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Lie Derivatives and Ricci Tensor on Real
Hypersurfaces in Complex Two-plane
Grassmannians

Imsoon Jeong, Juan de Dios Pérez, Young Jin Suh, and Changhwa Woo

Abstract. On a real hypersurface M in a complex two-plane Grassmannian G, (C™*2) we have the
Lie derivation £ and a differential operator of order one associated with the generalized Tanaka-
Webster connection £ (%), We give a classification of real hypersurfaces M on G, (C"*?) satisfying
z gk) S = LS, where & is the Reeb vector field on M and S the Ricci tensor of M.

1 Introduction

It is one of the most classical and interesting parts in differential geometry to find
geometric properties of submanifolds on a symmetric space equipped with a Kihler
structure J, i.e.,, a Hermitian symmetric space. Among Hermitian symmetric spaces
as a higher rank space of complex projective space P, (C), the authors have investi-
gated the complex two-plane Grassmannian G,(C™*?), which consists of the set of
all complex two-dimensional linear subspaces in C™*2. The space G,(C™*?) is dif-
feomorphic to the homogeneous space SUy42/S(U, U,y ), the special unitary group
SU,.+2 acts transitively on C™*2, and S(U,-U,,) means the isotropic subgroup of
SU,u42. Cartan decomposition of the Lie algebra of S(U,-U,,) is expressed by € =
sU; @ suU,, ®u;. We have a Kahler structure J from u;, the one-dimensional center
of £. Remarkably, we also have a quaternionic Kéhler structure JJ from su, satisfying
I, = ] (v = 1,2,3), where {J, },1,2,3 is an orthonormal basis of J. When m =1,
G,(C?) is isometric to the two-dimensional complex projective space CP? with con-
stant holomorphic sectional curvature eight. When m = 2, we note that the isomor-
phism Spin(6) ~ SU(4) yields an isometry between G,(C*) and the real Grassmann
manifold G5 (R®) of oriented two-dimensional linear subspaces in R®. In this paper
we assume m > 3.

To classify real hypersurfaces with certain geometric conditions, let us give a ex-
planation of the geometry of real hypersurfaces on G,(C™*?). Let us consider a real
hypersurface M in G,(C™*?) and let N denote a local unit normal vector field on M
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in G,(C™*?). The Reeb vector field & = —~]JN € T,M at p € M is induced from the
Kéhler structure J. Let € be the distribution given by the orthogonal complement of
[£]in T, M at p € M. If & is invariant under the shape operator A, it is said to be Hopf.
The I-dimensional foliation of M by the integral manifolds of the Reeb vector field &
is said to be a Hopf foliation of M. We say that M is a Hopf hypersurface in G,(C™*?)
if and only if the Hopf foliation of M is totally geodesic. It is the complex maximal
subbundle of T, M = € & C*. The real hypersurface M is said to be Hopfif AC c C, or
equivalently, the Reeb vector field ¢ is principal, where A is the shape operator of the
real hypersurface M. If X is a tangent vector on M, we can put

JX=¢X+n(X)N and ], X=¢,X+n,(X)N

where ¢X (resp. ¢,X) is the tangential part of JX (resp. J,X) and n(X) = g(X, §)
(resp. 1,(X) = g(X,&,)) is the coefficient of normal part of JX (resp. J, X). In this
case, we call ¢ the structure tensor field of M. Using the Gauss and Weingarten for-
mulas in [6, Section 1 and 2], the Kéhler condition V] = 0 gives Vx& = §AX for any
tangent vector field X on M, where V (resp. V) denotes the covariant derivative on M
(resp. G, (C™*?)). From this, it can be easily checked that M is Hopf if and only if the
Reeb vector field & is Hopf.

In this case, the principal curvature o = g(A¢, &) is said to be a Reeb curvature
of M.

From the quaternionic Kahler structure J of G,(C™*?), there naturally exist al-
most contact 3-structure vector fields {&;, &,, &3} defined by &, = —J,N, v = 1,2,3.
Now let us denote by O = Span{ &, &;, {5} a 3-dimensional distribution in the tan-
gent space T,M at p € M. In addition, Q stands for the orthogonal complement of
Q* in T, M. Then it becomes a quaternionic maximal subbundle of T, M. Thus, the
tangent space of M consists of the direct sum of Q and Q* as follows: T,M = Q & Q*.

