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Lie Derivatives and Ricci Tensor on Real
Hypersurfaces in Complex Two-plane
Grassmannians

Imsoon Jeong, Juan de Dios Pérez, Young Jin Suh, and ChanghwaWoo

Abstract. On a real hypersurfaceM in a complex two-plane Grassmannian G2(Cm+2
) we have the

Lie derivation L and a diòerential operator of order one associated with the generalized Tanaka–
Webster connection L̂(k). We give a classiûcation of real hypersurfaces M on G2(Cm+2

) satisfying
L̂
(k)
ξ S = LξS, where ξ is the Reeb vector ûeld on M and S the Ricci tensor of M.

1 Introduction

It is one of the most classical and interesting parts in diòerential geometry to ûnd
geometric properties of submanifolds on a symmetric space equipped with a Kähler
structure J, i.e., a Hermitian symmetric space. Among Hermitian symmetric spaces
as a higher rank space of complex projective space Pn(C), the authors have investi-
gated the complex two-plane Grassmannian G2(Cm+2), which consists of the set of
all complex two-dimensional linear subspaces in Cm+2. _e space G2(Cm+2) is dif-
feomorphic to the homogeneous space SUm+2/S(U2⋅Um), the special unitary group
SUm+2 acts transitively on Cm+2, and S(U2⋅Um) means the isotropic subgroup of
SUm+2. Cartan decomposition of the Lie algebra of S(U2⋅Um) is expressed by k =
su2 ⊕ sum ⊕ u1. We have a Kähler structure J from u1, the one-dimensional center
of k. Remarkably, we also have a quaternionic Kähler structure J from su2 satisfying
J Jν = Jν J (ν = 1, 2, 3), where {Jν}ν=1,2,3 is an orthonormal basis of J. When m = 1,
G2(C3) is isometric to the two-dimensional complex projective spaceCP2 with con-
stant holomorphic sectional curvature eight. When m = 2, we note that the isomor-
phism Spin(6) ≃ SU(4) yields an isometry between G2(C4) and the real Grassmann
manifold G+

2 (R6) of oriented two-dimensional linear subspaces in R6. In this paper
we assume m ≥ 3.

To classify real hypersurfaces with certain geometric conditions, let us give a ex-
planation of the geometry of real hypersurfaces on G2(Cm+2). Let us consider a real
hypersurfaceM in G2(Cm+2) and let N denote a local unit normal vector ûeld on M
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in G2(Cm+2). _e Reeb vector ûeld ξ = −JN ∈ TpM at p ∈ M is induced from the
Kähler structure J. Let C be the distribution given by the orthogonal complement of
[ξ] in TpM at p ∈ M. If ξ is invariant under the shape operator A, it is said to beHopf.
_e 1-dimensional foliation of M by the integral manifolds of the Reeb vector ûeld ξ
is said to be aHopf foliation ofM. We say that M is aHopf hypersurface in G2(Cm+2)
if and only if the Hopf foliation of M is totally geodesic. It is the complex maximal
subbundle of TpM = C⊕C�. _e real hypersurfaceM is said to beHopf if AC ⊂ C, or
equivalently, the Reeb vector ûeld ξ is principal, where A is the shape operator of the
real hypersurface M. If X is a tangent vector on M, we can put

JX = ϕX + η(X)N and JνX = ϕνX + ην(X)N

where ϕX (resp. ϕνX) is the tangential part of JX (resp. JνX) and η(X) = g(X , ξ)
(resp. ην(X) = g(X , ξν)) is the coeõcient of normal part of JX (resp. JνX). In this
case, we call ϕ the structure tensor ûeld of M. Using the Gauss andWeingarten for-
mulas in [6, Section 1 and 2], the Kähler condition ∇̄J = 0 gives ∇X ξ = ϕAX for any
tangent vector ûeld X on M,where∇ (resp. ∇̄) denotes the covariant derivative on M
(resp.G2(Cm+2)). From this, it can be easily checked that M is Hopf if and only if the
Reeb vector ûeld ξ is Hopf.

