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A NOTE ON COVERINGS AND KERVAIRE COMPLEXES

STEPHEN G. BRICK

In the combinatorial category, a two-complex X is said to be Kervaire if any set
of equations modelled on X, over any group, has a solution in a larger group. The
Kervaire-Laudenbach conjecture speculates that if Hj(X) — 0 then X is Kervaire.
We show that the validity of this conjecture would imply that all aspherical two-
complexes are Kervaire. In particular, any two-complex homotopically equivalent
to a two-manifold (^ S3, RP* ) would be Kervaire. We show that this is indeed
the case for certain such two-complexes. We generalise this to staggered two-
complexes, and, more generally, one-relator extensions of Kervaire complexes. We
obtain similar results for diagrammatically reducible two-complexes. Our proofs
make use of covering spaces.

0. INTRODUCTION

The classical Kervaire-Laudenbach conjecture speculates that the trivial group can-
not be obtained by starting with a non-trivial group and adding one new generator and
one new relator. This conjecture has evolved into one concerning the problem of solving
equations over groups.

We recall some terminology (see [5]). An equation over a group G is of the form

w(TuT2,... ,Tn) = 1 with to(Ti,Tj,... ,Tn) <E G * F{T,,T2,... ,TB)

where F(T\, T2, •.., Tn) is the free group on the unknowns T\, T2,..., Tn. We say that
the equation w(Ti,T2, • • • ,Tn) — 1 can be solved over G if there exists a group H

containing G and possessing elements ti,t2,-. • ,tn with to(<i, t2,... ,tn) = 1 in H.

This is equivalent to the natural map

being injective. We will refer to the group

as the universal solution group of the equation w(Ti,T2,... ,Tn) — 1. Similarity we
could speak of a set of equations over a group G.
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2 S.G. Brick [2]

Given a set of equations {wi(Ti, T2,. . . , Tn) = 1} over a group G, one can form its
associated two complex Y as follows:

(1) Y has a single 0-cell.
(2) Y has a one-cell for each unknown Tj.
(3) Y has a two-cell for each equation Wi(Ti, T2, . . . , Tn) = 1 with the attach-

ing map obtained from the word Wi by deleting occurences of elements of
G — but without reducing the word in the unknowns so obtained.

We say that the set of equations {wi = 1} is modelled on the complex Y. In
general, if X is a two-complex, a set of equations is said to be modelled on X if the
associated two-complex is X/X^.

There is another way of viewing which equations are modelled on a two-complex
X. Fix a group G and an orientation for each two-cell of X. For each (oriented)
two-cell, choose some group element for each "corner" of the two-cell. Reading around
each two-cell, yields an equation over G, where the unknowns are the one-cells of X.

Observe that the two-complex associated to a set of of equations over a group is
necessarily a combinatorial complex. (Recall that a cellular map is combinatorial if it
preserves dimension on each open cell and a complex is combinatorial if its attaching
maps, after a possible subdivision, are combinatorial.) With this in mind we say that a
combinatorial two-complex X is Kervaire if any set of equations modelled on X (over
any group) can be solved.

It works out that the question of whether a two-complex is Kervaire does not
depend on the combinatorial structure, that is, it is a topological property (see [1]).
Some examples of Kervaire complexes are all surfaces other than the two-sphere, any
collapsible two-complex, and the Dunce Hat (see [1, 3, 7]).

Topologically we can rephrase the definition of a Kervaire complex. In order to do
so we need to define the quotient in the category of combinatorial two-complexes (also
see [3]).