For two distributions C* and Q* defined above, we can consider two natural in-
variant geometric properties under the shape operator A of M, that is, AC* c C* and
AQ* c Q*. The following theorem is from a paper due to Suh [13, Theorem 1.1].

Theorem A Let M be a real hypersurface in Go(C™*?), m > 3. Then both [£] and
Q' are invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic Go(C™*) in G,(C™*?), or
(B) m is even, say m = 2n, and M is an open part of a tube around a totally geodesic
HP" in G,(C™*?).

In the case of (A), we want to say M is of Type (A). Similarly, in the case of (B),
we say M is of Type (B).

Until now, many geometers have investigated some characterizations of Hopf hy-
persurfaces in G,(C™*?) that satisfy commuting conditions involving geometric
quantities like shape operator, structure (or normal) Jacobi operator, Ricci tensor, and
so on. For a tangent vector X, ¢X is the tangential part of JX; then ¢ is said to be the
structure tensor field. Commuting Ricci tensor means that the Ricci tensor S and the
structure tensor field ¢ commute with each other, that is, S¢ = ¢S. From such a point

https://doi.org/10.4153/CMB-2017-049-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2017-049-5

Lie Derivatives and Ricci Tensor 545

of view, Suh [12] has given a characterization of real hypersurfaces of Type (A) with
commuting Ricci tensor.

On the other hand, a Jacobi field along geodesics of a given Riemannian man-
ifold (M, g) is an important tool in the study of differential geometry. It satisfies
a well-known differential equation that inspires Jacobi operators. It is defined by
(Rx(Y))(p) = (R(Y,X)X)(p), where R denotes the curvature tensor of M and
X, Y denote any vector fields on M. It is known to be a self-adjoint endomorphism
on the tangent space T, M, p € M. Clearly, each tangent vector field X to M provides
a Jacobi operator with respect to X. Thus, the Jacobi operator on a real hypersurface
M of G,(C™*?) with respect to & (resp. N) is said to be a structure Jacobi operator
(resp. normal Jacobi operator) and will be denoted by R¢ (resp. Ry).

Among many geometric conditions, in this paper we focus on commuting con-
ditions that have a strong relationship with hypersurfaces of tube type when the
Reeb vector field & belongs to Q*, that is to say, the commuting conditions between
(1,1) type tensor fields on real hypersurfaces in complex two-plane Grassmannians
G,(C™*?) are used to give same results to isometric Reeb flow.

For a commuting problem concerned with structure Jacobi operator R; and struc-
ture tensor ¢ of M in G,(C™*?), that is, R¢¢ = ¢R¢, Suh and Yang [16] gave a char-
acterization of a real hypersurface of Type (A) in G,(C™*?). Also, concerned with
a commuting problem for the normal Jacobi operator Ry, Pérez, Jeong, and Suh [9]
gave a characterization of a real hypersurface of Type (A) in G,(C™*?).

Related to the Levi-Civita connection V, Tanno [18] introduced the generalized
Tanaka—Webster connection (GTW connection) for contact metric manifolds as a
generalization of the Tanaka—Webster connection. It is defined as a canonical affine
connection on a non-degenerate, pseudo-Hermitian CR-manifold (see [17,19]). Then
the GTW connection coincides with Tanaka-Webster connection if the associated
CR-structure is integrable. Cho defined the GTW connection for a real hypersurface
in a Kéhler manifold in such a way that

VY = vxy + By,
where k(e R ~ {0}) denotes a non-zero constant and E((k) Y is defined by
k
Y = g(9AX, Y)E - n(¥)$AX ~ kn(X)$Y.

The skew-symmetric (1,1) type tensor F)((k) is said to be a Tanaka-Webster (or
k-th-Cho) operator with respect to X. In particular, if the real hypersurface satisfies
A + A = 2k¢, then the GTW connection V() coincides with the Tanaka—Webster
connection (see [1,2]).

On the other hand, we have considered real hypersurfaces in G,(C™*?) satisfying
(Zg(k) T)Y = 0 for any vector fields X and Y on M in G,(C™*?), where £ is the

differential operator of order one given by
TPY-9PY - 9P

for any vector fields X and Y on M, where T denotes a tensor field of type (1,1).
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The torsion of the GTW connection is given by
T, Y) = FO(Y) - FP(X).

