \\ (2, 1) & \text{if } (-1, 1) \text{ is generating and } -(-1, 1) \text{ is an } M\text{-vector,} \\ (1, 2) & \text{if } (-1, 1) \text{ is a generating } M\text{-vector.} \end{cases}$

There is at most one *M*-gluing generating vector; if such vector exists we denote it by ξ and scale the variables so that $\mathbf{x}^{(B\xi)_+} - \mathbf{x}^{(B\xi)_-} \in M$. Applying Lemma 3.2 we conclude that $M_s \subseteq M$ and then we apply Lemma 2.2 to s, \mathcal{T}_s, M_s, M . Therefore *M* is coherent.

For the rest of the proof suppose that $2 = q < q_L = 3$. As in [PS, Construction 5.2], we write the binomials corresponding to (1, 0) and (0, 1) in the form

$$e = \mathbf{x}^{(B(1,0))_{+}} - \mathbf{x}^{(B(1,0))_{-}} = \mathbf{x}^{\mathbf{u}_{+}} \mathbf{x}^{\mathbf{t}} \mathbf{x}^{\mathbf{p}} - \mathbf{x}^{\mathbf{u}_{-}} \mathbf{x}^{\mathbf{s}} \mathbf{x}^{\mathbf{r}},$$

$$f = \mathbf{x}^{(B(0,1))_{+}} - \mathbf{x}^{(B(0,1))_{-}} = \mathbf{x}^{\mathbf{v}_{+}} \mathbf{x}^{\mathbf{s}} \mathbf{x}^{\mathbf{p}} - \mathbf{x}^{\mathbf{v}_{-}} \mathbf{x}^{\mathbf{t}} \mathbf{x}^{\mathbf{r}}.$$

where in each binomial the two monomials are relatively prime, and

$$(\mathbf{u} + \mathbf{v})_{+} = \mathbf{u}_{+} + \mathbf{v}_{+},$$
 $(\mathbf{u} + \mathbf{v})_{-} = \mathbf{u}_{-} + \mathbf{v}_{-},$
 $(\mathbf{u} - \mathbf{v})_{+} = \mathbf{u}_{+} + \mathbf{v}_{-},$ $(\mathbf{u} - \mathbf{v})_{-} = \mathbf{u}_{-} + \mathbf{v}_{+}.$

Hence the binomials corresponding to (1, 1) and (-1, 1) have the form

$$\begin{array}{l} \mathbf{x}^{(B(1,1))_{+}} - \mathbf{x}^{(B(1,1))_{-}} = \mathbf{x}^{(\mathbf{u}+\mathbf{v})_{+}}\mathbf{x}^{2\mathbf{p}} - \mathbf{x}^{(\mathbf{u}+\mathbf{v})_{-}}\mathbf{x}^{2\mathbf{r}},\\ \mathbf{x}^{(B(-1,1))_{+}} - \mathbf{x}^{(B(-1,1))_{-}} = \mathbf{x}^{(\mathbf{u}-\mathbf{v})_{-}}\mathbf{x}^{2\mathbf{s}} - \mathbf{x}^{(\mathbf{u}-\mathbf{v})_{+}}\mathbf{x}^{2\mathbf{t}} \end{array}$$

Since q = 2 by Lemma 3.1(a) we have that *I* is a complete intersection. By [PS, Remark 3.2] it follows that one of the binomials *e* and *f* contains a term, which is coprime to each of the terms in the other binomial. This implies that either \mathbf{x}^{s} or \mathbf{x}^{t} is 1, and also that either \mathbf{x}^{p} or \mathbf{x}^{r} is 1. We consider the following two cases:

Case 1. Both (1, 0) and (0, 1) are M-vectors

Clearly, Lemma 2.2 can be applied if $\pm(-1, 1)$ are generating vectors for I_L . Suppose that $\pm(1, 1)$ are generating vectors for I_L . Since either \mathbf{x}^t or \mathbf{x}^s is 1, it follows that the monomial $\mathbf{x}^{(B(1,1))_+} = \mathbf{x}^{(\mathbf{u}+\mathbf{v})_+}\mathbf{x}^{2\mathbf{p}}$ is divided by either the monomial $\mathbf{x}^{(B(1,0))_+} = \mathbf{x}^{\mathbf{u}_+}\mathbf{x}^t\mathbf{x}^{\mathbf{p}}$ or by the monomial $\mathbf{x}^{(B(0,1))_+} = \mathbf{x}^{\mathbf{v}_+}\mathbf{x}^s\mathbf{x}^{\mathbf{p}}$. Thus, $\mathbf{x}^{(B(1,1))_+} \in M$, so (1, 1) is an *M*-vector. Choose s = (1, 1). We have shown that $M_s \subseteq M$. So we can apply Lemma 2.2 to s, \mathcal{T}_s, M_s, M . Therefore M is coherent.

Case 2. The vector (0, 1) is an M-vector and (1, 0) is M-gluing

By Lemma 2.1 it follows that there exists a nonzero constant p such that $\mathbf{x}^{(B(1,0))_+} - p\mathbf{x}^{(B(1,0))_-} \in M$. After scaling the variables (if necessary) we can assume that p = 1, so $e \in M$. We will show that (1, 1), (-1, 1) are *M*-vectors.