In this case, the principal curvature α = g(Aξ, ξ) is said to be a Reeb curvature
of M.
From the quaternionic Kähler structure J of G2(Cm+2), there naturally exist al-

most contact 3-structure vector ûelds {ξ1 , ξ2 , ξ3} deûned by ξν = −JνN , ν = 1, 2, 3.
Now let us denote by Q� = Span{ ξ1 , ξ2 , ξ3} a 3-dimensional distribution in the tan-
gent space TpM at p ∈ M. In addition, Q stands for the orthogonal complement of
Q� in TpM. _en it becomes a quaternionic maximal subbundle of TpM. _us, the
tangent space ofM consists of the direct sum of Q and Q� as follows: TpM = Q⊕Q�.
For two distributions C� and Q� deûned above, we can consider two natural in-

variant geometric properties under the shape operator A ofM, that is, AC� ⊂ C� and
AQ� ⊂ Q�. _e following theorem is from a paper due to Suh [13,_eorem 1.1].

_eorem A Let M be a real hypersurface in G2(Cm+2), m ≥ 3. _en both [ξ] and
Q� are invariant under the shape operator ofM if and only if
(A) M is an open part of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2), or
(B) m is even, say m = 2n, and M is an open part of a tube around a totally geodesic

HPn in G2(Cm+2).

In the case of (A), we want to say M is of Type (A). Similarly, in the case of (B),
we say M is of Type (B).

Until now, many geometers have investigated some characterizations of Hopf hy-
persurfaces in G2(Cm+2) that satisfy commuting conditions involving geometric
quantities like shape operator, structure (or normal) Jacobi operator, Ricci tensor, and
so on. For a tangent vector X, ϕX is the tangential part of JX; then ϕ is said to be the
structure tensor ûeld. Commuting Ricci tensor means that the Ricci tensor S and the
structure tensor ûeld ϕ commutewith each other, that is, Sϕ = ϕS. From such a point
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of view, Suh [12] has given a characterization of real hypersurfaces of Type (A) with
commuting Ricci tensor.

On the other hand, a Jacobi ûeld along geodesics of a given Riemannian man-
ifold (M , g) is an important tool in the study of diòerential geometry. It satisûes
a well-known diòerential equation that inspires Jacobi operators. It is deûned by
(RX(Y))(p) = (R(Y , X)X)(p), where R denotes the curvature tensor of M and
X, Y denote any vector ûelds on M. It is known to be a self-adjoint endomorphism
on the tangent space TpM, p ∈ M. Clearly, each tangent vector ûeld X to M provides
a Jacobi operator with respect to X. _us, the Jacobi operator on a real hypersurface
M of G2(Cm+2) with respect to ξ (resp. N) is said to be a structure Jacobi operator
(resp. normal Jacobi operator) and will be denoted by Rξ (resp. RN ).
Among many geometric conditions, in this paper we focus on commuting con-

ditions that have a strong relationship with hypersurfaces of tube type when the
Reeb vector ûeld ξ belongs to Q�, that is to say, the commuting conditions between
(1, 1) type tensor ûelds on real hypersurfaces in complex two-plane Grassmannians
G2(Cm+2) are used to give same results to isometric Reeb �ow.
For a commuting problem concernedwith structure Jacobi operator Rξ and struc-

ture tensor ϕ of M in G2(Cm+2), that is, Rξϕ = ϕRξ , Suh and Yang [16] gave a char-
acterization of a real hypersurface of Type (A) in G2(Cm+2). Also, concerned with
a commuting problem for the normal Jacobi operator R̄N , Pérez, Jeong, and Suh [9]
gave a characterization of a real hypersurface of Type (A) in G2(Cm+2).

Related to the Levi–Civita connection ∇, Tanno [18] introduced the generalized
Tanaka–Webster connection (GTW connection) for contact metric manifolds as a
generalization of the Tanaka–Webster connection. It is deûned as a canonical aõne
connection on a non-degenerate, pseudo-HermitianCR-manifold (see [17,19]). _en
the GTW connection coincides with Tanaka–Webster connection if the associated
CR-structure is integrable. Cho deûned the GTW connection for a real hypersurface
in a Kähler manifold in such a way that

∇̂(k)X Y = ∇XY + F̂(k)X Y ,

where k(∈ R ∖ {0}) denotes a non-zero constant and F̂(k)X Y is deûned by

F̂(k)X Y = g(ϕAX ,Y)ξ − η(Y)ϕAX − kη(X)ϕY .