The operator defined by ’fg(k) (Y) = TR (X, Y) is called the torsion operator associated

with X.

Let S be the Ricci tensor of M. We will consider real hypersurfaces M in G, (C™*?)
satisfying
(C-1) Z®s = £y,

for any vector field X on M. This is equivalent to the fact "J\')((k)S = S"J\')((k), for any X
tangent to M.

On the other hand, Hopf hypersurfaces M are those whose Reeb vector field £ =
—JN is Killing or, equivalently, a principal vector field, verifying A¢ = a&, where the
smooth function a = g(AE, &) is said to be the Reeb curvature of the Reeb vector
field €. Then we can give a classification for M in G,(C™*?) satisfying (C-1) in the
particular case X = & as follows.

Theorem 1.1 Let M be a Hopf hypersurface in complex two-plane Grassmannians
G,(C™*?), m > 3. The Ricci tensor S on M satisfies ng)s = L¢S if and only if M is
locally congruent to an open part of a tube of some radius r € (0, ﬁ) around a totally
geodesic Go(C™*1) in G,(C™*2).

In this case, there are two kinds of focal sets in G, (C™*?), and the distance between
them is % By virtue of this Theorem, we give another non-existence property as
follows.

Corollary 1.2 There does not exist any Hopf hypersurface M in G2(C™2), m > 3,
satisfying the condition Lg(k)S = L xS for any vector field X on M.

In this paper, we refer to [6,7,11,12,14,15] for Riemannian geometric structures of
a complex two-plane Grassmannian G,(C™*?), m > 3.

2 Proof of Theorem

Let us introduce the Ricci tensor S, briefly. The curvature tensor R(X, Y)Z of M in
G,(C™*2) can be derived from the curvature tensor R(X, Y)Z of G,(C™*?). Then
by contracting and using the geometric structure JJ, = J,J (v =1,2,3), we can see
the Ricci tensor S given by
4m-1
g(8X,Y)=>"""g(R(ei,X)Y,€;),

where {ej,...,es4m-1} denotes a basis of the tangent space T,M of M, peM, in
G,(C™*2) (see [12]). From the definition of the Ricci tensor S and fundamental for-
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mulas in [12, section 2], we have

4m-1
21  SX= ) R(X,e)e

i=1

= (4m+7)X - 37(X)E + hAX - A*X

+ Zl{—m(X)fv + 1y (E)y X = 1, ($X) 0 & — n(X) 1, (8)E, },

where h denotes the trace of A, that is, h = TrA (see [10, (1.4)]).
Using equation (2.1), we will prove that the Reeb vector field & of M belongs either
to Q or Q*. Under the condition of being Hopf, we get

(2.2) FOX = —kgX.
For X = ¢ into (C-1), we have
(2.3) FO(SY) + ASY - SF(V (Y) - SpAY =0

for any Y tangent to M. Taking the inner product of (2.3) with Z, where Z denotes a
vector field tangent to M, we get

g(FE(SY), 2) + g(ASY, Z) - g(SFEV(Y), Z) - g(S$AY, Z) = 0.

I’:?(k

Bearing in mind that F; ) is skew-symmetric and S is symmetric, we have

g(Y,-SFM(2) - SApZ + F{ (SZ) + A$SZ) = 0.
Thus, we have —Sfék)(Z)SAgbZ + P\gk)(SZ) +A@SZ = 0, and, replacing Y by Z, we
obtain
(2.4) SO (Y) - SAQY + F{) (SY) + AgSY = 0.
Using (2.2), (2.3), and (2.4) gives us

(2.5) ~k¢SY + pASY + kS$Y — SPAY = 0,
kSPY — SAPY — k¢SY + A¢SY =0,

respectively.
By combining these equations, we have
(2.6) S(PA-AP)Y = (pA - A¢)SY

for any Y tangent to M.

Lemma 2.1 Let M be a Hopfhypersurface in Go(C™*2), m > 3. If M satisfies ng)s =
L ¢S, then & belongs to either the distribution Q or the distribution Q*.

