J. Herzog Nagoya Math. J. Vol. 83 (1981), 183-195

WHEN IS A REGULAR SEQUENCE SUPER REGULAR?

J. HERZOG*)

Let (B, \mathscr{F}) be a filtered, noetherian ring. A sequence $x = x_1, \dots, x_n$ in B is called super regular if the sequence of initial forms

$$\xi_1 = L(x_1), \cdots, \xi_n = L(x_n)$$

is a regular sequence in $gr_{\mathfrak{s}}(B)$.

If B is local and the filtration \mathscr{F} is \mathfrak{A} -adic then any super regular sequence is also regular, see [6], 2.4.

In [3], Prop. 6 Hironaka shows that in a local ring (B, \mathfrak{M}) an element $x \in \mathfrak{M} \setminus \mathfrak{M}^2$ is super regular (with respect to the \mathfrak{M} -adic filtration) if and only if x is regular in B and $(x) \cap \mathfrak{M}^{n+1} = (x)\mathfrak{M}^n$ for every integer n.

This result is extended to a more general situation in [6], 1.1. In the present paper we will characterize super regular sequences in a relative case:

Let A be a regular complete local ring, B = A/I an epimorphic image of A and $x = x_1, \dots, x_n$ a regular sequence in B which is part of a minimal system of generators of the maximal ideal of B. Let $y = y_1, \dots, y_n$ be a sequence in A which is mapped onto x. Then y is part of a regular system of parameters of A. Therefore y is a super regular sequence in A.

We put $\overline{A} = A/(y)A$, $\overline{I} = I/(y)I$ and $\overline{B} = B/(x)B$. Then $\overline{B} = \overline{A}/\overline{I}$, since x is a B-sequence.

As a consequence of our main result, the following conditions are equivalent:

(a) x is a super regular sequence in B

(b) For all elements $g \in \overline{I}$ there exists $f \in I$, such that

$$\overline{f} = g$$
 and $\nu(f) = \nu(g)$.

(Here \overline{f} denotes the image of f in \overline{I} and $\nu(f)$ the degree of the initial form

Received October 6, 1979.

^{*&#}x27; During the preparation of this work the author was supported by C.N.R. (Consiglio Nazionale delle Ricerche).

of *f*.)

The equivalence of (a) and (b) can also be expressed in terms of Hironaka's numerical character $\nu^*(J, R)$: x is a super regular sequence in B if and only if $\nu^*(I, A) = \nu^*(\overline{I}, \overline{A})$.

In the applications we will use this characterization to show that the tangent cone of certain algebras is CM (Cohen-Macaulay). Our examples contain some results of J. Sally [4], [5] in a more special case.

§1. Notations and remarks

In the following we fix our notations and recall some basic facts about filtrations. For a more detailed information about filtrations we refer to N. Bourbaki [1].

Let (A, \mathscr{F}) be a noetherian filtered ring such that $\mathscr{F}_0 A = A$ and $\mathscr{F}_{i+1}A \subseteq \mathscr{F}_iA$ for $i \geq 0$ and let (M, \mathscr{G}) be a filtered (A, \mathscr{F}) -module. Then $gr_{\mathscr{G}}(M) = \bigoplus_{i \geq 0} \mathscr{G}_i M/\mathscr{G}_{i+1}M$ is a graded $gr_{\mathscr{F}}(A) = \bigoplus_{i \geq 0} \mathscr{F}_i A/\mathscr{F}_{i+1}A$ -module.

If $x \in M$ we define $\nu(x) = \sup \{n/x \in \mathscr{G}_n M\}$ to be the degree of x and call

$$L(x) = x + \mathscr{G}_{n+1}M$$
 the initial form of x.

Let $\varphi: M \to N$ be a homomorphism of filtered modules then φ induces a homogeneous homomorphism

$$gr(\varphi): gr(M) \to gr(N)$$
.

If φ is an epimorphism, we always will assume that N admits the canonical filtration induced from the filtration of M. Then

$$\operatorname{Ker}\left(gr(\varphi)\right) = \left\{L(x)/x \in \operatorname{Ker} \varphi\right\}$$
.