We have that either $\mathbf{x}^{\mathbf{t}}$ or $\mathbf{x}^{\mathbf{s}}$ is 1. If $\mathbf{x}^{\mathbf{s}}$ is 1, then the monomial $\mathbf{x}^{(B(1,1))_{+}} = \mathbf{x}^{(\mathbf{u}+\mathbf{v})_{+}}\mathbf{x}^{2\mathbf{p}}$ is divided by the monomial $\mathbf{x}^{(B(0,1))_{+}} = \mathbf{x}^{\mathbf{v}_{+}}\mathbf{x}^{\mathbf{s}}\mathbf{x}^{\mathbf{p}}$, so $\mathbf{x}^{(B(1,1))_{+}} \in M$. If $\mathbf{x}^{\mathbf{t}}$ is 1, then we get the equalities

$$\mathbf{x}^{(B(1,1))_{+}} - (\mathbf{x}^{\mathbf{v}_{+}}\mathbf{x}^{\mathbf{p}})e = \mathbf{x}^{(\mathbf{u}+\mathbf{v})_{+}}\mathbf{x}^{2\mathbf{p}} - (\mathbf{x}^{\mathbf{v}_{+}}\mathbf{x}^{\mathbf{p}})e$$

$$= (\mathbf{x}^{\mathbf{v}_{+}}\mathbf{x}^{\mathbf{p}})(\mathbf{x}^{\mathbf{u}_{-}}\mathbf{x}^{\mathbf{s}}\mathbf{x}^{\mathbf{r}}) = (\mathbf{x}^{\mathbf{u}_{-}}\mathbf{x}^{\mathbf{r}})\mathbf{x}^{(B(0,1))_{+}} \in M.$$

But $e \in M$, hence $\mathbf{x}^{(B(1,1))_+} \in M$. By a similar argument, using that either \mathbf{x}^r or \mathbf{x}^p is 1, we will show that $\mathbf{x}^{(B(-1,1))_+} \in M$. If \mathbf{x}^p is 1, then the monomial $\mathbf{x}^{(B(-1,1))_+} = \mathbf{x}^{\mathbf{u}_-} \mathbf{x}^{\mathbf{v}_+} \mathbf{x}^{2\mathbf{s}}$ is divided by the monomial $\mathbf{x}^{(B(0,1))_+} = \mathbf{x}^{\mathbf{v}_+} \mathbf{x}^{\mathbf{s}} \mathbf{x}^p$, so $\mathbf{x}^{(B(-1,1))_+} \in M$. If \mathbf{x}^r is 1, then we

have the equalities

$$\begin{aligned} \mathbf{x}^{(B(-1,1))_{+}} + (\mathbf{x}^{\mathbf{v}_{+}}\mathbf{x}^{\mathbf{s}})e &= \mathbf{x}^{\mathbf{u}_{-}}\mathbf{x}^{\mathbf{v}_{+}}\mathbf{x}^{2\mathbf{s}} + (\mathbf{x}^{\mathbf{v}_{+}}\mathbf{x}^{\mathbf{s}})e \\ &= (\mathbf{x}^{\mathbf{v}_{+}}\mathbf{x}^{\mathbf{s}})(\mathbf{x}^{\mathbf{u}_{+}}\mathbf{x}^{\mathbf{t}}\mathbf{x}^{\mathbf{p}}) = (\mathbf{x}^{\mathbf{u}_{+}}\mathbf{x}^{\mathbf{t}})\mathbf{x}^{(B(0,1))_{+}} \in M. \end{aligned}$$

But $e \in M$, hence $\mathbf{x}^{(B(-1,1))_+} \in M$.

Choose s = (0, 1). We have shown that $M_s \subseteq M$. Therefore we can apply Lemma 2.2 to s, \mathcal{T}_s, M_s, M . Hence M is coherent.

Starting from here until Theorem 3.15 we assume that I_L is not Cohen-Macaulay; by Lemma 3.1(a) this is equivalent to $q_L \ge 4$. Also, by Lemma 3.1(a) there exists at least one syzygy quadrangle for I_L . By [PS, Corollary 4.3], a syzygy quadrangle for I is also a syzygy quadrangle for I_L . Thus the homology tree of I (which exists exactly when $q \ge 4$) is contained in the homology tree of I_L .

We say that Q is a Lawrence quadrangle if Q is in the first or second quadrant and it is a syzygy quadrangle for I_L but is not a syzygy quadrangle for I.

DEFINITION 3.6. Let Q be a syzygy quadrangle for I_L . We say that Q is a *minimal* Lawrence quadrangle if Q is in the first or second quadrant and one of the following two conditions is satisfied:

- (1) q = 2 and Q is either the unit square with edges (1, 0), (0, 1) or the unit square with edges (-1, 0), (0, 1).
- (2) $q \ge 3$, Q is not a syzygy quadrangle for I, and the two triangles with sides the edges of Q and the shorter diagonal of Q are syzygy triangles for I.