Proof To show this fact, we consider that the Reeb vector field ¢ satisfies

2.7) &=n(Xo)Xo+1(&)&
for some unit vectors Xy € Q, & € Q* and 5(Xo)n(&) # 0.
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Putting Y = £ in (2.5) and (2.6), by (2.7) and using basic formulas in [5, Section 2],
it follows that
(2.8) $AX, = k¢Xo,
ApXy = kdpXo.
On the other hand, to prove the lemma, we need the following equation:
(2.9)

AAPX + apAX — 2APAX + 20X = 223:{ -1 (X)p&, —n, (¢X)E,

= 1 ()¢ X + 21(X) 1 (E)$Ey + 21, ($X)1 ()€}
([5, Lemma A]).
Putting X = X, into (2.9), we have ak — k? = *(X,).
Since k is non-zero constant, differentiating this with respect to &, we have

$a = —%U(XO){g(fom &)+ g(Xo, Veb)} = —%W(Xo)g(Von, &)

= —%I’](Xo)g(X07 ¢1A£) = %H(XO)“g(XO’ ¢1£) =0

where we have used Vx&, = qy+2(X)&i1 — gui1(X) €12 + ¢ AX.

This gives éa = 0.

Due to [4, Equation (2.10)], A& = af; is derived from &a = 0. Equation (2.8)
becomes

(a—k)p& =0.

As k is nonzero constant and ¢ X, never vanishes, we have « = k. Then by the
equation Ya = (Ea)n(Y) - 4Y>_,7,(E)n,(¢Y) in [5, Lemma A], we easily obtain
that & belongs either to Q or to Q* (see [10]). [ |

Then by Lemma 2.1, we can divide our consideration into two cases being that £
belongs to either Q* or Q, respectively. Then first we consider the case £ € O*. We can
put & = & € Q* for our convenience sake.

Then [8, lemma 1.2] tells us Hopf hypersurface M in G,(C™*?) and £ € Q* gives
AS = SA. Thus, (2.6) is changed into

0=S(¢A—AQ)Y — (JA— AB)SY = SPAY — SAGY — pASY + A$SY
= SPAY — ASPY — $SAY + ApSY = (S¢ — $S)AY — A(S¢ — ¢S)Y

By virtue of Lemma 2.1 and the above equations, we assert the following:

Lemma 2.2 Let M be a Hopf hypersurface in Go(C™*?). If M satisfies A(¢S—S¢) =
(¢S — SPp)A and & € QF, then we obtain S¢ = ¢S.

Proof Since the shape operator A and the tensor ¢S — S¢ are both symmetric oper-
ators and commute with each other, by using the method due to Horn and Johnson
[3], there exists a common basis {E; }-1, . am-1 that gives a simultaneous diagonal-
ization. Since A& = a&and (¢S—S¢)¢& = 0, & is principal for A and ¢S — S$. We write
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AE; = ME; and (¢S — S¢)E; = B;E;, where eigenvalues A; and f3; are real valued
functions forall i € {1,2,...4m —1}.
Bearing in mind that & = & € Q*, (2.1) is simplified:

(210) SX = (4m+7)X - 7n(X)& - 2n2(X) & - 203(X) &5 + ¢ 9 X + hAX - A*X.
As & is principal for both A and ¢S — S¢, we get

Case 1. We can restrict X € [&]*. Here replacing X by ¢.X in (2.10) (resp. applying ¢
to (2.10)), we have

Q1) S¢X = (4m+7)pX — ¢ X + 212(X) & - 2113(X) &, + hAGX — A*$X,
SX = (4m +7)pX — ¢ X + 2172(X) &3 = 213(X) &, + hpAX — pA%X.
Combining equations in (2.11), we get
(212) SPX — ¢SX = hApX — A*pX — h¢p AX + pA*X.
Putting X = E; into (2.12) and using AE; = A, E;, we obtain
(2.13) (S¢ — ¢S)E; = hAQE; — A*QE; — hA;$E; + AT QE;.
Taking the inner product with E; into (2.13), we have
Big(Ei, Ei) = hAig(¢Ei, Ei) — 1ig($Ei, E;) = 0.

Since g(E;,E;) # 0, B; = Oforalli € 1,2,...,4m —2. This is equivalent to
(Sp-@S)E; =0foralliel,2,...,4m 2.