Let K C L be a pair of combinatorial two-complexes. Their quotient, L//K,
will be defined provided that no two-cell of L \ K has the image of its attaching map
contained entirely in K. With this condition satisfied, the combinatorial quotient L//K
has one skeleton being the standard quotient L^/K^. For each two-cell A of L\K,
there is a corresponding two-cell A' of L//K. We need only specify the attaching map
of A'. Let a : dA —» iS1' be the attacking map of A. Collapse each component of
a"1 (iO1)) to a point. The resulting quotient space of the complex dA is a circle with
an induced cell structure. Identify it with dA' and let the map induced by a, say
a' : dA' —» L^/K^\ be the attaching map for A'. Clearly, a' is a combinatorial
map. Also note that L//K is a quotient space of L/K and the quotient map is a
homotopy equivalence.
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[3] Coverings and Kervaire complexes 3

Using this combinatorial quotient, we have the following definition of the Kervaire
property:

DEFINITION: Let X be a combinatorial two-complex. X is said to be Kervaire
if given any pair of combinatorial two-complexes K C L with L//K — X/X^ the
natural map TTI(K) —> ^i{L) is injective.

It is not difficult to see that this definition agrees with the one above. It is
implicit, for instance, in the proof of Proposition 3.2 of [1]. Also see [7]. But it
is quite simple to see the equivalence of the definitions directly. To that end, let
{vii(Ti, T-i,..., Tn) = 1} be a set of equations over a group G. Construct a two-complex
K with fundamental group G with a single vertex. Now adjoin a one-cell for each un-
known Tj. For each equation Wi = 1 adjoin a two-cell whose attaching map gives the
word wi(T1,T2,...,Tn) £ G*F(T1,T2,... ,Tn). Call the resulting two-complex L. By
Van-Kampen's Theorem, the natural map

is the same as the map

Also, one has that L//K = X/X^. On the other hand, if one has a pair of combinato-
rial two-complexes K C L where L^ — K^ then, applying Van-Kampen's Theorem,
one has a set of equations modelled on L//K over the group TVI(K) with fti(L) being
the universal solution group.

Using this topological formulation, the Kervaire conjecture (also known as the
Kervaire-Laudenbach conjecture) becomes the following :

CONJECTURE. Let X be a combinatorial two-complex. Assume that H2[X) = 0.
Then X is Kervaire.

We give a slightly different formulation of the Kervaire property due to Gersten
(unpublished). We show below that the two definitions are in fact equivalent.

Our aim is to give a method that yields more examples of Kervaire complexes. The
key idea is to use the following result:

THEOREM 2 . 2 . II X —» X is a covering space and X is Kervaire iiien X is
Kervaire.

A simple application of the preceding theorem yields:

COROLLARY 2 . 3 . If the Kervaire conjecture is true then all aspherical combi-
natorial two-complexes are Kervaire.

https://doi.org/10.1017/S0004972700011643 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700011643


4 S.G. Brick [4]

In particular, any two-complex homotopy equivalent to a surface (^ SZ,RP2)

should be Kervaire. Thus, for example, the two-complex

K=K.{x,y | z^-V+Vas**-*-^-"-1,,")

where n, k, and m are integers should be Kervaire. We show that this is indeed the

case. Our approach is to study the universal cover K of K.

More generally we show that a one-relator extension, by a non-power, of a Kervaire

complex, whose fundamental group is locally indicable, is Kervaire (see Section 4 below

for the definitions). Our method of proof is to analyze the universal cover of the

extended complex, applying results of Howie (see [6] and below).

We also obtain similar results for diagramatically reducible two-complexes (defined

in Section 2, below). We end the paper with a conjecture on the structure of diagra-

matically reducible two-complexes.

A few of these results were also obtained independently by Gersten (unpublished).

We make use of polyhedral constructions — such as Link and Star — which implic-

itly takes place in the second barycentric subdivision. Further, we use "cl" to denote

closure.

1. PRELIMINARY RESULTS

We need to recall a few notions (see [1]).

