ABSTRACT THEORY OF PACKINGS AND COVERINGS. II by S. ŚWIERCZKOWSKI

(Received 4th February, 1959)

1. Preliminaries and summary. The present paper is closely related to a paper with the same title by A. M. Macbeath [3]. We use many notions which are defined there for a measure-space; nevertheless we define them once more because we consider the slightly different case of a measure-ring.

Let (\mathbf{S}, μ) be a measure-ring with unity such that the measure μ is σ -finite (for definitions cf. [2]). We assume that there exists a countable group G of transformations which map \mathbf{S} onto itself and which preserve the measure μ and the operations \smile , -, \frown in \mathbf{S} . We denote by gA the image of $A \in \mathbf{S}$ by $g \in G$. For any subset Γ of G we write ΓA instead of $\bigcup_{g \in \Gamma} gA$.

We say that an element P belonging to S is a *packing* (more precisely, a *G*-packing) of an element $A \in S$ if $gP \subset A$ for every $g \in G$ and the elements gP are disjoint for different g. We call an element $C \in S$ a covering of A if $A \subset GC$. If an element $F \in S$ is simultaneously a packing and a covering of A, then F is called a *fundamental domain* for A. If, in particular, A is the ring unity 1, then we call P (or C) a packing (or covering) of S, and F a fundamental domain for S. In Theorem 1 we give a condition on (S, μ) and G which is equivalent to the existence of a fundamental domain F for S.

If P and C are a packing and a covering of an element $A \in S$, then $\mu P \leq \mu C$. This result is stated in [3] (Theorem 1) for the ring S of all measurable subsets of a measure-space (X, S, μ) and for A = X. However, the proof which is given there is more general and it can be applied to a measure-ring (S, μ) and to an arbitrary $A \in S$. We shall use this result in several parts of our proof, referring to it as to the theorem about packings and coverings.

Let p be the upper bound of all measures μP , where P are packings of \mathbf{S} , and let c be the lower bound of measures μC , where C are coverings of \mathbf{S} . These numbers exist since the zero element $0 \in \mathbf{S}$ is a packing and the ring unity 1 is a covering of \mathbf{S} . By the theorem about packings and coverings we have $p \leq c$. In Theorem 2 we give a condition on (\mathbf{S}, μ) and G which is equivalent to p = c.

The corollaries contain results which are analogous to Theorems 1 and 2 but concern the ring of measurable sets of a measure-space. We construct also examples which show that these theorems fail to be true if the measure is not σ -finite.

2. Results. Let $e \in G$ be the identity transformation. We denote by (π) , (ρ) and (δ) the following properties :

(π) If $A \in S$, $g \in G$, $A \neq 0$ and $g \neq e$, then there exists a $B \subset A$ such that $B \neq 0$ and $B \cap gB = 0$.

(p) If $A \in S$ has arbitrarily small coverings, then A = 0.

(δ) If for some $A \in S$ and a certain $g \in G$, $g \neq e$ we have $B \cap gB \neq 0$ for every $B \subset A$, $B \neq 0$, then A has arbitrarily small coverings.

THEOREM 1. There exists a fundamental domain F for S if and only if both (π) and (ρ) hold.

THEOREM 2. p = c is equivalent to (δ) .

We shall verify in §6 that the σ -finiteness of μ is in both theorems an indispensable assumption. Let us consider now a measure-space (X, S, μ) , where the measure μ is σ -finite and complete (see [2]). Let G be a countable group of transformations of X onto itself which preserve measurability and measure. We denote by (π_0) , (π'_0) , (ρ_0) , (δ_0) the properties :

 (π_0) If $A \in S$, $g \in G$, $\mu A > 0$ and $g \neq e$, then there exists a $B \subset A$ such that $\mu B > 0$ and $B \cap gB = \phi$ (ϕ is the empty set).

 (π'_0) No $g \neq e$ has fixed points (i.e. $gx \neq x$ for $x \in X$).

 (ρ_0) If $A \in S$ has arbitrarily small coverings, then $\mu A = 0$.