In some of the proofs we use an equivalent form (derived using Lemma 3.1) of the above definition which states that:

- (1') If q = 2 then the minimal Lawrence quadrangles are the unit squares with edges (1, 0), (0, 1) and (-1, 0), (0, 1).
- (2') If q = 3 and (1, 1) is a generating vector, then the minimal Lawrence quadrangles are the unit square with edges (-1, 0), (0, 1) and the syzygy quadrangles for I_L among the quadrangles with edges (1, 0), (1, 1) and (1, 1), (0, 1).
- (3') If q = 3 and (-1, 1) is a generating vector, then the minimal Lawrence quadrangles are the unit square with edges (1, 0), (0, 1) and the syzygy quadrangles for I_L among the quadrangles with edges (-1, 0), (-1, 1) and (-1, 1), (0, 1).
- (4') If $q \ge 4$ then Q is a minimal Lawrence quadrangle if and only if Q is a child (in the homology tree of I_L) of a syzygy quadrangle for I and Q is not a syzygy quadrangle for I.

LEMMA 3.7. Let $q_L \ge 4$ and δ be a primitive non-generating vector for I in the first or second quadrant. There exists a chain Q_1, \ldots, Q_r of syzygy quadrangles for I_L starting with Q_1 a minimal Lawrence quadrangle and such that δ is the longer diagonal of Q_r .

Proof. Recall from Section 2 that the primitive vectors for I are exactly the generating vectors for I_L . By Lemma 3.1(b) we have that there exists a chain $\mathbf{Q}' = Q'_1, \ldots, Q'_s$ of syzygy quadrangles for I_L starting with Q'_1 a unit square and such that δ is the longer diagonal of Q'_{s} . To complete the proof it will be enough to show that \mathbf{Q}' contains a minimal Lawrence quadrangle. We use the definition of a minimal Lawrence quadrangle given by (1'), (2'), (3'), (4') in Definition 3.6. It is easy to see that \mathbf{Q}' contains a minimal Lawrence quadrangle if $q \leq 3$. Suppose that $q \ge 4$. By [PS, Corollary 4.3] the homology tree of I is contained in the homology tree of I_L and they have the same root. Therefore, the chain Q' contains a minimal Lawrence quadrangle.

CONSTRUCTION 3.8. Let $\alpha, \beta \in \mathbb{Z}^2$ and $\gamma = \alpha + \beta$. Set

$$\begin{split} \mathbf{x}^{\mathbf{p}} &= \gcd(\mathbf{x}^{(B\alpha)_{+}}, \ \mathbf{x}^{(B\beta)_{+}}), \qquad \mathbf{x}^{\mathbf{t}} = \gcd(\mathbf{x}^{(B\alpha)_{+}}, \ \mathbf{x}^{(B\beta)_{-}}), \\ \mathbf{x}^{\mathbf{s}} &= \gcd(\mathbf{x}^{(B\alpha)_{-}}, \ \mathbf{x}^{(B\beta)_{+}}), \qquad \mathbf{x}^{\mathbf{r}} = \gcd(\mathbf{x}^{(B\alpha)_{-}}, \ \mathbf{x}^{(B\beta)_{-}}). \end{split}$$

As in [PS, Construction 5.2], α , β correspond to two binomials in I which we write in the form $e = \mathbf{x}^{\mathbf{u}_+} \mathbf{x}^t \mathbf{x}^p - \mathbf{x}^{\mathbf{u}_-} \mathbf{x}^s \mathbf{x}^r$ and $f = \mathbf{x}^{\mathbf{v}_+} \mathbf{x}^s \mathbf{x}^p - \mathbf{x}^{\mathbf{v}_-} \mathbf{x}^t \mathbf{x}^r$ so that the two monomials in each binomial are relatively prime and

$$(\mathbf{u} + \mathbf{v})_{+} = \mathbf{u}_{+} + \mathbf{v}_{+},$$
 $(\mathbf{u} + \mathbf{v})_{-} = \mathbf{u}_{-} + \mathbf{v}_{-},$
 $(\mathbf{u} - \mathbf{v})_{+} = \mathbf{u}_{+} + \mathbf{v}_{-},$ $(\mathbf{u} - \mathbf{v})_{-} = \mathbf{u}_{-} + \mathbf{v}_{+}.$

Thus, the binomials corresponding to the vectors α , β , γ are:

$$\begin{aligned} x^{u_{+}}x^{t}x^{p} - x^{u_{-}}x^{s}x^{r}, & x^{v_{+}}x^{s}x^{p} - x^{v_{-}}x^{t}x^{r}, \\ (x^{u_{+}}x^{p})(x^{v_{+}}x^{p}) - (x^{u_{-}}x^{r})(x^{v_{-}}x^{r}). \end{aligned}$$
(3.9)

LEMMA 3.10. Let M be an A-graded ideal in S and I_L the Lawrence lifting of I. Let Q be a Lawrence quadrangle, α , β the edges of Q and γ its longer diagonal. In the notation of Construction 3.8 we have that at least one of the monomials \mathbf{x}^{s} and \mathbf{x}^{t} is equal to 1.

Proof. First we will prove the lemma in the case when Q is a minimal Lawrence quadrangle. We consider two cases:

Case 1. The ideal I is a complete intersection

 $u_+ v_+ t_+ p = v_- v_- s_+ r$

By (1') in Definition 3.6 we have that Q is a unit square and the binomials e and f correspond to its edges. By [PS, Remark 3.2] it follows that one of the binomials contains a term, which is coprime to each of the terms in the other binomial. This implies that either x^s or x^t is 1.