Let (B, A) be a pair of topological spaces and let / : (F,dF) —» (B,A) be a map

of a disk with holes. We may designate a component of dF as the outer boundary

component. When such a choice has been made, we call / a based map. Suppose we

are given two based maps / : {F,dF) -> (B,A) and / : (F,8F) -> {B,A) of disks

with holes F and F. We say that the map / has boundary labels derived from f if the
following holds:

Let ao,ai,...,<xn and 2o, S i , . . . , am be the boundary components of F and F

respectively, where ao and ao are the outer boundary components. Then there is a

mapping of indices (3 : {0,1 , . . . ,m} -> {0,1,. . . ,n} with /3(0) = 0 and /3(i) > 0 for

each i > 0. And for each i there is a homeomorphism /3̂  : Si —» a/j(,) with f\ a, — fofii.

It should be noted that no relationship between n and m is assumed. Furthermore,

the map of indices /3 need not be either injective or surjective. Note that in [1] we only

require / f a» = / o /?; up to homotopy. As the homotopy is one of maps into A, we

lose nothing with the stronger requirement of equality. Also, we will typically require

that f(f\ C A.

Let X be a combinatorial two-complex. A spherical diagram over X is a com-
binatorial map <j> : T —> X where T is a combinatorial tesselation of the two-
sphere. Set Lx = Link(X(°),X), F = c\(T\NT) and Xx = cl(X\Nx) where
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[5] Coverings and Kervaire complexes 5

NT = S t a r ( r ( ° \ T ) and Nx = S t a r ( X ( ° \ X ) are the polyhedral regular neighbour-
hoods of T(°> in T and of X(0) in X. Observe that F is a disk with holes. Restricting
(j> yields a map f$ : (F,dF) —» (Xi,Lx)- We say that <f> has redundant links if for
each choice of an outer boundary component there is a based map of a disk with holes
/ : F —> Lx with boundary labels of / derived from /^ (note — the point is that /
has image contained entirely in the subcomplex Lx)-

We then have the following characterisation of Kervaire complexes:

PROPOSITION 1 . 1 . Let X be a combinatorial two-complex. Then X is Ker-
vaire if and only if every spherical diagram over X has redundant Hnks.

PROOF: See [1, Proposition 3.2]. D

We now state the formulation of the Kervaire property that Gersten uses (unpub-
lished).

DEFINITION: Let X be a combinatorial two-complex. X is said to be G-Kervaire
if given any pair of combinatorial two-complexes A C B with B//A = X the natural
map 7ri(A) —> iri(B) is injective.

Observe that A can be thought of as a vertex of X . For different choices of A and
B, the vertex of X may be different. And since we quantify over all pairs A and B
with B//A = X, each vertex of X occurs as some A. We now address the equivalence
of the G-Kervaire and the Kervaire properties.

PROPOSITION 1 .2 . Let X be a combinatorial two-complex. Then X is Ker-
vaire if and only if X is G-Kervaire.

PROOF: =S>: Assume X is Kervaire and Ad B are combinatorial two-complexes
with B//A = X. Let L = B/B^ and K = A/A^. Then K C L and L//K =
X/X*-0). Let i : K C L be the inclusion and let v be the unique 0-cell of K. Since X
is Kervaire, we have that ni(K,v) —> wi(L,v) is injective. Now let u be a 0-cell of A.
It is easy to see that TTI(K,V) = TTI(A,U) * FA where FA is free with basis 4̂̂ °̂  \ {u}.
Similarity, we have Ki(L,v) = iri{B,u) * FB , where FB is free with basis B^ \ {u}.
Moreover, letting j : A C B be the inclusion, we have, under the above identifications,
i, f iri(A,u) = k o j t where k : ni(B,u) C ni(B,u) * FB is the inclusion. So in
particular, as i* is injective, j» : iti(A,u) —»iri(B,u) is injective. Thus it follows that
X is G-Kervaire.