 (δ_0) If for some $A \in S$ and a certain $g \in G$, $g \neq e$ we have $\mu(B \cap gB) > 0$ for every $B \subset A$ with $\mu B > 0$, then A has arbitrarily small coverings.

Applying Theorems 1 and 2 to the measure-ring defined by (X, S, μ) , we obtain the corollaries :

COROLLARY 1. There exists a fundamental domain for (X, S, μ) if and only if (π_0) , (π'_0) , (ρ_0) hold simultaneously.

COROLLARY 2. p = c is equivalent to (δ_0) .

Let us consider a locally compact and σ -compact topological group H. We denote by μ the Haar measure on H and by S the ring of all μ -measurable sets in H. Let G be a countable subgroup of H. The left translations by elements of G form a group of measure preserving transformations of the measure-space (H, S, μ) . Evidently (π_0) holds. Hence (δ_0) is true and so p = c.

It follows from Corollary 1 that if G is discrete (in the topology induced by H), then a fundamental domain exists. This is however a known result [1]. It follows also from Corollary 1 that if G is not discrete, then no fundamental domain exists. But this can be proved also directly. In fact, a fundamental domain F is of positive measure and we have $F \cap gF = \phi$ for $g \in G - \{e\}$. Thus $G - \{e\}$ cannot intersect every neighbourhood of e (see [4]).

3. Two lemmas. Let us call coverings of S simply coverings and let us adopt the same convention for packings and fundamental domains.

LEMMA 1. We assume that (π) holds. Then every covering C which is not a packing contains a covering $C_0 \neq C$.

Proof. We have $C \cap g^{-1}C \neq 0$ for some $g \neq e$. Let $A = C \cap g^{-1}C$ and let $B \subset A$ satisfy (π) . Thus $gB \subset gA \subset C$ and hence both B, gB are contained in C. Since they are disjoint it follows that $C_0 = C - B$ is also a covering.

LEMMA 2. If (π) and (ρ) hold and there exists a covering C with $0 < \mu C < \infty$, then a fundamental domain exists.

Proof. Let C be the family of all coverings of finite measure. We observe that a partial order is defined in C by the relation of inclusion. From Zorn's Lemma it follows that C contains a maximal decreasing chain M, i.e. an ordered subfamily M of coverings such that no covering $C_0 \in \mathbf{C} - \mathbf{M}$ is contained in all $C \in \mathbf{M}$. Let $a = \inf_{C \in \mathbf{M}} \mu C$. There exist coverings

 $C_1, C_2, ..., C_n, ... \in \mathbf{M}$ such that $a = \lim_{n \to \infty} \mu C_n$. Put $F = \bigcap_{n=1}^{\infty} C_n$. Thus $\mu F = a$. Let B = GF. Since $1 = GC_n$ for each *n* it follows that $1 - B \subset G(C_n - F)$. We obtain from $\lim_{n \to \infty} \mu(C_n - F) = 0$

S. ŚWIERCZKOWSKI

that 1 - B has arbitrarily small coverings. Hence, by (ρ) , we have B = 1; i.e. F is a covering. Let us verify that $F \subset C$ holds for every $C \in \mathbf{M}$. Indeed, from $F \cap C \neq F$ for some $C \in \mathbf{M}$ follows $\mu(F \cap C) < \mu F = a$, and thus $\mu \bigcap_{n=0}^{m} C_n < a$ for $C_0 = C$ and sufficiently large m. This is a contradiction since $\bigcap_{n=0}^{m} C_n \in \mathbf{M}$. From $F \subset C$ for every $C \in \mathbf{M}$ we have that no covering $C_0 \neq F$ is contained in F. Since F is a covering, we obtain, by Lemma 1, that F is also a packing and thus F is a fundamental domain.

4. Proof of Theorem 1. Suppose first that a fundamental domain F exists. We shall prove that both (π) and (ρ) hold. Assume that (π) is not true, i.e. that there exists an $A \in S$ and $g \in G$ such that $A \neq 0$, $g \neq e$ and $B \cap gB \neq 0$ whenever $B \subset A$ and $B \neq 0$. From $A \subset GF$ we have that, for some $g_0 \in G$, the set $B = A \cap g_0 F$ is not empty. From $B \subset A$ and $B \neq 0$ it follows that $B \cap gB \neq 0$. This is a contradiction, since $B \subset g_0F$, $gB \subset gg_0F$ and $g \neq e$.