Case 2. The ideal I is not a complete intersection

By Lemma 3.1(a) we get that $q \ge 3$ in this case. Thus, Q satisfies condition (2) in Definition 3.6. As in [PS, Construction 5.2] we have that the longer and shorter diagonals of Q are represented respectively by the binomials

$$g = \mathbf{x}^{(\mathbf{u}+\mathbf{v})_{+}}\mathbf{x}^{2\mathbf{p}} - \mathbf{x}^{(\mathbf{u}+\mathbf{v})_{-}}\mathbf{x}^{2\mathbf{r}}, \quad h = \mathbf{x}^{(\mathbf{u}-\mathbf{v})_{+}}\mathbf{x}^{2\mathbf{t}} - \mathbf{x}^{(\mathbf{u}-\mathbf{v})_{-}}\mathbf{x}^{2\mathbf{s}}.$$

Denote by **F** the minimal free resolution of $k[x_1, \ldots, x_n]/I$ over the ring $S = k[x_1, \ldots, x_n]$. Let **G** be the minimal free resolution of $k[x_1, \ldots, x_n, y_1, \ldots, y_n]/I_L$ over $k[x_1, \ldots, x_n, y_1, \ldots, y_n]$ which is constructed as in [PS, Theorem 5.5]. Set

$$\mathbf{G} = \mathbf{G} \otimes k[x_1, \ldots, x_n, y_1, \ldots, y_n]/(y_1 - 1, \ldots, y_n - 1).$$

By [PS, Constructions 5.1, 5.2 and Theorems 5.4, 5.5], we have the following complex

$$0 \rightarrow S \xrightarrow{\begin{pmatrix} -\mathbf{x}^{s} \\ \mathbf{x}^{t} \\ -\mathbf{x}^{p} \\ -\mathbf{x}^{p} \end{pmatrix}} S^{4} \xrightarrow{\begin{pmatrix} \mathbf{x}^{v} + \mathbf{x}^{p} & \mathbf{x}^{v} - \mathbf{x}^{r} & -\mathbf{x}^{v} - \mathbf{x}^{t} & -\mathbf{x}^{v} + \mathbf{x}^{s} \\ \mathbf{x}^{u} - \mathbf{x}^{r} & \mathbf{x}^{u} + \mathbf{x}^{p} & \mathbf{x}^{u} - \mathbf{x}^{s} & \mathbf{x}^{u} + \mathbf{x}^{t} \\ -\mathbf{x}^{t} & -\mathbf{x}^{s} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{x}^{p} & \mathbf{x}^{r} \end{pmatrix}} S^{4} \xrightarrow{(e \ f \ g \ h)} S, \quad (3.11)$$

which is a subcomplex of $\bar{\mathbf{G}}$ and the basis elements of the free modules in (3.11) are basis elements in $\bar{\mathbf{G}}$ as well.

We assume that the minimal free resolution **F** is constructed as in [PS, Theorem 5.5]. By [PS, Corollary 4.3], if $q \ge 4$ then the homology tree of *I* is contained in the homology tree of I_L which induces an inclusion of **F** in $\overline{\mathbf{G}}$. If q = 3 we apply [PS, Remark 5.8] to get an inclusion of **F** in $\overline{\mathbf{G}}$. Lemma 2.3 implies that $\overline{\mathbf{G}}$ is a (possibly non-minimal) free resolution of $k[x_1, \ldots, x_n]/I$ over $k[x_1, \ldots, x_n]$. By [Ei, Theorem 20.2], **F** is a direct summand in $\overline{\mathbf{G}}$. Now consider (3.11). The basis element in (3.11) in homological degree 3 corresponds to the quadrangle Q via [PS, Constructions 5.1, 5.2 and Theorem 5.4]. On the other hand, the basis elements in **F** in homological degree 3 correspond to the syzygy quadrangles for *I* via [PS, Constructions 5.1, 5.2 and Theorems 5.4, 5.5]. Since Q is not a syzygy quadrangle for *I* and since $\overline{\mathbf{G}}$ has length 3 it follows that the matrix of the third differential in (3.11) contains an invertible element, that is, one of the monomials $\mathbf{x}^{\mathbf{s}}$, $\mathbf{x}^{\mathbf{t}}$, $\mathbf{x}^{\mathbf{r}}$, $\mathbf{x}^{\mathbf{p}}$ is 1. The monomials $\mathbf{x}^{\mathbf{r}}$ and $\mathbf{x}^{\mathbf{p}}$ are entries in the matrix

$$\begin{pmatrix} -x^{v_-}x^t & -x^{v_+}x^s \\ x^{u_-}x^s & x^{u_+}x^t \\ 0 & 0 \\ x^p & x^r \end{pmatrix}\,,$$

which appears as a submatrix of the second differential in (3.11); this matrix gives the

action of the differential on the two triangles with edges e, f, h. By the choice of Q these two triangles are syzygy triangles for I. Hence the above matrix is contained in the differential of the minimal free resolution **F**, therefore it cannot have invertible entries. So $\mathbf{x}^{\mathbf{r}}$ and $\mathbf{x}^{\mathbf{p}}$ are not invertible. It follows that at least one of the monomials $\mathbf{x}^{\mathbf{s}}$ and $\mathbf{x}^{\mathbf{t}}$ is equal to 1.