We call a sequence (x_1, \dots, x_n) , $x_i \in \text{Ker } \varphi$ a standard base of $\text{Ker } \varphi$ if

$$\operatorname{Ker}\left(gr\left(\varphi\right)\right)=\left(L(x_{1}),\cdots,L(x_{n})\right).$$

In the particular case that $\varphi: A \to B$ is an epimorphism of filtered rings, we now give a slightly different but useful description of a standard base: Corresponding to a sequence (x_1, \dots, x_n) , $x_i \in \text{Ker }\varphi$, we define a filtration on A^n :

$$\mathscr{F}_i A^n = \{(a_1, \cdots, a_n)/a_j \in \mathscr{F}_{i-\nu(x_j)}A\}$$
.

Now

https://doi.org/10.1017/S0027763000019474 Published online by Cambridge University Press

REGULAR SEQUENCE

(1)
$$A^n \xrightarrow[(x_1, \dots, x_n)]{} A \xrightarrow{\varphi} B \longrightarrow 0$$

is a complex of filtered A-modules inducing a complex of gr(A)-modules

(2)
$$gr(A^n) \xrightarrow{(L(x_1), \dots, L(x_n))} gr(A) \xrightarrow{gr(\varphi)} gr(B) \longrightarrow 0$$

and (x_1, \dots, x_n) is a standard base of Ker φ if and only if the complex (2) is exact.

If A is complete and separated then any standard base of $\text{Ker }\varphi$ is also a base of $\text{Ker }\varphi$. However the converse is false in general. Consider the following case:

Let B = A/xA, where x is not a zero-divisor on A and let $\varphi: A \to B$ be the canonical epimorphism and $\xi = L(x)$.

LEMMA. (a) If x is super regular then

$$(*) gr(A) \xrightarrow{\xi} gr(A) \xrightarrow{gr(\varphi)} gr(B) \longrightarrow 0$$

is exact, i.e. (x) is a standard base of $\text{Ker } \varphi = (x)$.

(b) If A is complete and separated and the sequence (*) is exact then x is super regular.

The lemma shows that a non-zero-divisor x in a complete separated ring forms a standard base of (x) if and only if it is super regular.

Proof of the lemma. (a) Let $\alpha \neq 0$ be a homogeneous element of Ker $(gr(\varphi))$. Then $\alpha = L(xa)$ for some $a \in A$. Since $\xi L(a) \neq 0$, we have $\xi L(a) = L(xa) = \alpha$.

(b) Let $\alpha \in gr(A)$ be a homogeneous element such that $\xi \alpha = 0$.

We construct a convergent series (a_n) such that for all $n \ge 1$ we have $L(a_n) = \alpha$ and $\nu(xa_n) \ge \nu(x) + \nu(a_1) + n$.

Let $a = \lim a_n$, then $\alpha = L(a)$ and $xa \in \bigcap \mathscr{F}_i A = \{0\}$. Therefore a = 0 and consequently $\alpha = 0$. Construction of the sequence (a_n) by induction on n:

Let $a_1 \in A$ such that $\alpha = L(a_1)$. Since $\xi \alpha = 0$ we have $\nu(xa_1) \ge \nu(x) + \nu(a_1) + 1$.

Suppose we have already constructed a_1, \dots, a_n . By induction hypothesis we have $\nu(xa_n) \ge \nu(x) + \nu(a_1) + n$. Since $L(xa_n) \in \text{Ker}(gr(\varphi))$ and since we suppose that (*) is exact we find a homogeneous element γ_n such that $\xi \gamma_n = L(xa_n)$.

https://doi.org/10.1017/S0027763000019474 Published online by Cambridge University Press

Choose $g_n \in A$ such that $\gamma_n = L(g_n)$, then $\nu(g_n) = \nu(xa_n) - \nu(x) \ge \nu(a_1) + n$ and $\nu(x(a_n - g_n)) \ge \nu(x) + \nu(a_1)(n + 1)$. The element $a_{n+1} = a_n - g_n$ is the next member of the sequence.