_e skew-symmetric (1,1) type tensor F̂(k)X is said to be a Tanaka–Webster (or
k-th-Cho) operator with respect to X. In particular, if the real hypersurface satisûes
Aϕ + ϕA = 2kϕ, then the GTW connection ∇̂(k) coincides with the Tanaka–Webster
connection (see [1,2]).

On the other hand, we have considered real hypersurfaces in G2(Cm+2) satisfying
(L̂(k)X T)Y = 0 for any vector ûelds X and Y on M in G2(Cm+2), where L̂(k) is the
diòerential operator of order one given by

L̂
(k)
X Y = ∇̂(k)X Y − ∇̂(k)Y X

for any vector ûelds X and Y on M, where T denotes a tensor ûeld of type (1, 1).
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_e torsion of the GTW connection is given by

T̂(k)(X ,Y) = F̂(k)X (Y) − F̂(k)Y (X).

_e operatordeûned by T̂(k)X (Y) = T̂(k)(X ,Y) is called the torsion operator associated
with X.

Let S be theRicci tensor ofM. Wewill consider real hypersurfaces M inG2(Cm+2)
satisfying

(C-1) L̂
(k)
X S = LXS ,

for any vector ûeld X on M. _is is equivalent to the fact T̂(k)X S = ST̂(k)X , for any X
tangent to M.

On the other hand, Hopf hypersurfaces M are those whose Reeb vector ûeld ξ =
−JN is Killing or, equivalently, a principal vector ûeld, verifying Aξ = αξ, where the
smooth function α = g(Aξ, ξ) is said to be the Reeb curvature of the Reeb vector
ûeld ξ. _en we can give a classiûcation for M in G2(Cm+2) satisfying (C-1) in the
particular case X = ξ as follows.

_eorem 1.1 Let M be a Hopf hypersurface in complex two-plane Grassmannians
G2(Cm+2), m ≥ 3. _e Ricci tensor S on M satisûes L̂(k)ξ S = LξS if and only if M is
locally congruent to an open part of a tube of some radius r ∈ (0, π

2
√

2
) around a totally

geodesic G2(Cm+1) in G2(Cm+2).

In this case, there are two kinds of focal sets inG2(Cm+2), and the distance between
them is π

2
√

2
. By virtue of this _eorem, we give another non-existence property as

follows.

Corollary 1.2 _ere does not exist any Hopf hypersurface M in G2(Cm+2), m ≥ 3,
satisfying the condition L̂

(k)
X S = LXS for any vector ûeld X on M.

In this paper, we refer to [6,7, 11, 12, 14, 15] for Riemannian geometric structures of
a complex two-plane Grassmannian G2(Cm+2), m ≥ 3.

2 Proof of Theorem

Let us introduce the Ricci tensor S, brie�y. _e curvature tensor R(X ,Y)Z of M in
G2(Cm+2) can be derived from the curvature tensor R(X ,Y)Z of G2(Cm+2). _en
by contracting and using the geometric structure J Jν = Jν J (ν = 1, 2, 3), we can see
the Ricci tensor S given by

g(SX ,Y) =∑4m−1
i=1 g(R(e i , X)Y , e i) ,

where {e1 , . . . , e4m−1} denotes a basis of the tangent space TpM of M, p∈M, in
G2(Cm+2) (see [12]). From the deûnition of the Ricci tensor S and fundamental for-
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mulas in [12, section 2], we have

SX =
4m−1

∑
i=1

R(X , e i)e i

= (4m + 7)X − 3η(X)ξ + hAX − A2X

+
3

∑
ν=1

{−3ην(X)ξν + ην(ξ)ϕνϕX − ην(ϕX)ϕν ξ − η(X)ην(ξ)ξν} ,

(2.1)

where h denotes the trace of A, that is, h = TrA (see [10, (1.4)]).
Using equation (2.1), we will prove that the Reeb vector ûeld ξ ofM belongs either

to Q or Q�. Under the condition of being Hopf, we get

(2.2) F̂(k)ξ X = −kϕX .