<=: Suppose that X is G-Kervaire and <j> : T —» X is a spherical diagram over
X. We need to see that <j> has redundant links. As above set NT — Star(T(0),T),
NX = Star(X(°\X), Lx = Unk(X^,X), F = d(T\NT), Xx = d(X\Nx), and
ft : (F,dF) —> (Xi,Lx) the restriction of <f>. Choose an outer boundary component
ao of dF, letting a i ,a 2 , . . . ,on be the remaining boundary components. We will show
that, for this choice of an outer boundary component, there is a based map of a disk
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6 S.G. Brick [6]

with holes whose boundary labels are derived from /^. By Proposition 1.1, because the
choice of ao was arbitrary, this will suffice.

Let the vertices of T corresponding to a0, a^,..., an be VQ , vi, V2,..., vn. Assume
that the vertices (and boundary components) have been ordered so that there is a k with
0 ^ k ^ n such that <j>(vi) — <f>(vo) if and only if i ^ A:. Thus the boundary components
Go, • • •»<** all map to Link(^(«o),X) while the boundary components ak+i,..., an map
to the links of other vertices of X. We now construct a pair of two-complexes A (Z B
as follows. Let Ao = Link(^(vo),-X"). For each 1 ̂  i ^ k attach a two-cell to Ao using
the map /^ \ a, as the attaching map (so if k = 0, nothing is attached). Call the
resulting two-complex A. The complex B is defined to be cl(X \ star(^(i>o),X)) U A.

Since Un\{4>{vo),X) C A and c\{X \ star(<£(t,o),X))//Link(<£(t;o), X) = X, it
follows that B//A = X and so, since X is assumed to be G-Kervaire, the natural map
Ki(A) —• 7ti(B) is injective.

Now cl (T \ star(uo)y)) is a disk D with boundary being ao. By restriction and
by the construction of the pair (B,A), <j> induces a map <f>' : (D,dD) —> (B,A). Since
TTI(J4) —» Ki(B) is injective, [<f>' \ ao] — 1 in ir-i(A). So there is a map of a disk
h : D —* A with 3D mapping according to <j>' \ ao . Assume that h is transverse to the
cell structure of A. Let

F = cl (3 \ / ^ ( t h e interior of the two cells of A)\

and let / be the restriction of h. Take as outer boundary component of F the boundary
component of D. Then / is a based map of a disk with holes. Moreover

/ r (the outer boundary component) = h \ dD = </>' \ ao = fj, \ ao

And

/ [• (an inner boundary component) = (the attaching map of some two cell of A)

But these two-cells were attached according to map /^ f a,- for some i with 1 ^ i ^ k.
It follows that / has boundary labels derived from /^. 0

By making use of the G-Kervaire formulation one can obtain a local characterisation
of Kervaire complexes. We start by recalling a definition. Suppose (B, A) is a pair of
topological spaces. We say that A is normal-convex in B if given any based map
/ : (JF1, dF) —> (B, A) of a disk with holes there exists a based map of another disk with
holes f : F —* A with boundary labels derived from / . In [1] it is shown that X is
Kervaire iff the graph Link(-Y<0>,X) is normal-convex in cl (X \ star(X(°),X)) . We
modify the argument there to the case of G-Kervaire to obtain the following.
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[7] Coverings and Kervaire complexes 7

PROPOSITION 1 . 3 . Let X be a combinatorial two-complex. Then X is G-

Kervaire if and only if for every vertex v of X the graph Link(v, X) is normal-convex

in d(X\Star(v,X)).

PROOF: <=: We prove the contrapositive. Assume that X is not G-Kervaire.
Let A C B be combinatorial two-complexes with B//A = X but with the natural
map ir\(A) —> TTI(B) not being injective. Denote by v the vertex of X corresponding
to A. We will show that the graph Lv = Link(v,X) is not normal-convex in Xv =
cl{X\Sta.i(v,X)).