§2. The main result

Let $\varepsilon: A \to B$ be an epimorphism of complete and separated filtered rings. As before we assume that B admits the induced filtration. Then Ker ε is a closed ideal of A.

Suppose we are given a super regular sequence $y = y_1, \dots, y_n$ on A and let $x_i = \varepsilon(y_i)$. Suppose that $x = x_1, \dots, x_n$ is a regular sequence on B and that

$$\nu(x_i) = \nu(y_i) > 0$$

for $i = 1, \dots, n$.

Let $\overline{A} = A/(y)A$, $\overline{B} = B/(x)B$, $I = \operatorname{Ker} \varepsilon$ and $\overline{I} = I/(y)I$. We have $\overline{I} \subset \overline{A}$ and $\overline{B} = \overline{A}/\overline{I}$, since x is a regular sequence on B. If f is an element of A or of B we denote its image in \overline{A} or \overline{B} by \overline{f} .

THEOREM 1. 1) The following properties are equivalent:

a) For each $g \in \overline{I}$ there exists $f \in I$ such that $\overline{f} = g$ and $\nu(f) = \nu(g)$.

b) There exists a standard base $g_1, \dots, g_m \in \overline{I}$ and elements $f_i \in I$ such that $\overline{f}_i = g_i$ and $\nu(f_i) = \nu(g_i)$ for $i = 1, \dots, m$.

c) x is a super regular sequence.

2) If the equivalent conditions of 1) hold and the f_i are chosen as in b), then (f_1, \dots, f_m) is a standard base of I.

Proof. It is sufficient to consider the case that the sequence x consists only of one element. The general case follows by induction on the length of the sequence.

1) a) \Rightarrow b): is obvious

b) \Rightarrow c): Let (g_1, \dots, g_m) be a standard base of \overline{I} and $f_i \in I$ be such that $\overline{f}_i = g_i$ and $\nu(f_i) = \nu(g_i)$.

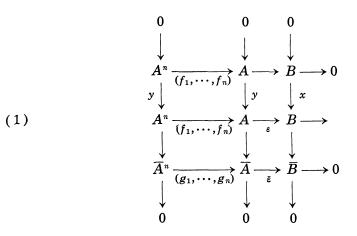
We define on A^n and \overline{A}^n filtrations

$${\mathscr F}_i A^n = \{(a_1, \cdots, a_n) | a_j \in {\mathscr F}_{i-\nu(f_j)} A\}$$

 ${\mathscr F}_i \overline{A}^n = \{(\overline{a}_1, \cdots, \overline{a}_n) | \overline{a}_j \in {\mathscr F}_{i-\nu(g_j)} \overline{A}\}$

and obtain a commutative diagram of filtered modules

REGULAR SEQUENCE



inducing a commutative diagram of graded modules

$$(2) \qquad \begin{array}{c} 0 \\ \downarrow \\ gr(A^{n}) \longrightarrow gr(A) \longrightarrow gr(B) \longrightarrow 0 \\ \downarrow^{\eta} \qquad \downarrow^{\eta} \qquad \downarrow^{\xi} \\ gr(A^{n}) \longrightarrow gr(A) \xrightarrow{\varphi} gr(B) \longrightarrow 0 \\ \downarrow \qquad \downarrow \qquad \downarrow^{\sigma} \\ gr(\overline{A}^{n}) \longrightarrow gr(\overline{A}) \xrightarrow{\varphi} gr(\overline{B}) \longrightarrow 0 \\ \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow^{\sigma} \\ gr(\overline{B}) \longrightarrow 0 \\ \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow^{\sigma} \\ 0 \qquad 0 \qquad 0 \qquad 0 \end{array}$$

 $\xi = L(x), \ \eta = L(y).$

The lowest row is exact since (g_1, \dots, g_n) is a standard base. Also the middle column is exact since y is super regular.

By diagram chasing we find, that also the sequence

$$gr(B) \xrightarrow{\xi} gr(B) \longrightarrow gr(\overline{B}) \longrightarrow 0$$
 is exact.