For X = ξ into (C-1), we have

(2.3) F̂(k)ξ (SY) + ϕASY − SF̂(k)ξ (Y) − SϕAY = 0

for any Y tangent to M. Taking the inner product of (2.3) with Z, where Z denotes a
vector ûeld tangent to M, we get

g(F̂(k)ξ (SY), Z) + g(ϕASY , Z) − g(SF̂(k)ξ (Y), Z) − g(SϕAY , Z) = 0.

Bearing in mind that F̂(k)ξ is skew-symmetric and S is symmetric, we have

g(Y ,−SF̂(k)ξ (Z) − SAϕZ + F̂(k)ξ (SZ) + AϕSZ) = 0.

_us, we have −SF̂(k)ξ (Z)SAϕZ + F̂(k)ξ (SZ) + AϕSZ = 0, and, replacing Y by Z, we
obtain

(2.4) −SF̂(k)ξ (Y) − SAϕY + F̂(k)ξ (SY) + AϕSY = 0.

Using (2.2), (2.3), and (2.4) gives us

−kϕSY + ϕASY + kSϕY − SϕAY = 0,(2.5)
kSϕY − SAϕY − kϕSY + AϕSY = 0,

respectively.
By combining these equations, we have

(2.6) S(ϕA− Aϕ)Y = (ϕA− Aϕ)SY
for any Y tangent to M.

Lemma 2.1 LetM be aHopf hypersurface inG2(Cm+2),m ≥ 3. IfM satisûes L̂(k)ξ S =
LξS, then ξ belongs to either the distribution Q or the distribution Q�.

Proof To show this fact, we consider that the Reeb vector ûeld ξ satisûes

(2.7) ξ = η(X0)X0 + η(ξ1)ξ1
for some unit vectors X0 ∈ Q, ξ1 ∈ Q� and η(X0)η(ξ1) /= 0.
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Putting Y = ξ in (2.5) and (2.6), by (2.7) and using basic formulas in [5, Section 2],
it follows that

ϕAX0 = kϕX0 ,(2.8)
AϕX0 = kϕX0 .

On the other hand, to prove the lemma, we need the following equation:

αAϕX + αϕAX − 2AϕAX + 2ϕX = 2
3

∑
ν=1

{ − ην(X)ϕξν − ην(ϕX)ξν

− ην(ξ)ϕνX + 2η(X)ην(ξ)ϕξν + 2ην(ϕX)ην(ξ)ξ}

(2.9)

([5, Lemma A]).
Putting X = X0 into (2.9), we have αk − k2 = η2(X0).
Since k is non-zero constant, diòerentiating this with respect to ξ, we have

ξα = −4
k
η(X0){ g(∇ξX0 , ξ) + g(X0 ,∇ξξ)} = −4

k
η(X0)g(∇ξX0 , ξ1)

= −4
k
η(X0)g(X0 , ϕ1Aξ) =

4
k
η(X0)αg(X0 , ϕ1ξ) = 0

where we have used ∇X ξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + ϕνAX.
_is gives ξα = 0.
Due to [4, Equation (2.10)], Aξ1 = αξ1 is derived from ξα = 0. Equation (2.8)

becomes
(α − k)ϕξ1 = 0.

As k is nonzero constant and ϕX0 never vanishes, we have α = k. _en by the
equation Yα = (ξα)η(Y) − 4∑3

ν=1ην(ξ)ην(ϕY) in [5, Lemma A], we easily obtain
that ξ belongs either to Q or to Q� (see [10]).

_en by Lemma 2.1, we can divide our consideration into two cases being that ξ
belongs to either Q� orQ, respectively. _en ûrstwe consider the case ξ ∈ Q�. We can
put ξ = ξ1 ∈ Q� for our convenience sake.