As TT\(A) —» TTI{B) is not injective, we can find a map of a disc / : D2 —> B with
/ \ 3D2 : 3D2 —* A being an essential loop in A. Assume that / is transverse to the
cell-structure of B, and consider the composite map f\ — p o f : D2 —> B —> B/A —•
B//A where p : B —»• B/A —> B//A is the composite of the natural quotient maps
(Recall that B//A is a quotient of B/A). We then have a tamely-embedded graph
F C D2 with /i mapping regular neighbourhoods of the vertices homeomorphically
onto two-cells of X, mapping arcs transverse to the edges of F onto one-cells of X,
and mapping the complement of a regular neighbourhood N(T) of F to zero-cells of X.
Recall (see [1]) that this graph F, together with how /i maps a regular neighbourhood
of it, is called the picture of / i .

Since f(dD2) C A and A is collapsed to a vertex of X, we have that F C int (D2) .
If F is not connected then for some simple closed curve C C /i~1(the vertex A) there
are components of F both in the inside and the outside of C in D2. If f(C), a loop
in A, is essential in A, replace D2 by the subdisc A interior to C and / by / \ A.
Otherwise, alter / in A so that /(A) C A. In this way we reduce the number of
components of F without losing the property that / f 3D2 is essential in~A. Hence we
may assume that F is connected.

Since F is connected, JV = N(T) is a disk with holes. We want to look at maps
of disks with holes into (XV,LV), but /i f N maps 3N to the vertex v which is not
contained in Lv. So we need to look at a slightly smaller regular neighbourhood of F
which maps under f\ into Xv and whose boundary maps to Lv. Let F — (fi)~ (Xv)-
By the construction of F this has the desired property. F also inherits from D2 a
choice of an outer boundary component. Thus fi \ F : (F,3F) —* (XV,LV) is a based
map of a disk with holes.

We claim that there is no based map of a disk with holes with image contained
entirely in Lv and with boundary labels derived from f\\F. Once we show this, we
can conclude that Lv is not normal-convex in Xv .

So suppose to the contrary that there is a based map of a disk with holes / i : F —>
Lv with boundary labels derived from f\\F. We will derive a contradiction to the
assumption that / \ 3D2 is essential in A. To do so we will make use of two facts.
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First let A = p"1 (Star(iy,X)). Observe that A is a polyhedral regular neighbourhood
of A in B, and so it collapses onto A. In particular A is a deformation retract of
A. Second take LA — Link(j4,I?) = p~1(Lv). It is easy to see that p : LA —• Lv is a
homeomorphism. Let q : Lv —> LA be its inverse.

Consider the map f = q° f\ '• F —» Lv —» LA• Enumerate the boundary compo-
nents of F, and F, respectively, by ao,ai,...,an and So , 2 i , . . . ,am where ao and ao
are the outer components. Let /? be the map of indices, and /3j : â  —» ap(i) be the
homeomorphisms arising from the fact that f\ has boundary labels derived from f\.

Now ao and dD2 cobound an annulus in D2 \ F. Call this annulus S. Also,
for each i G { l ,2 , . . . ,m} let A^ be the subdisk of D2 that a^;) bounds. Glue the
annulus 5 and the subdisks A,-, for i S {1,2,. . . ,m}, onto the disk with holes F using
the homeomorphisms /3i as the glueing maps. The resulting space is a disk D2. We
now define a map / : D2 —> A by / = / on S and A; while f = f on F. This
shows that / f dD2 = f \ dD2 is null-homotopic in A. And, as A is a deformation
retract of A, we can conclude that / f dD2 is null-homotopic in A. This is the desired
contradiction.

=>: Suppose that, for some vertex v, the graph Lv = Link(u,X) is not normal-
convex in Xv = cl(X \ Star(u,X)). We will construct combinatorial two-complexes
A C B with B//A = X but with the natural map iti(A) —* iri(B) not being injective.

By assumption, there is a based map / : (F,dF) —> {Xv,LV) of a disk with holes
such that there is no map / : F —* Lv of a disk with holes, with boundary labels derived
from / . Let the boundary components of F be ao,ai,a2,... ,an where oo is the outer
boundary component.