By the lemma it follows that x is super regular. c) \Rightarrow a): Let $g \in \overline{I}$, then we can find an element $f \in A$ such that $\overline{f} = g$ and $\nu(f) = \nu(g)$.

However we would like to find such an element f in I. To do this we consider

$$\sigma gr(\varepsilon)(L(f)) = gr(\overline{\varepsilon})(L(g)) = 0$$
.

J. HERZOG

Since we assume that x is super regular it follows from the lemma that $gr(\varepsilon)(L(f)) = \beta \xi$. Therefore $L(f) = \alpha \eta + \gamma$, where α, γ are homogeneous and $\gamma \in \text{Ker}(gr(\varepsilon))$.

Hence we can choose $a_1, f_1 \in A$ and $h_1 \in I$ such that

$$f = a_1 y + h_1 + f_1 ,$$

 $u(f) =
u(a_1 y) =
u(h_1) <
u(f_1) .$

From this we obtain $g = \overline{f} = \overline{h}_1 + \overline{f}_1 \in \overline{I}$, hence $\overline{f}_1 \in \overline{I}$. Repeating the same reasoning for f_1 , we can find $a_2, f_2 \in A$ and $h_2 \in I$ such that

$$egin{array}{ll} f_1 &= a_2 y + h_2 + f_2 \ , \
u(f_1) &=
u(a_2 y) =
u(h_2) <
u(f_2) \end{array}$$

This time it may happen that $\nu(f_1) < \nu(\bar{f}_1)$, but that doesn't matter and we can take $h_2 = 0$ in that case. Proceeding that way we construct sequences (a_i) , (h_i) and (f_i) such that $h_i \in I$ and

$$f_i = a_i y + h_i + f_{i+1}$$

$$\nu(f_i) = \nu(a_i y) = \nu(h_i) < \nu(f_{i+1})$$

Put $a = \sum_{i=1}^{\infty} a_i$, $h = \sum_{i=1}^{\infty} h_i$. Then f = ay + h, $h \in I$ and $\nu(h) = \nu(h_1) = \nu(f) = \nu(g)$. Thus h is the desired element.

2) Consider again the diagram (2). We have to show that if $\alpha \in \text{Ker}(gr(\varepsilon))$ is a homogeneous element then there exists $\gamma \in gr(A^n)$ such that $\varphi(\gamma) = \alpha$. We prove this by induction on the degree of α . If $\deg \alpha < 0$, then $\alpha = 0$. Thus suppose that $\deg \alpha > 0$. By assumption all columns and the lowest row are exact. By diagram chasing we can find homogeneous elements β, δ such that

$$\alpha = \beta \eta + \delta ,$$

where $\delta \in \operatorname{Im} \varphi$ and $\beta \in \operatorname{Ker} (gr(\varepsilon))$. Since by assumption deg $\eta > 0$, we have deg $\beta < \operatorname{deg} \alpha$. From the induction hypothesis the assertion follows.

§3. Some applications

(a) Let $B = k[[x_1, \dots, x_n]]/I$ be a 1-dimensional complete algebra over an algebraically closed field k. In the following we consider only the m_{B^-} adic filtration of B.

Suppose that the residue class x_1 of X_1 is not a zero-divisor and a superficial element of B, then gr(B) is a CM-ring (Cohen-Macaulay) if

and only if x_1 is super regular on B.

Applying Theorem 1 we find:

gr(B) is a CM-ring if and only if for all $F \in I$ there exists $G \in k[[X_1, \dots, X_n]]$ such that

 $F(0, X_2, \dots, X_n) + GX_1 \in I$ and $\nu(G) \ge \nu(F(0, X_2, \dots, X_n)) - 1$.

Next we restrict our attention to the more special case that B is a monomial ring:

Let $H \subset N$ be a numerical semigroup generated minimally by $n_1 < n_2 < \cdots < n_l$, see [2].