_en [8, lemma 1.2] tells us Hopf hypersurface M in G2(Cm+2) and ξ ∈ Q� gives
AS = SA. _us, (2.6) is changed into

0 = S(ϕA− Aϕ)Y − (ϕA− Aϕ)SY = SϕAY − SAϕY − ϕASY + AϕSY
= SϕAY − ASϕY − ϕSAY + AϕSY = (Sϕ − ϕS)AY − A(Sϕ − ϕS)Y

By virtue of Lemma 2.1 and the above equations, we assert the following:

Lemma 2.2 Let M be aHopf hypersurface in G2(Cm+2). IfM satisûes A(ϕS−Sϕ) =
(ϕS − Sϕ)A and ξ ∈ Q�, then we obtain Sϕ = ϕS.

Proof Since the shape operator A and the tensor ϕS − Sϕ are both symmetric oper-
ators and commute with each other, by using the method due to Horn and Johnson
[3], there exists a common basis {E i}i=1, . . . ,4m−1 that gives a simultaneous diagonal-
ization. Since Aξ = αξ and (ϕS− Sϕ)ξ = 0, ξ is principal for A and ϕS− Sϕ. Wewrite
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AE i = λ iE i and (ϕS − Sϕ)E i = β iE i , where eigenvalues λ i and β i are real valued
functions for all i ∈ {1, 2, . . . 4m − 1}.
Bearing in mind that ξ = ξ1 ∈ Q�, (2.1) is simpliûed:

(2.10) SX = (4m + 7)X − 7η(X)ξ − 2η2(X)ξ2 − 2η3(X)ξ3 + ϕ1ϕX + hAX − A2X .

As ξ is principal for both A and ϕS − Sϕ, we get

Case 1. We can restrict X ∈ [ξ]⊥. Here replacing X by ϕX in (2.10) (resp. applying ϕ
to (2.10)), we have

SϕX = (4m + 7)ϕX − ϕ1X + 2η2(X)ξ3 − 2η3(X)ξ2 + hAϕX − A2ϕX ,

ϕSX = (4m + 7)ϕX − ϕ1X + 2η2(X)ξ3 − 2η3(X)ξ2 + hϕAX − ϕA2X .

(2.11)

Combining equations in (2.11), we get

(2.12) SϕX − ϕSX = hAϕX − A2ϕX − hϕAX + ϕA2X .

Putting X = E i into (2.12) and using AE i = λ iE i , we obtain

(2.13) (Sϕ − ϕS)E i = hAϕE i − A2ϕE i − hλ iϕE i + λ2
i ϕE i .

Taking the inner product with E i into (2.13), we have

β i g(E i , E i) = hλ i g(ϕE i , E i) − λ2
i g(ϕE i , E i) = 0.

Since g(E i , E i) /= 0, β i = 0 for all i ∈ 1, 2, . . . , 4m − 2. _is is equivalent to
(Sϕ − ϕS)E i = 0 for all i ∈ 1, 2, . . . , 4m − 2.

Case 2. For X ∈ [ξ]. _is gives (Sϕ − ϕS)ξ = 0. It follows that SϕX = ϕSX for any
tangent vector ûeld X on M.

Summing up Lemmas 2.1, 2.2 and [12,_eorem], we conclude that if M is a Hopf
hypersurface in complex two-planeGrassmannianG2(Cm+2) satisfying (C-1) for X =
ξ and ξα = 0, then M satisûes the condition of type (A) real hypersurfaces. Herea�er,
let us check whether the Ricci tensor of amodel space of type (A) satisûes the given
condition (C-1) for X = ξ.
First let us consider X = ξ; then (C-1) becomes

(2.14) (L̂(k)ξ S)Y = (LξS)Y ,

which is equivalent to

(2.15) −kϕSY − ϕASY + kSϕY − SϕAY = 0.

When ξ is Hopf vector ûeld and ξ ∈ Q�, the Ricci tensor S commutes with the
structure tensor ϕ and by [8, lemma 1.2], MA satisûes (2.15).