Now suppose that (ρ) is false. We assume that $A \neq 0$ has arbitrarily small coverings. It follows that the same is true for GA. Thus, by the theorem about packings and coverings, there exists no packing of GA except 0. Evidently $A \cap g_0 F \neq 0$ for some $g_0 \in G$. Thus $P = A \cap g_0 F$ is a packing of GA which is different from 0 and this is a contradiction.

Now let us suppose that (π) and (ρ) hold. We take a maximal set Φ of non-zero elements A of finite measure such that all elements GA $(A \in \Phi)$ are disjoint. This set is countable since μ is σ -finite. Thus $\Phi = \{A_1, A_2, ..., A_n, ...\}$. Suppose that $\bigcup_{n=1}^{\infty} GA_n \neq 1$. By the σ -finiteness of μ the element $B = 1 - \bigcup_{n=1}^{\infty} GA_n$ contains an element $D \neq 0$ of finite measure. We have $GD \cap GA_n = 0$ for every n and this is a contradiction since Φ is maximal. Hence $1 = \bigcup_{n=1}^{\infty} GA_n$. Since A_n is a covering of GA_n , it follows from Lemma 2 that there exists a fundamental domain F_n for each GA_n . Thus $F = \bigcup_{n=1}^{\infty} F_n$ is a fundamental domain for S.

5. Proof of Theorem 2. We assume first that (δ) does not hold and we shall prove that then $p \neq c$. Let $A \in S$ and $g \in G$, $g \neq e$ be such that for $B \subset A$ and $B \neq 0$ we have $B \cap gB \neq 0$, but A does not have arbitrarily small coverings. It follows that the lower bound m of measures of coverings of GA is positive. Let us prove that every packing P of S is disjoint from GA. Assume the contrary. Then $g_1A \cap g_2P \neq 0$ for some $g_1, g_2 \in G$ and thus $B = A \cap g_1^{-1}g_2P \neq 0$. We have $B \subset A$, $B \neq 0$ and thus it follows from $B \cap gB \neq 0$ that $g_1^{-1}g_2P \cap gg_1^{-1}g_2P \neq 0$. Therefore P cannot be a packing. We now define Q = 1 - GA. If C is an arbitrary covering of S, then evidently $M = C \cap GA$ is a covering of GA and $N = C \cap Q$ is a covering of Q. Consequently $\mu M \ge m$. We have $M \cup N = C$, $M \cap N = 0$ and this implies $\mu N \leqslant \mu C - m$. Let P be a packing of S. Since P is disjoint from GA, P is a packing of Q. Thus $\mu P \leqslant \mu N$, by the theorem about packings and coverings, and we obtain $\mu P \leqslant \mu C - m$. Therefore p < c follows.

We assume now that (δ) holds and we shall prove that p = c. If (ρ) holds, then (π) follows by (δ) , and then p = c by Theorem 1. Suppose that (ρ) does not hold and take a maximal set Ω of non-zero elements such that each $A \in \Omega$ has arbitrarily small coverings and the elements GA, where $A \in \Omega$, are disjoint. Ω is countable by the σ -finiteness of μ and

98

thus also $Q = \bigcup_{A \in \Omega} GA$ has arbitrarily small coverings. We shall now prove that there exists a fundamental domain for 1-Q. This follows from Theorem 1. Indeed, (ρ) holds for each $A \subset 1-Q$ by the construction of Q and it remains to verify that (π) holds also. But if (π) is false for some $A \neq 0$ and $g \neq e$, then, by (δ) , A has arbitrarily small coverings, contradicting (ρ) . Let F be a fundamental domain for 1-Q. For each $\varepsilon > 0$ there exists a covering Dof Q with $\mu D < \varepsilon$. It follows that $F \cup D$ is a covering and F a packing of S. Thus $c \leq p$. By the theorem about packings and coverings, we have $p \leq c$ and therefore p = c.