To *H* belongs the monomial ring $B = k[t^{n_1}, \dots, t^{n_l}]$, whose maximal ideal is $m_B = (t^{n_1}, \dots, t^{n_l})$. We want to describe in terms of the semigroup when $gr_{m_R}(B)$ is a CM-ring.

 t^{n_1} is a superficial element of *B*. Let $\overline{B} = B/t^{n_1}B \simeq k[[X_2, \dots, X_l]/\overline{I}]$. It is easy to see that a standard base of \overline{I} can be chosen such that the elements of the base are either monomials $X_2^{\nu_2} \cdots X_l^{\nu_l}$ or differences of monomials

$$X_{2}^{\mu_{2}}\cdots X_{1}^{\mu_{1}}-X_{2}^{\mu_{2}^{*}}\cdots X_{l}^{\mu_{l}^{*}}$$

with

$$\sum_{i=2}^l \mu_i n_i = \sum_{i=2}^l \mu_i^* n_i$$
 .

Let $n_1 + H = \{n_1 + h/h \in H\}$. A monomial $X_2^{\nu_2}, \dots, X_l^{\nu_l}$ is an element of \overline{I} if and only if

$$\sum_{i=2}^l
u_i n_i \in n_1 + H$$
.

Thus we find:

gr(B) is a CM-ring if and only if for all integers $\nu_2 \ge 0, \nu_3 \ge 0, \dots, \nu_l \ge 0$ such that

$$\sum_{i=2}^l \nu_i n_i \in n_1 + H ,$$

there exist $\nu_1^* > 0$, $\nu_2^* \ge 0$, \cdots , $\nu_l^* \ge 0$ such that

$$\sum_{i=2}^l
u_i n_i = \sum_{i=1}^l
u_i^* n_i$$
 and $\sum_{i=2}^l
u_i \leq \sum_{i=1}^l
u_i^*$.

It is not difficult to see that it suffices to consider only such ν_i with

the extra condition that $n_i > \nu_i$. Therefore only a finite number of conditions are to be checked.

If in addition \overline{I} is generated only by monomials, then there is a unique minimal system of generators of \overline{I} consisting of monomials M_1, \dots, M_k . These monomials form a standard base of \overline{I} .

Thus gr(B) is a CM-ring if and only if to each such monomial

$$M_i = X_2^{
u_2} \cdots X_l^{
u_1}$$

we can find

$$F_i = X_2^{
u_2} \cdots X_l^{
u_l} - X_1^{
u_1^*} \cdots X_l^{
u_l^*} \in I$$
 ,

with

$$u_1^* > 0 \quad ext{and} \quad \sum\limits_{i=2}^l
u_i \leq \sum\limits_{i=1}^l
u_i^* \; .$$

In particular if gr(B) is a CM-ring then F_1, \dots, F_k forms a standard base of I and also a minimal base of I.

We now discuss in more detail monomial rings of embedding dimension 3. These examples were first studied by G. Valla and R. Robbiano in [7] and communicated to me, when I was visiting Genova. Using different methods they are able to construct in all cases a standard base. Here we restrict ourselves to the question whether gr(B) is a CM-ring.

Let $B = k[[t^{n_1}, t^{n_2}, t^{n_3}]]$ and assume first that B is not a complete intersection. In [2] it is shown that $I = (F_1, F_2, F_3)$ with

$$egin{array}{lll} F_1 &= X_1^{c_1} - X_2^{r_{12}} \cdot X_3^{r_{13}} \ F_2 &= X_2^{c_2} - X_1^{r_{21}} \cdot X_2^{r_{23}} \ F_3 &= X_3^{c_3} - X_1^{r_{31}} \cdot X_2^{r_{32}} \end{array}$$

where $r_{ij} > 0$ and $c_1 = r_{21} + r_{31}$, $c_2 = r_{12} + r_{32}$ and $c_3 = r_{13} + r_{23}$. It follows that \bar{I} is generated by monomials and therefore gr(B) is a CM-ring if and only if

The first inequality is always satisfied since

$$c_1n_1 = r_{12}n_2 + r_{13}n_3$$

and

$$n_1 < n_2 < n_3$$
.