Construct A by attaching n two-cells to Lv using the maps fai, for i = 1,2,... ,n,
as attaching maps. Let B = Xv U A. Then, clearly, / can be extended to a map of
a disk, / : (£>2,9£)2) —> (B,A), by mapping subdisks that a,-, for i ^ 1, now bound
to the corresponding attached two-cell of A. Moreover, / f dD2 is an essential loop in
A. For otherwise we could find a map of a disk into A, and then using transversality
we could find a map of a disk with holes into Lv with boundary labels derived from / .
And this would contradict our choice of / . D

Now applying Proposition 1.2 to the above, yields a local characterisation of Ker-
vaire complexes.

COROLLARY 1.4 . Let X be a combinatorial two-complex. Then X is Ker-
vaire if and only if for every vertex v of X the graph Link(v,X) is normal-convex in
cl(X\Star(v,X)).

Since the Kervaire property is independent of cell-structure (see [1]), the above
yields the following:
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COROLLARY 1 . 5 . Let X be a combinatorial two-complex. The following are
equivalent:

(1) X is Kervaire

(2) Vz £ X the graph Link(x,X) is normal-convex in cl(X \Stai{x,X)).

2. COVERINGS

Given a combinatorial two-complex A, we can consider Lmk(A(°\A) either a
complex or a topological space. In either case, a combinatorial map a : A —» B induces
a map a : Lmk(A(°\A) —» Link(2?(°), J5) . Thus we can view Link as a functor.
Similarly, the polyhedral regular neighbourhood (which we've denoted by NT or Nx)
is a functor. With this in mind, it is a simple matter to obtain the following:

LEMMA 2 . 1 . Let <f> : T —> X be a spherical diagram over a combinatorial two-
complex. Suppose </> factors as /3oa where a : T —* Y and j3 : Y —* X are combinatorial
maps. If a has redundant links then <f> has redundant links.

PROOF: Let NT, NY , and Nx be the polyhedral regular neighbourhoods of the
zero skeletons of T, Y, and X respectively. Set F = cl(T \ NT), Yi = cl(Y \NY), and
X-L = c\(X \NX)- Restricting <f> yields a map /^ : (F,dF) -» (Xi, Lx). Likewise, re-
stricting a and /3 yields maps fa : (F,dF) -> (Yi ,£y) and fp : (Yi ,£y) -> {XULX).

By the functorality observed above, we have that /^ factors as fp o fa. Assume a
choice of an outer boundary component of F has been made. Now a : T —> Y has
redundant links. Thus, there is a based map of a disk with holes / : F —* Ly with
boundary labels of / derived from fa. But then fp o / : F —» Lx is a based map of a
disk with holes, and, as is easily seen, has boundary labels derived from /^ = fp ° fa-

Since the choice of an outer boundary component was arbitrary, it follows that <f> has
redundant links. U

We now use our lemma and the lifting property of covering spaces to prove our
result about coverings and Kervaire complexes:

PROPOSITION 2 . 2 . If p : X —> X is a covering space and X is Kervaire then

X is Kervaire.

PROOF: Suppose <f> : T —* X is a spherical diagram over X. Then, since S2 is
simply connected, <j> lifts to a combinatorial map a : T —> X, ie <j> factors as poot. Now
X is Kervaire. Hence a : T —» X has redundant links. It follows from the previous
lemma that <j> has redundant links. Therefore, by Proposition 1.1, X is Kervaire. D

Note that the converse is not necessarily true. For example RP2 is Kervaire but

its universal covering space S2 is not.

Since the universal cover of an aspherical complex has second integral homology
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group being zero (by the Hurewicz theorem) we have the following consequence to the
above result:

COROLLARY 2 . 3 . If the Kervaire conjecture is true then all aspherical combi-
natorial two-complexes are Kervaire.