Thus, the lemma is proved in the case when Q is a minimal Lawrence quadrangle. Order the Lawrence quadrangles so that if P is a child of P' in the homology tree of I_L (see [PS, Construction 4.5]) then $P' \prec P$. We will finish the proof by induction on this order. Let Q be an arbitrary Lawrence quadrangle. Applying Lemma 3.7 to the longer diagonal of Q we get that there exists a chain Q_1, \ldots, Q_r of Lawrence quadrangles starting with a minimal Lawrence quadrangle Q_1 and $Q = Q_r$. If r = 1 then Q is a minimal Lawrence quadrangle and we are done. Suppose that r > 1 and denote $Q' = Q_{r-1}$. Applying Construction 3.8 to Q' we obtain monomials $\mathbf{x}^{\mathbf{s}'}, \mathbf{x}^{\mathbf{t}'}, \mathbf{x}^{\mathbf{p}'}, \mathbf{x}^{\mathbf{r}'}, \mathbf{x}^{\mathbf{u}'_+}, \mathbf{x}^{\mathbf{u}'_-}$. Let α', β' and γ' be the two edges and the longer diagonal of Q'. Then the two edges of Q are either α', γ' or β', γ' . We consider these two cases separately:

Subcase 1. Let α', γ' be the edges of Q.

Applying Construction 3.8 to Q we get that

 $\begin{aligned} \mathbf{x}^{\mathbf{s}} &= \gcd(\mathbf{x}^{(B\alpha')_{-}}, \mathbf{x}^{(B\gamma')_{+}}) = \gcd(\mathbf{x}^{\mathbf{v}'_{+}}, \mathbf{x}^{\mathbf{s}'}), \\ \mathbf{x}^{\mathbf{t}} &= \gcd(\mathbf{x}^{(B\alpha')_{+}}, \mathbf{x}^{(B\gamma')_{-}}) = \gcd(\mathbf{x}^{\mathbf{v}'_{-}}, \mathbf{x}^{\mathbf{t}'}). \end{aligned}$

By the induction hypothesis the lemma holds for Q', that is, either $\mathbf{x}^{\mathbf{s}'}$ or $\mathbf{x}^{\mathbf{t}'}$ is 1. Hence, either $\mathbf{x}^{\mathbf{s}}$ or $\mathbf{x}^{\mathbf{t}}$ is 1.

Subcase 2. Let β', γ' be the edges of Q.

Applying Construction 3.8 to Q we get that

$$\mathbf{x}^{\mathbf{s}} = \gcd(\mathbf{x}^{(B\beta')_{-}}, \mathbf{x}^{(B\gamma')_{+}}) = \gcd(\mathbf{x}^{\mathbf{u}'_{+}}, \mathbf{x}^{\mathbf{t}'}),$$

$$\mathbf{x}^{t} = \gcd(\mathbf{x}^{(B\beta')_{+}}, \mathbf{x}^{(B\gamma')_{-}}) = \gcd(\mathbf{x}^{\mathbf{u}'_{-}}, \mathbf{x}^{\mathbf{s}'}).$$

By the induction hypothesis the lemma holds for Q', that is, either $\mathbf{x}^{s'}$ or $\mathbf{x}^{t'}$ is 1. Hence either \mathbf{x}^{s} or \mathbf{x}^{t} is 1.

We obtain an analogue to Lemma 3.2 for Lawrence quadrangles:

LEMMA 3.12. Let *M* be an *A*-graded ideal in *S*. Let *Q* be a Lawrence quadrangle, α , β the edges of *Q*, and γ its longer diagonal.

- (a) If α , β well-match then γ well-matches them.
- (b) If α is *M*-gluing and β is not *M*-gluing, then γ well-matches β .

Proof. The vectors α , β , γ correspond to binomials in *I* which we write as in (3.9). By Lemma 3.10, we have that either \mathbf{x}^t or \mathbf{x}^s is 1 in (3.9). It follows that at least one of the monomials $\mathbf{x}^{(B\alpha)_+}, \mathbf{x}^{(B\beta)_+}$ divides $\mathbf{x}^{(B\gamma)_+}$ and also that at least one of the monomials $\mathbf{x}^{(B\alpha)_-}, \mathbf{x}^{(B\beta)_-}$ divides $\mathbf{x}^{(B\gamma)_-}$. Therefore, (a) holds. It remains to prove part (b). Since α is *M*-gluing by hypothesis, after scaling the variables (if necessary) we can assume that

$$e = \mathbf{x}^{(B\alpha)_+} - \mathbf{x}^{(B\alpha)_-} = \mathbf{x}^{\mathbf{u}_+} \mathbf{x}^{\mathbf{t}} \mathbf{x}^{\mathbf{p}} - \mathbf{x}^{\mathbf{u}_-} \mathbf{x}^{\mathbf{s}} \mathbf{x}^{\mathbf{r}} \in M.$$