Similarly the third inequality is always true. Our final result is therefore: gr(B) is a CM-ring if and only if $c_2 \leq r_{21} + r_{23}$.

n_1	n_{2}	n_{3}	c_2	$r_{_{21}}$	$r_{_{23}}$	CM
3	4	5	2	1	1	Yes
5	6	13	3	1	1	No

We now assume that $B = k[[t^{n_1}, t^{n_2}, t^{n_3}]]$ is a complete intersection. Then I can be generated by two elements F_1, F_2 . We have to distinguish several case:

Case	F_1, F_2	Example		
α)	$\begin{array}{c} X_1^{c_1} - X_2^{c_2}, X_1^{c_1} - X_3^{c_3} \\ X_2^{c_2} - X_3^{c_3}, X_1^{c_1} - X_2^{r_{12}} \cdot X_3^{r_{13}} \\ X_1^{c_1} - X_3^{c_3}, X_2^{c_2} - X_1^{r_{21}} \cdot X_3^{r_{23}} \\ X_1^{c_1} - X_2^{c_2}, X_3^{c_3} - X_1^{r_{31}} \cdot X_2^{r_{32}} \end{array}$	6,	10,	15
β)	$X_2^{c_2}-X_3^{c_3}, X_1^{c_1}-X_2^{r_{12}}\!\cdot\!X_3^{r_{13}}$	7,	9,	12
γ)	$X_1^{c_1}-X_3^{c_3}, X_2^{c_2}-X_1^{r_{21}}\!\cdot\!X_3^{r_{23}}$	4,	5,	6
δ)	$X_1^{c_1}-X_2^{c_2}, X_3^{c_3}-X_1^{r_{31}}\!\cdot\!X_2^{r_{32}}$	4,	6,	7
	all $r_{ij} > 0$			

Case α). $\bar{I} = (X_{2}^{c_{2}}, X_{3}^{c_{3}})$ is generated by monomials. Since $c_{1} > c_{2}$ and $c_{1} > c_{3}$, it follows that B is a strict complete intersection.

Case β). $\overline{I} = (X_2^{c_3} - X_3^{c_3}, X_2^{r_{12}} \cdot X_3^{r_{13}}).$ We want to find a standard base of \overline{I} :

$$X_{2}^{c_{2}+r_{12}}, X_{3}^{c_{3}}, X_{2}^{r_{12}} \cdot X_{3}^{r_{13}}$$

are relations of $gr(\overline{B})$. We easily compute the length l of

$$k[[X_2,X_3]]/(X_2^{c_2+r_{12}},X_3^{c_3},X_2^{r_{12}}\cdot X_3^{r_{13}})$$

to be

$$l = r_{12}c_3 + r_{13}c_2 .$$

On the other hand we have

$$n_2 = c_3 c_1, \ n_3 = c_2 c_1$$

and

$$c_1n_1 = r_{12}n_2 + r_{13}n_3$$
,

J. HERZOG

therefore

$$n_1 = r_{12}c_3 + r_{12}c_2 = l \; .$$

Since

$$n_1 = 1(B/t^{n_1}B) = l(gr(B/t^{n_1}B))$$

it follows that

$$X_2^{c_2+r_{12}}, X_2^{c_2}-X_3^{c_3}, X_2^{r_{12}}X_3^{r_{13}}$$

is a standard base of \overline{I} .

There is only one way to lift these equations:

$$X_2^{c_2+r_{12}} - X_3^{c_3-r_{13}} \cdot X_1^{c_1}, X_2^{c_2} - X_3^{c_3}, X_1^{c_1} - X_2^{r_{12}} \cdot X_3^{r_{13}}$$
.

Since $c_1 \ge r_{12} + r_{13}$, we find that gr(B) is a CM-ring if and only if

$$c_2 + r_{12} \leq c_3 - r_{13} + c_1$$
.

However B is never a strict complete intersection.