Case 2. For X ¢ [&]. This gives (S¢ — $S)& = 0. It follows that S¢X = ¢SX for any
tangent vector field X on M. ]

Summing up Lemmas 2.1, 2.2 and [12, Theorem], we conclude that if M is a Hopf
hypersurface in complex two-plane Grassmannian G, (C™*?) satisfying (C-1) for X =
&and & = 0, then M satisfies the condition of type (A) real hypersurfaces. Hereafter,
let us check whether the Ricci tensor of a model space of type (A) satisfies the given
condition (C-1) for X = &.

First let us consider X = &; then (C-1) becomes

(2.14) (L)Y = (£e9)Y,
which is equivalent to
(2.15) —k¢SY — QASY + kSPY — SPAY = 0.

When ¢ is Hopf vector field and & € Q*, the Ricci tensor S commutes with the
structure tensor ¢ and by [8, lemma 1.2], M4 satisfies (2.15).

If the Reeb vector field & belongs to the maximal quaternionic subbunble Q, then
a Hopf hypersurface M in G,(C™*?) is locally congruent to one of type (B) by virtue
of [6, Main Theorem].
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For Mg, (2.14) is also equivalent to (2.15). So we assume Mp satisfies (2.15). For
each eigenspace, we have

(4m+4+ha—-a?)é fX=EeT,,
(4m+4+hp-pAE ifX =8 €T,
SX =1 (4m+8)¢¢&, ifX=¢&eT),
(4m+7+hA-A)X ifXeT,
(4m+7+hy-p*)X fXeT,.

From [13], we obtain the following equations:

a =-2tan(2r), B=2cot(2r), y=0, A=cot(r), u=-tan(r),
(216) A+u=f and h=a+3f+(4n-4)(A+u)=a+ (4n-1)p.

Thus, we get
0 if Y =&eT,,
(4=hB+pB*)(B-K)& ifY =& e Tp,
(TPS)Y - (£68)Y = { (4 - hB+ B Y = §8, € T,

(-k+AM)(A-p)(h=A-p)pY ifYeT,
(~k+u)(u-A)(h-—u-A)¢Y ifYeT,.

From the fourth equation of above (resp., fifth), since ¢ # A, due to (2.16), we have
k=porh=f(resp., k = Aorh = 5). However, if h = f3, the third one cannot happen.
So we have k = y = A. This gives a contradiction.

Remark 2.3 Let M be a real hypersurface in complex two-plane Grassmannian
G2(C™*2), m > 3; then Mp does not satisfy the given condition (ng)s) Y = (L:9)Y,
for any Y tangent to M.

Thus, we have asserted Theorem 1.1 in the introduction.
Secondly, we assume that M, satisfies (C-1). Putting Y = £ into (C-1), we obtain

~0AX + kopX + SPAX — kS$X =0,

where S& = o€ = (4m + ha — a?)E.
From [13], we obtain the following equation:

(4m + ha — a?)& ifX=¢€T,,
(4m+6+hp-p*)E, ifX=& €Ty,
(4m+6+hr-A)X ifXeTy,
(4m +8)X if X € T,.

SX =
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ForY =& e T,, we get

0 ifX=¢eT,,
(k= B)(~ha+a*+6+hB—p*)E ifX =& €Ty,
(217) (EPS)E-(LxS)E={ (k-B)(~ha+a®+6+hB—B2)E ifX =& €T,
(k=AM (ha-a*-6-hA+A*)pX ifXeTy,
(ha —a® - 8)¢pX if X €T,

From the fifth equation in (2.17), we obtain
(2.18) ha-a>-8=0,

and from the definition of h, we obtain h = a + 28 + (2m - 2)(A + p).
Summing these up, by [13] we have

(2.19) (m-1)t* - (m+2)t+4=0,

where t = tan?(\/2r).
From the second equation of (2.17) and (2.18), we obtain

(2.20) (k=B)(hp~p*-2) =0.
If we assume that h3 — f* — 2 = 0, then by summing up (2.19) with (2.20), we have
m = —1, which gives us a contradiction. Thus, k = 3, so from the fourth equation of
(2.17) and (2.18), we get
hA-1*-2=0

which becomes
(2.21) (2m-3)t* —4t+1=0.

Combining (2.19) and (2.21) implies

. -7m+11
(m-2)2m+1)

Since m > 3 and t > 0, this gives us a contradiction.

By virtue of Remark 2.3, we also get the fact that Mp does not satisfy the given
condition (ngk)S )Y = (£xS)Y. Thus, we assert Corollary 1.2.
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