First we consider the case when β is an *M*-vector, that is $\mathbf{x}^{(B\beta)_+} = \mathbf{x}^{\mathbf{v}_+} \mathbf{x}^{\mathbf{s}} \mathbf{x}^{\mathbf{p}} \in M$. If $\mathbf{x}^{\mathbf{t}} = 1$, then we have

$$\mathbf{x}^{(B\gamma)_{+}} - (\mathbf{x}^{\mathbf{v}_{+}}\mathbf{x}^{\mathbf{p}})e = (\mathbf{x}^{\mathbf{u}_{+}}\mathbf{x}^{\mathbf{p}})(\mathbf{x}^{\mathbf{v}_{+}}\mathbf{x}^{\mathbf{p}}) - (\mathbf{x}^{\mathbf{v}_{+}}\mathbf{x}^{\mathbf{p}})e$$

$$= (\mathbf{x}^{\mathbf{v}_+} \mathbf{x}^{\mathbf{p}})(\mathbf{x}^{\mathbf{u}_-} \mathbf{x}^{\mathbf{s}} \mathbf{x}^{\mathbf{r}}) = \mathbf{x}^{(B\beta)_+}(\mathbf{x}^{\mathbf{u}_-} \mathbf{x}^{\mathbf{r}}) \in M,$$

and as $e \in M$ we get that $\mathbf{x}^{(B\gamma)_+} \in M$. If $\mathbf{x}^{\mathbf{s}} = 1$, then we have $\mathbf{x}^{\mathbf{v}_+} \mathbf{x}^{\mathbf{p}} = \mathbf{x}^{(B\beta)_+} \in M$, so $\mathbf{x}^{(B\gamma)_+} = (\mathbf{x}^{\mathbf{u}_+} \mathbf{x}^{\mathbf{p}})(\mathbf{x}^{\mathbf{v}_+} \mathbf{x}^{\mathbf{p}}) \in M$. Thus, γ well-matches β .

Now consider the case when $-\beta$ is an *M*-vector, that is $\mathbf{x}^{(B\beta)_{-}} = \mathbf{x}^{\mathbf{v}_{-}}\mathbf{x}^{\mathbf{t}}\mathbf{x}^{\mathbf{r}} \in M$. If $\mathbf{x}^{\mathbf{s}} = 1$, then we have

$$\begin{split} \mathbf{x}^{(B_{\gamma})_{-}} + (\mathbf{x}^{\mathbf{v}_{-}}\mathbf{x}^{\mathbf{r}})e &= (\mathbf{x}^{\mathbf{u}_{-}}\mathbf{x}^{\mathbf{r}})(\mathbf{x}^{\mathbf{v}_{-}}\mathbf{x}^{\mathbf{r}}) + (\mathbf{x}^{\mathbf{v}_{-}}\mathbf{x}^{\mathbf{r}})e \\ &= (\mathbf{x}^{\mathbf{v}_{-}}\mathbf{x}^{\mathbf{r}})(\mathbf{x}^{\mathbf{u}_{+}}\mathbf{x}^{\mathbf{t}}\mathbf{x}^{\mathbf{p}}) = \mathbf{x}^{(B\beta)_{-}}(\mathbf{x}^{\mathbf{u}_{+}}\mathbf{x}^{\mathbf{p}}) \in M \,, \end{split}$$

and as $e \in M$ we get that $\mathbf{x}^{(B\gamma)_{-}} \in M$. If $\mathbf{x}^{\mathbf{t}} = 1$, then $\mathbf{x}^{\mathbf{v}_{-}}\mathbf{x}^{\mathbf{r}} = \mathbf{x}^{(B\beta)_{-}} \in M$, so $\mathbf{x}^{(B\gamma)_{-}} = (\mathbf{x}^{\mathbf{u}_{-}}\mathbf{x}^{\mathbf{r}})(\mathbf{x}^{\mathbf{v}_{-}}\mathbf{x}^{\mathbf{r}}) \in M$. Thus, γ well-matches β .

Lemmas 3.3 and 3.12 imply the following result:

LEMMA 3.13. Let M be an A-graded ideal. Let $r \ge 1$ and P_1, \ldots, P_r be a chain of syzygy quadrangles for I_L in the first or second quadrant. Denote by α , β the edges of P_1 and by δ the longer diagonal of P_r .

- (a) If α and β well-match, then δ well-matches them.
- (b) If α is an M-gluing vector, but β is not, then δ well-matches β .

Proof. Let *s* be the smallest number such that P_s is a Lawrence quadrangle, or set s = r + 1 if the chain contains no Lawrence quadrangle. If $s \ge 2$ then apply Lemma 3.3 to the chain P_1, \ldots, P_{s-1} . The proof is completed by induction: if Lemma 3.13 holds for P_1, \ldots, P_j for some $r > j \ge s - 1$ then by Lemma 3.12 it follows that Lemma 3.13 holds for P_1, \ldots, P_{j+1} as well.

LEMMA 3.14. Let M be an A-graded ideal in S. Suppose that at least one of the vectors (1, 0), (0, 1) is not M-gluing (so by assumption (0, 1) is an M-vector and (1, 0) is either an M-vector or M-gluing) and that I_L is not Cohen–Macaulay. Consider the set \mathcal{P} of all primitive vectors for I in the first and second quadrants.