 γ) $\bar{I} = (X_3^{c_3}, X_2^{c_2})$ is generated by monomials. Thus B is a strict complete intersection if and only if $c_2 \leq r_{21} + r_{23}$.

 δ) $\bar{I} = (X_{2}^{c_{2}}, X_{3}^{c_{3}})$ is generated by monomials and $c_{3} < r_{s1} + r_{s2}$, therefore *B* is always a strict complete intersection.

THEOREM 2. Let $B = k[[X_1, \dots, X_n]]/I$ be a complete k-algebra and suppose that I admits a standard base F_1, \dots, F_m such that:

1) $\nu(F_i) = 2$ for $i = 1, \dots, m$.

2) For each homomorphism $\varphi: I/I^2 \to B$ the elements $\varphi(F_i + I^2)$, $i = 1, \dots, m$ are not units in B (equivalently, B is not a direct summand of I/I^2).

Then for any complete algebra $\tilde{B} = k$ [[Y_1, \dots, Y_k]]/J and any regular \tilde{B} sequence t_1, \dots, t_k such that $\tilde{B}/(t_1, \dots, t_k)\tilde{B} = B$ it follows that (t_1, \dots, t_k) is
a super regular sequence on \tilde{B} .

Proof. We may write

$$ilde{B}\simeq k[[X_1,\cdots,X_n,T_1,\cdots,T_k]]/J$$

such that $t_i = T_i + J$, $i = 1, \dots, k$. Then $J = (G_1, \dots, G_m)$ with

$$G_i = F_i + \sum\limits_{j=1}^k F_i^{(j)} T_j + H_i$$
 ,

 $H_i \in (T_1, \dots, T_k)^2$ and $F_i^{(j)} \in k[[X_1, \dots, X_n]]$. Since t_1, \dots, t_k is a regular \tilde{B} -sequence, we obtain B-module homomorphisms

$$arphi_j \colon I/I^2 o B, \qquad j = 1, \cdots, m$$

 $F_i + I^2 \mapsto F_i^{(j)} + I$

By assumption 2) it follows that $\nu(F_i^{(j)}) \ge 1$ and by assumption 1) it follows that $\nu(G_i) = \nu(F_i)$ for $i = 1, \dots, m$.

From our criterion of section 2 the assertion follows.

We use this theorem to derive two results of J. Sally in a slightly more special case.

We introduce the following notations: e(B) = embedding dimension of B, d(B) = Krull dimension of B and m(B) = multiplicity of B.

THEOREM 3 ([4], [5]). Let $B \simeq k[[X_1, \dots, X_n]]/I$ be a complete CM-algebra and suppose that either

$$\begin{array}{ll} \alpha) & m(B) \leq e(B) - d(B) + 1 \\ & or \\ \beta) & m(B) \leq e(B) - d(B) + 2 \ and \ B \ is \ a \ Gorenstein \ ring \end{array}$$

then gr(B) is a CM-ring.

Proof. We may assume that k is algebraically closed.

 α) There exists a regular sequence (t_1, \dots, t_d) such that

$$l(B/(t_1, \cdots, t_d)B) = m(B) .$$

This sequence is part of a minimal system of generators of m_B . Let $\overline{B} = B/(t_1, \dots, t_d)B$, then $e(\overline{B}) = e(B) - d(B) = m(B) - 1 = l(\overline{B}) - 1$. It follows that $m_{\overline{B}}^2 = 0$, and $\overline{B} = k[[X_1, \dots, X_m]/\overline{I}]$ with $\overline{I} = (X_1, \dots, X_m)^2$. We may assume that $m \geq 2$ and show that \overline{B} satisfies the conditions of Theorem 2.

Condition 1) is obviously satisfied since \overline{I} is generated by the monomials $X_i X_j$ of degree 2, which form a standard base of \overline{I} .

Suppose there exists a \overline{B} -module homomorphism $\varphi: \overline{I}/\overline{I}^2 \to \overline{B}$ and integers i, j such that $\varphi(X_iX_j + \overline{I}^2)$ is a unit.