6. Rings with a non σ -finite measure. We give first an example of a measure-ring (\mathbf{S}, μ) and a group G such that (π) and (ρ) hold but no fundamental domain exists. Let S be the ring of all these sets of real numbers which either are countable or have a countable complement. Let G be the group of translations by integers. The measure μ of $A \in \mathbf{S}$ is defined to be the number of elements in A (μA is infinite if A is infinite). Then (π) and (ρ) hold. We observe that every packing of S is a countable set and every covering is not countable. Therefore no fundamental domain exists.

Now let us give an example where (δ) holds and $p \neq c$. Let L be the ring of all Lebesguemeasurable sets of real numbers and let $N \subset L$ be the ideal of all sets of measure 0. We denote by L^* the quotient ring L/N. Let T be an infinite non-countable set and let to each $\tau \in T$ correspond a replica L_{τ}^* of L^* . We consider the product $\mathbf{S} = \prod_{\tau \in T} L_{\tau}^*$. For $A \in \mathbf{S}$ we denote by A_{τ} the τ -coordinate of A $(A_{\tau} \in L_{\tau}^*)$. Let m denote the Lebesgue measure in L^* . We define μ on \mathbf{S} by

$$\mu A = \sum_{\tau \in T} m A_{\tau},$$

where the sum of a non-countable collection of positive numbers is defined to be infinite. For $A, B \in S$ let $C = A \cup B$ if $C_{\tau} = A_{\tau} \cup B_{\tau}$ for every τ . Similarly we define in S the operations – and \cap . Let G be the group of translations of elements of L by rational numbers. Thus for every $A \in S$ and $g \in G$ we can define $g(A_{\tau})$ for each τ . Let us define gA by $(gA)_{\tau} = g(A_{\tau})$. Consequently (π) is true and (δ) follows. Let us observe that if P is a packing of S, then each P_{τ} is a packing of L_{τ}^* and thus $P_{\tau} = 0$ by the theorem about packings and coverings. Hence 0 is the only packing of S and we have p = 0. We easily observe that if C is a covering of S, then $\mu C = \infty$. Therefore $p \neq c$.

7. Proofs of the corollaries. Let N be the ideal of all subsets of X which are of measure 0; these sets form an ideal since the measure μ is complete. We consider the measurering (S^*, μ) , where S^* is the quotient ring S/N. Let us denote by $A^* \in S^*$ the image of $A \in S$ by the natural mapping of S onto S^* .

We first prove Corollary 1. Suppose that (π_0) , (π'_0) and (ρ_0) hold. Then (π) and (ρ) hold for S^{*}. Thus, by Theorem 1, there exists an $F \in S$ such that F^* is a fundamental domain for S^{*}. It follows that

$$P = F - (G - \{e\})F$$

is a packing of **S** such that $Q = X - GP \in N$. Evidently Q is a union of sets Gx where $x \in Q$. Let $D \subset Q$ be any set which contains exactly one element from each of these sets Gx. We have $D \in N$, and thus D is measurable. It follows from (π'_0) that D is a fundamental domain for Q. Consequently $P \cup D$ is a fundamental domain for **S**.

S. ŚWIERCZKOWSKI

Conversely, if F is a fundamental domain for S, then evidently F^* is a fundamental domain for S^{*} and the necessity of (π_0) and (ρ_0) follows. The necessity of (π'_0) is obvious.

To prove Corollary 2 it suffices to observe that to every packing of S corresponds a packing of S^* of the same measure and conversely, and that the same is true for coverings.

REFERENCES

1. C. Chabauty, Limite d'ensembles et géométrie des nombres, Bull. Soc. Math. France 78 (1950), 143-151.

2. P. R. Halmos, Measure theory (New York, 1951).

3. A. M. Macbeath, Abstract theory of packings and coverings I, Proc. Glasgow Math. Assoc. 4 (1959), 92-95.

4. A. Weil, L'integration dans les groupes topologiques et ses applications (Paris, 1953), p. 50.

QUEEN'S COLLEGE DUNDEE