- (a) Let $\alpha, \beta \in \mathcal{P}$ be in the second quadrant and the angle between α and (-1, 0) be smaller than the angle between β and (-1, 0). Suppose that α is either an *M*-vector or *M*-gluing. Then β is an *M*-vector.
- (b) *There exists at most one M-gluing vector in the intersection of* \mathcal{P} *and the second quadrant.*

Proof. Denote by \mathcal{G} the set of all generating vectors for I in the first or second quadrant. First, we prove that (a) holds if $\alpha, \beta \in \mathcal{G}$ and $q \leq 3$. If q = 2 then we are done by the assumption that (0, 1) is an *M*-vector. If q = 3, then apply Lemmas 3.1(d) and 3.2.

Recall from Section 2 that the primitive vectors for I are the generating vectors for I_L .

Suppose that (-1, 0) is *M*-gluing. Applying Lemma 3.1(b) to I_L , and then applying Lemma 3.13, we conclude that all primitive vectors in the first or second quadrant which are different from $\pm(1, 0)$ are *M*-vectors; in particular, Lemma 3.14 holds. Now suppose that (-1, 0) is not *M*-gluing and therefore by assumption (1, 0) is an *M*-vector.

By [PS, Corollary 4.7] there exists a total order \prec on the vectors in \mathcal{P} such that if P is a syzygy quadrangle for I or a minimal Lawrence quadrangle then its longer diagonal is bigger in the order \prec than its edges. The first vectors in the order are (0, 1), (1, 0), (-1, 0) and we can assume that $(0, 1) \prec (1, 0) \prec (-1, 0)$. This induces a partial order on the set of pairs of elements in \mathcal{P} in the following way: Let $\sigma, \sigma', \tau, \tau' \in \mathcal{P}$. Suppose that $\sigma \preceq \sigma'$ and $\tau \preceq \tau'$. We say that $\{\sigma, \sigma'\} \preceq \{\tau, \tau'\}$ if $\sigma \preceq \tau$ and $\sigma' \preceq \tau'$.

Let $\alpha, \beta \in \mathcal{P}$ be in the second quadrant and the angle between α and (-1, 0) be smaller than the angle between β and (-1, 0). By Lemma 3.1(b) applied to I_L , there exists a chain $\mathbf{P} = P_1, \ldots, P_r$ such that P_1, \ldots, P_r are syzygy quadrangles for I_L , P_1 is the unit square with edges (-1, 0), (0, 1), and α is the longer diagonal of P_r . Similarly, by Lemma 3.1(b) there exists a chain $\mathbf{T} = T_1, \ldots, T_s$ such that T_1, \ldots, T_s are syzygy quadrangles for I_L , T_1 is the unit square with edges (-1, 0), (0, 1) and β is the longer diagonal of T_s . Then $T_1 = P_1$. Denote by R the last common quadrangle in \mathbf{P} and \mathbf{T} . Let i, j be such that $1 \le i \le s, 1 \le j \le r$ and $R = P_j = T_i$. Let μ, ν be the edges of R and $\xi = \mu + \nu$ be its longer diagonal. Suppose that the angle between μ and (-1, 0) is smaller than the angle between ν and (-1, 0). By [PS, Construction 4.4], if i < s then the edges of T_{i+1} are ν, ξ and also if j < r then the edges of P_{j+1} are ξ, μ . We will prove (a) by induction on the considered order. Part (a) holds if $\beta = (0, 1)$ since (0, 1) is an *M*-vector by assumption. Assume that $\beta \neq (0, 1)$. Since α is either *M*-gluing or an *M*-vector and (1, 0) is an *M*-vector, it follows that $\alpha \neq (-1, 0)$.

Since $\mu \prec \alpha$ we have that $\{\mu, \beta\} \prec \{\alpha, \beta\}$. If μ is either *M*-gluing or an *M*-vector, then by the induction hypothesis we have that β is an *M*-vector. Suppose that $-\mu$ is an *M*-vector. If $-\xi$ is an *M*-vector or ξ is *M*-gluing, then applying Lemma 3.13 to the chain P_{j+1}, \ldots, P_r we conclude that $-\alpha$ is an *M*-vector which is a contradiction. Therefore, ξ is an *M*-vector. Since $\nu \prec \xi \preceq \alpha, \beta$ we have that $\{\nu, \xi\} \prec \{\alpha, \beta\}$; hence by the induction hypothesis it follows that ν is an *M*-vector. Therefore, applying Lemma 3.13 to the chain T_{i+1}, \ldots, T_s we conclude that β is an *M*-vector. Thus, (a) is proved.

