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On the Solubility of Linear Algebraic Equations.—
(a) It is proved in treatises on Algebra that the equations (in

three variables for brevity)

have a unique solution given by

provided the determinant

does not vanish.
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(6) It is also proved, from (2), that if the " degenerate" homo-
geneous system

a1x + b^ + cfi — OA
0,1 (4)

j
bas a non-null solution (i.e. a solution in which the variables are
not all zero), then A = 0.
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(c) The converse of the latter theorem (viz., that, if A = 0, the
system (4) has a non-null solution), is true, and frequently required ;
but it is not so easy to prove as the direct theorem (b), and indeed
in many current text-books it is not proved at all.

(d) For we must distinguish between a formal algebraical
solution and an arithmetical solution.

Consider, for example, the theorem :
Two homogeneous linear equations in three variables have always

at least one non-null solution.

Let the equations be

c-fi = 0, I
ctz = 0. )a.,x + b2y + ctz =

Here it is not enough to point to the solution

(fijC, - bx^ c-fiiz — c./i^ «!&, - aj>i),

for these values of x, y, z may all vanish.

And in fact it does not seem possible to write down a formal
solution which will be non-null whatever the special numerical
values of the coefficients may be.

All the same the theorem is both true and important.

(e) The solution of many problems, and the proof of many
theorems, in Algebra, Coordinate Geometry, Higher Analysis, and
Mathematical Physics can be made to depend on the solution of a
system of n non homogeneous linear algebraic equations in n
variables. In special cases special methods may be more instruc-
tive, and sometimes easier, but the wide applicability of this method
of " undetermined coefficients" makes it an extremely valuable
weapon for a student to have in his armoury.

It is of course always necessary to prove that the system of
equations is il independent and consistent," or, in other words, that
it has a unique solution. To the student familiar with determinants
it suggests itself at once that this is equivalent, in accordance with
(a), to proving that the determinant of the equations does not
vanish. As a rule, however, a direct proof of the non-evanescence
of the determinant is impracticable. But he knows also, or assumes
as the converse of the theorem (b), that, if the "degenerate" system
has no non-null solution, A cannot vanish, this being equivalent
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ON THE SOLUBILITY OF LINEAR ALGEBRAIC EQUATIONS.

to (c). He may therefore complete the process by proving the
"inconsistency'" of the degenerate system, as it is usually easy
to do.

( / ) Now, apart from the point about the theorem (c) being often
left unproved, it is evident that in the above train of thought the
determinant is introduced quite adventitiously, and it seems desir-
able to have a proof which brings the unique solubility of the
non-homogeneous system into immediate relationship with the
inconsistency of the degenerate system.

The matter given below would make a useful and instructive
lesson in algebraic principles for a class who have no acquaintance
with determinants.

THEOREM I.

A system qfn-l homogeneous linear equations in n variables has at
least one non-null solution.

(i) n = 2. Let the equation be

ax + by = 0 (6)

If b = 0, (0, 1) is a non-null solution ; if b =t= 0, (6, - a) is one.

(ii) n = 3. Let the equations be

I a%x + 62y + c^ = 0 (8)

If c1 and c2 are both zero, (0, 0, 1) is a non-null solution.

If not, say c^O. The equations are then "equivalent" to

m
) = 0 (10)

(10) is an equation in the two variables x and y which by (i) has at
least one non-null solution (X, Y); and, since Ci=i=0, (9) gives a
definite value Z for z when X, Y are put for x, y.

(X, Y, Z) is a non-null solution of (7), (8).

(iii) n = 4. Let the equations be

(axx + b-g) + Ci« + dxw = 0, (11)
-! a,r + b2y + c.2z + d%w = 0, (12)
\asx + b$ + c3z + dsw = 0 (13)

If dlt d2 and d3 are all zero, (0, 0, 0, 1) is a non-null solution.
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If not, say dx 4= 0. The equations are then equivalent to

a1x + b{y + ctz + dxw = 0, (14)
+ b2y + c2z + dau) - d.^x + bxy + cxz + d-{w) = 0, (15)

b3y + csz + d.tw) - d3(axx + bsy + c,z + dfW) — 0 (16)

(15), (16) are two equations in the three variables x, y, z which by
(ii) have at least one non-null solution (X, Y, Z); and since ^4=0,
(14) gives a definite value W for w when X, Y, Z are put for x, y, z.

(X, Y, Z, W) is a non-hull solution of (11), (12), (13).

I t is obvious that we can proceed step by step in this way
indefinitely. Hence the theorem.

Remark.—In (iii), (A.X, A.Y, AZ, AW) is a non-null solution,
where A is arbitrary. I t is not necessarily, however, the most
general non-null solution. Similarly in the case of n variables.

Example 1. Theorem.—At least one homogeneous linear relation
subsists among n+\ homogeneous linear functions of n variables.

For the relation

A(axic + b^y + Cjz) + /u.(a2x + b^y + c2z) + v(asx + b-.y + c3z)

+ p(aix + biy + ciz) = 0 (17)

is equivalent to the three equations

Aaj + ju.a2 + va3 + pa4 = 0, etc.,

which by Theorem I. has always at least one solution in which
A, fi, v, p are not all zero.

Example 2. Theorems.—If a homogeneous linear relation sub-
sists among n homogeneous linear functions of n variables, then values
of the variables not all zero exist for which all the functions vanish ;
and conversely.

For the direct theorem, suppose

A(a2x + bAy + c^z) + ̂ (a.x + b«y + c2z) + v(a3x + b3y + c3z) = 0, (18)

where A, /x, v are not all zero, say v =t= 0.

Take x, y, z, not all zero, so that (Th. I.)

I a?x + b2y + c2z = 0.

Since v 4= 0, (18) then gives a3x + b3y + c3z = 0.
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For the converse, suppose

jZ = 0, |

[ (19)

where X, Y, Z are not all zero, say Z 4= 0.

As in Ex. 1, take A, ji, v, p so that
X(a1x + bxy + c^) + n(a.p: + Ly + c2z) + v(a3x + b3y + c3s) + pz = 0. (20)

Put X, Y, Z for x, y, z in (20) and we find p = 0.

Example 3. Theorem.—In Cartesian coordinates, at least one
curve whose equation is of the form

a(x* + ,f) + 2gx + 2fy + c = 0 (21)

passes through any three points ; where a, g, f are not all zero.

Observe that we cannot say without qualification that there is
only one such curve, even if we premise that the three given points
are distinct; e.g. the three points ( - iylt yt), ( - iy^ y2), ( - iy3, y3)
lie on the curve x~ + y1 + X(x + iy) = 0, where the coefficient A. is
arbitrary.

(To be continued.) ^ ?- l"i"|
JOHN DOUGALL

Notes on Algebraic Inequalities.—
1. I t is worthy of remark that there is a method of proving

algebraic inequalities which is very generally applicable, and which
furnishes proofs of great directness and completeness.

The method consists in expressing the difference A - B in a
manifestly positive form, when we have to prove A>B.

The first inequality occurring in school Algebra is usually
proved in this way. We have to show that if a, b, and x are

positive quantities 7 is nearer to 1 than —. We have

a + x a x(b — a)
b + x b b(b + x)'

The two cases a>b and b>a are then considered separately, and
the conclusion drawn.

( 129)

https://doi.org/10.1017/S1757748900001018 Published online by Cambridge University Press

https://doi.org/10.1017/S1757748900001018