We now turn to diagmmatically reducible (DR) two-complexes. Let / : T —» X be
a spherical diagram over a combinatorial two-complex. We say that two distinct faces
(ie closed two-cells) Ai and A2 of T are opposite with respect to / if <?Ai n#A2 ^ 0,
and if there is an orientation reversing homeomorphism a : Ai —» A2 fixing Ai fl A2
pointwise with / o a = f\ Ai . Given such a pair of opposite faces, one can cut them
out and identify points on the boundary. This results in a finite number of two-spheres
joined together at certain vertices where the total number of faces has been reduced by
two. A combinatorial two-complex X is DR if every spherical diagram over X has a
pair of opposite faces. In [3] Gersten proves that a two-complex possessing a hyperbolic
weight function is DR, and in particular any surface (j^ S2,RP2) is DR. Furthermore
he shows that diagramatically reducible two-complexes satisfy the Reciprocity Law, a
condition stronger than being Kervaire.

We will need to make use of two simple facts about DR complexes. First, a subcom-
plex of a DR complex is DR. This is true as any spherical diagram over a subcomplex
can be viewed as a spherical diagram over the larger complex. Second, a disjoint union
of DR complexes is DR. This follows as the image of a spherical diagram is connected
and so has to he in one of the subcomplexes.

The following result is analogous to Proposition 2.2:

PROPOSITION 2 . 4 . If p : X —> X is a covering space and X is DR then X is
DR.

PROOF: AS in the proof of Proposition 2.2, any spherical diagram <f> : T —+ X lifts
to a spherical diagram a : T —> X, ie <f> factors as p o a. Now X is DR. Thus a has
a pair of opposite faces. But then the same pair of faces are opposite for <j>. It follows
that X is DR. D

In [4], Gersten shows that if X —> X is a branched cover, branched over the zero-
skeleton, and if X is DR, then X is DR. Combining this with our previous result yields
the following:

COROLLARY 2 . 5 . If p : X —» X is a covering space then X is DR if and only
if X is DR.

Our approach to showing that a complex is Kervaire or DR is to express its universal
covering space as an increasing union of subcomplexes, each of which is Kervaire or DR.
Formalising this yields the following:

LEMMA 2 . 6 . Suppose a non-compact combinatorial two-complex X is the direct
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limit of a family of combinatorial two-complexes Xa (where the maps are all combina-
torial).

(1) If each Xa is Kervaire then X is Kervaire.

(2) If each Xa is DR then X is DR.

PROOF: Let <f> : T —> X be a spherical diagram over X. Since T is compact,
<j> factors as ga o <j>a, for some a , where <j>a : T —> Xa is a spherical diagram and
ga : Xa —> X. If Xa is Kervaire then <f>a has redundant links. Hence, by Lemma 2.1,
<j> has redundant links. It follows that X is Kervaire. If Xa is DR then, by the above
comments, cf> has a pair of opposite faces. It follows that X is DR. Q

To illustrate our approach, we will give a proof that any surface F ^ S2,RP2 is

DR. We start with a Lemma:

LEMMA 2 . 7 . Suppose Y may be obtained from X by a sequence of cellular

one-moves and two-moves. If X is DR then Y is DR.

PROOF: AS noted above, a subcomplex of a DR complex is DR. Furthermore,
since spherical diagrams are combinatorial maps, cellular one-moves cannot affect the
property of being DR. Thus it suffices to consider the case of Y = X U A where A is
a two-cell attached to X so that it has a free edge. Now if <f> : T —> Y is a spherical
diagram then either its image lies in X or 0 - 1 ( A ) is a collection of opposite faces for
(f> (since T has no faces with free edges). In either case, our result follows. D

Since there are no spherical diagrams over a one-complex, we immediately obtain

a corollary:

COROLLARY 2 . 8 . If the combinatorial two-complex Y collapses onto a graph

then it is DR.

Our main result is the following:

PROPOSITION 2 . 9 . Let X be a combinatorial two-complex and X its univer-

sal cover. Suppose X is the ascending union of a family of finite subcomplexes Ya.