Now we prove (b). Suppose that there exist more than one *M*-gluing vectors in the intersection of \mathcal{P} and the second quadrant. Let α , β be the two smallest (in the order \prec) M-gluing vectors which are in \mathcal{P} and in the second quadrant. Suppose that the angle between α and (-1, 0) is smaller than the angle between β and (-1, 0). Note that $\alpha \neq (-1, 0)$ and $\beta \neq (0, 1)$. Suppose that $\alpha = \xi$ (in the above notation). Since α , β are chosen to be the two smallest *M*-gluing vectors and $v < \beta$, $v < \alpha$ it follows that v is not M-gluing. Applying Lemma 3.13 to the chain T_i, \ldots, T_s we conclude that β is not *M*-gluing which is a contradiction. Hence $\alpha \neq \xi$. Similar argument shows that $\beta \neq \xi$. Then ξ , μ , ν are smaller than each of α , β ; hence ξ , μ , ν are not *M*-gluing. Therefore, at least one of the pairs $\{\xi, \mu\}$, $\{\xi, \nu\}$, and $\{\mu, \nu\}$ consists of well-matching vectors. If ξ, μ well-match, then applying Lemma 3.13 to the chain P_{i+1}, \ldots, P_r we get that α is not *M*-gluing which is a contradiction. If ξ, v or μ, v well-match, then applying Lemma 3.13 to the chain T_{i+1}, \ldots, T_s or T_i, \ldots, T_s respectively, we get that β is not *M*-gluing which is a contradiction as well. Therefore, there cannot exist two M-gluing vectors in the intersection of \mathcal{P} with the second quadrant. \square

We are ready to prove our main result.

THEOREM 3.15. If $codim(I_A) = 2$ and M is an A-graded ideal in S, then M is coherent.

Proof. If (1,0) and (0,1) are *M*-gluing then apply Lemma 3.4. If I_L is Cohen–Macaulay, then apply Lemma 3.5. Suppose that I_L is not Cohen–Macaulay and that at least one of the vectors (1,0), (0,1) is not *M*-gluing. Recall that in this case after renumbering the quadrants and the basis vectors (if necessary) we assume that (0,1) is an *M*-vector and (1,0) is either *M*-gluing or an *M*-vector. As in Lemma 3.14 consider the set \mathcal{P} consisting of the primitive vectors for *I* in the first and second quadrants. The primitive vectors for *I* are the generating vectors for I_L . Applying Lemma 3.1(b) to I_L , and Lemma 3.13 (if q = 3 then applying also Lemmas 3.1(d) and 3.2) we conclude that every vector. Combining this fact with

Lemma 3.14 we see that there exists a vector $s \in \mathbf{Q}^2$ such that the following three conditions are satisfied:

(i) if α ∈ P and ⟨α, s⟩ > 0 then α is an *M*-vector;
(ii) if α ∈ P and ⟨α, s⟩ < 0 then -α is an *M*-vector;
(iii) if α ∈ P and ⟨α, s⟩ = 0 then α is *M*-gluing.

If there exists a vector $\zeta \in \mathcal{P}$ such that $\langle s, \zeta \rangle = 0$ then for some nonzero constant $p \in k \setminus 0$ we have $\mathbf{x}^{(B\zeta)_+} - p\mathbf{x}^{(B\zeta)_-} \in M$. After scaling the variables (if necessary) we can assume that p = 1. Hence, condition (iii) above becomes:

(iii') if $\alpha \in \mathcal{P}$ and $\langle \alpha, s \rangle = 0$ then $\mathbf{x}^{(B\alpha)_+} - \mathbf{x}^{(B\alpha)_-} \in M$. Set

 $\mathcal{T} = \{ \alpha \mid \langle s, \alpha \rangle \ge 0 \text{ and either } \alpha \text{ or } -\alpha \text{ is in } \mathcal{P} \},\$

$$M' = \left(\{ \mathbf{x}^{(B\alpha)_+} | \alpha \in \mathcal{T}, \langle s, \alpha \rangle > 0 \} \cup \{ \mathbf{x}^{(B\alpha)_+} - \mathbf{x}^{(B\alpha)_-} | \alpha \in \mathcal{T}, \langle s, \alpha \rangle = 0 \} \right).$$

The ideal M' is weakly A-graded by Lemma 2.1. By (i),(ii),(iii') we have that $M' \subseteq M$. Applying Lemma 2.2 to M, M', s, and \mathcal{T} we get that M is coherent. \Box

References

- [Ar] Arnold, V.: A-graded algebras and continued fractions, Comm. Pure Appl. Math. 42 (1989), 993–1000.
- [Ei] Eisenbud, D.: Introduction to Commutative Algebra with a View Towards Algebraic geometry, Springer-Verlag, New York, 1995.
- [G] Gasharov, V.: Hilbert functions and homogeneous generic forms II, Compositio Math. 116 (1999), 167–172.
- [HP] Herzog, J. and Popescu, D.: Hilbert functions and homogeneous generic forms, Compositio Math. 113 (1988), 1–22.
- [Ko] Korkina, E.: Classification of A-graded algebras with 3 generators, *Indag. Math.* **3** (1992), 27–40.
- [KPR] Korkina, E., Post, G. and Roelofs, M.: Classification of generalized A-graded algebras with 3 generators, *Bull. Sci. Math.* 119 (1995), 267–287.
- [PS] Peeva, I. and Sturmfels, B.: Syzygies of codimension 2 lattice ideals, Math. Z. 229 (1998), 163–194.
- [PS2] Peeva, I. and Stillman, M.: Toric Hilbert schemes, Preprint.
- [St1] Sturmfels, B.: The geometry of A-graded algebras, Preprint (1994).
- [St2] Sturmfels, B.: Gröbner Bases and Convex Polytopes, Univ. Lecture Ser., Amer. Math. Soc., Providence, 1995.