1st Case. If i = j, then for any $k \neq i$ we have

$$x_k \varphi(X_i^2 + \bar{I}^2) + x_i \varphi(X_i X_k + \bar{I}^2)$$

a contradiction since (x_1, \dots, x_m) is a minimal base of $m_{\mathcal{B}}$.

J. HERZOG

2nd Case. If $i \neq j$, then $x_i \varphi(X_i X_j + \overline{I}^2) = x_j \varphi(X_i^2 + \overline{I}^2)$, again a contradiction.

 β) As in the case α) we can reduce B to an algebra \overline{B} such that $l(\overline{B}) = e(\overline{B}) + 2$. It follows that $m_{\overline{B}}^3 = 0$ and that \overline{B} is a graded ring with Hilbert function $1 + e(\overline{B})t + t^2$. Let σ be generator of \overline{B}_2 . The multiplication on \overline{B} induces a non singular quadratic form $q: \overline{B}_1 \times \overline{B}_1 \to k$ defined by

$$q(v, w)\sigma = v \cdot w$$

Since we assume that k is algebraically closed we can choose a k-vectorspace base x_1, \dots, x_m of \overline{B}_1 such that $x_i^2 = \sigma$ for $i = 1, \dots, m$ and $x_i x_j = 0$ for $i \neq j$.

We treat the case m = 2 separately, since in that case \overline{B} is a complete intersection and Theorem 2 is not applicable. However then we have $B = k[[X_1 \cdots X_n]]/(F_1, F_2)$ with $\overline{F}_1 = X_1^2 - X_2^2$, $\overline{F}_2 = X_1X_2$. If $\nu(F_1) =$ $\nu(F_2) = 2$, then the assertion follows from Theorem 1. Otherwise, say $\nu(F_1) = 1$, then B is a hypersurface ring and the assertion follows again.

Now if m > 2 we apply Theorem 2: Again the first condition is satisfied. We check condition 2):

1st Case. Suppose there exists a \overline{B} -module homomorphism $\varphi: \overline{I}/\overline{I}^2 \to \overline{B}$ such that $\varphi(X_1^2 - X_i^2 + \overline{I}^2)$ is a unit, then

$$\sigma arphi (X_1^2 - X_i^2 + ar{I}^2) = x_1^2 arphi (X_1^2 - X_i^2 + ar{I}^2) = arphi (X_1^4 - X_1^2 X_i^2 + ar{I}^2) = 0 \; ,$$

since $X_1^4 - X_1^2 X_i^2 \in \overline{I}^2$. This is a contradiction.

2nd Case. Suppose there exists a \overline{B} -module homomorphism $\varphi: \overline{I}/\overline{I}^2 \to \overline{B}$ such that $\varphi(X_iX_j + I^2)$ is a unit, then $\sigma\varphi(X_iX_j + I^2) = x_1^2\varphi(X_iX_j + I^2) = \varphi((X_1X_i)(X_1X_j) + I^2) = 0$ since $(X_1X_i)(X_1X_j) \in I^2$. This is again a contradiction.

LITERATURE

- [1] N. Bourbaki, Algèbre commutative, Hermann, Fasc., XXVIIIfi, Chap. 3.
- [2] J. Herzog, Generators and Relations of Abelian Semigroups and Semigroup Rings, manuscripta math., 3 (1970), 175-193.
- [3] H. Hironaka, Certain numerical characters of singularities, J. Math. Kyoto Univ., 10 (1970), 151-187.
- [4] J. Sally, On the associated graded ring of a local Cohen-Macaulay ring, J. Math. Kyoto Univ., 17 (1977), 19-21.
- [5] ----, Tangent cones at Gorenstein singularities, to appear in Comp. Math.
- [6] P. Vallabrega and G. Valla, Form rings and regular sequences, Nagoya Math. J., 72 (1978), 93-101.

REGULAR SEQUENCE

[7] G. Valla and L. Robbiano, On the equations defining tangent cones, to appear in Proc. Camb. Phil. Soc., 88 (1980), 281-297.

Universität Essen – Gesamthochschule Fachbereich 6 Universitätsstr. 3