If the Reeb vector ûeld ξ belongs to the maximal quaternionic subbunble Q, then
aHopf hypersurfaceM inG2(Cm+2) is locally congruent to one of type (B) by virtue
of [6,Main _eorem].
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For MB , (2.14) is also equivalent to (2.15). So we assume MB satisûes (2.15). For
each eigenspace, we have

SX =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4m + 4 + hα − α2)ξ if X = ξ ∈ Tα ,
(4m + 4 + hβ − β2)ξℓ if X = ξℓ ∈ Tβ ,
(4m + 8)ϕξℓ if X = ϕξℓ ∈ Tγ ,
(4m + 7 + hλ − λ2)X if X ∈ Tλ ,
(4m + 7 + hµ − µ2)X if X ∈ Tµ .

From [13], we obtain the following equations:

α = −2 tan(2r), β = 2 cot(2r), γ = 0, λ = cot(r), µ = − tan(r),
λ + µ = β and h = α + 3β + (4n − 4)(λ + µ) = α + (4n − 1)β.(2.16)

_us, we get

(L̂(k)ξ S)Y − (LξS)Y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if Y = ξ ∈ Tα ,
(4 − hβ + β2)(β − k)ξℓ if Y = ξν ∈ Tβ ,
(4 − hβ + β2)ϕξℓ if Y = ϕξν ∈ Tγ ,
(−k + λ)(λ − µ)(h − λ − µ)ϕY if Y ∈ Tλ ,
(−k + µ)(µ − λ)(h − µ − λ)ϕY if Y ∈ Tµ .

From the fourth equation of above (resp., û�h), since µ /= λ, due to (2.16), we have
k = µ or h = β (resp., k = λ or h = β). However, if h = β, the third one cannot happen.
So we have k = µ = λ. _is gives a contradiction.

Remark 2.3 Let M be a real hypersurface in complex two-plane Grassmannian
G2(Cm+2),m ≥ 3; then MB does not satisfy the given condition (L̂(k)ξ S)Y = (LξS)Y ,
for any Y tangent to M.

_us, we have asserted_eorem 1.1 in the introduction.
Secondly, we assume that MA satisûes (C-1). Putting Y = ξ into (C-1), we obtain

−σϕAX + kσϕX + SϕAX − kSϕX = 0,

where Sξ = σ ξ = (4m + hα − α2)ξ.
From [13], we obtain the following equation:

SX =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(4m + hα − α2)ξ if X = ξ ∈ Tα ,
(4m + 6 + hβ − β2)ξν if X = ξν ∈ Tβ ,
(4m + 6 + hλ − λ2)X if X ∈ Tλ ,
(4m + 8)X if X ∈ Tµ .
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For Y = ξ ∈ Tα , we get

(2.17) (L̂(k)X S)ξ− (LXS)ξ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if X = ξ ∈ Tα ,
(k − β)(−hα + α2 + 6 + hβ − β2)ξ3 if X = ξ2 ∈ Tβ ,
(k − β)(−hα + α2 + 6 + hβ − β2)ξ2 if X = ξ3 ∈ Tβ ,
(k − λ)(hα − α2 − 6 − hλ + λ2)ϕX if X ∈ Tλ ,
(hα − α2 − 8)ϕX if X ∈ Tµ .

From the û�h equation in (2.17), we obtain

(2.18) hα − α2 − 8 = 0,

and from the deûnition of h, we obtain h = α + 2β + (2m − 2)(λ + µ).
Summing these up, by [13] we have

(2.19) (m − 1)t2 − (m + 2)t + 4 = 0,

where t = tan2(
√

2r).
From the second equation of (2.17) and (2.18), we obtain

(2.20) (k − β)(hβ − β2 − 2) = 0.

If we assume that hβ − β2 − 2 = 0, then by summing up (2.19) with (2.20), we have
m = −1, which gives us a contradiction. _us, k = β, so from the fourth equation of
(2.17) and (2.18), we get

hλ − λ2 − 2 = 0,

which becomes

(2.21) (2m − 3)t2 − 4t + 1 = 0.

Combining (2.19) and (2.21) implies

t = −7m + 11
(m − 2)(2m + 1) .

Since m ≥ 3 and t ≥ 0, this gives us a contradiction.
By virtue of Remark 2.3, we also get the fact that MB does not satisfy the given

condition (L̂(k)X S)Y = (LXS)Y . _us, we assert Corollary 1.2.
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