(1) If each Ya collapses onto a graph then X is DR.
(2) If each Ya is Kervaire then X is Kervaire.

PROOF: Apply Corollary 2.8, Lemma2.6, Proposition 2.4, and Proposition 2.2. D

It is now easy to see that any surface F ^ S2, RP2 is DR. We merely observe that
its universal cover, the plane R2, is an increasing union of disks and apply Proposition
2.9.

We close this section with a lemma that we will need below.

LEMMA 2 . 1 0 . IfY = X//T is DR, where T is a graph, then X is DR.
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PROOF: Suppose <j> : T —> X is a spherical diagram. Collapsing each component
of ^ - 1 ( r ) to a point yields a wedge of two-spheres mapping into Y. As Y is DR. there
is a pair of opposite faces, which pull back to opposite faces for <j>. D

3. MODIFYING SURFACES

We now turn to certain modifications of surfaces that do not affect homotopy type.
We aim to prove that they do not affect Kervaireness.

Let v[t) be a word in the free semigroup A generated by {t,t~x} We say that v{t)
is plus-null if the following holds:

(1) v(t) freely reduces to the null word.
(2) each initial segment of v(t) has nonnegative exponent sum.

There is a topological interpertation of plus-null words. Consider the universal
cover p : R1 —> S1. Take as cell structure for S1 the complex IC(t |). The induced cell
structure on R1 can be thought of as having vertices at the integers. Orient S1 and
K1 so that the oriented edge from 0 to 1 is a lift of the one-cell t. Then, considering
words in A as paths in 5 1 , v(t) is plus-null if and only if the lift, VQ starting at 0, is
a closed path contained completely in [0,+oo).

Now consider the standard presentation of the fundamental group G of the ori-
entable surface F of genus n:

So, in particular, the two-complex associated with the presentation is the surface F

itself. We thus can think of the generators x,- and yi as one-cells of F.

The insertion of plus-null words (in the free semigroup with basis {x{,yi} ) in
the presentation clearly does not change the homotopy type of the associated two-
complex. We would like to be able to prove that arbitrary insertions result in Kervaire
complexes. However, our method of proof does not apply to arbitrary insertions, but
only to a certain type. Let us now describe that type.

Denote by R the relator in the above presentation. Suppose that wi(t), u>2(0>...,

W4n(t) are words in the free semigroup generated by {t,^1} that freely reduce to t.

Assume that at least one of them is of one of the following special forms:

(1) w(t) = (t • a{i)) where a(t) is a plus-null word.
(2) w(t) = (t • a(t) t'1 t- b{t)) where a(t) and b(t) are plus-null words.

Returning to our topological approach, in case (1) one has that •uJo PI [0,1] = e where e
is the reduced path from 0 to 1. In case (2) one has WQ f) [0,1] = e • e~1 • e . This latter
path is, after identifying the vertices 0 and 1, the attaching map for the dunce hat.

https://doi.org/10.1017/S0004972700011643 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700011643


[13] Coverings and Kervaire complexes 13

We say that the word

s ~

is obtained from R by an admiisible modification (where Wj(z) is obtained by substi-
tution). Observe that S freely reduces to R. Say that the modification is of type t if
the special form (1) holds, of type tt~lt if (2) holds. Let Fs be the two-complex

2,--.,xn,yn | S)

With this terminology, our result becomes the following:
n

PROPOSITION 3 . 1 . Suppose, as above, R = J ] [xi,j/t] • Assume S is obtained

from R by an admissible modification.
(1) If the modification is of type t then Fs is DR (and hence Kervaire).
(2) If the modification is of type tt~1t then Fs is Kervaire.

PROOF: We will explicitly examine the universal cover of Fs and apply Proposition
2.9. We start by observing that the universal covering space F of F is the plane K.2.
Denote the coordinates of R2 by x and y . There is an induced cell structure on
F = R2 . The zero-cells of F correspond to elements of G. The one-cells of F are lifts
of the one-cells Xi 's and j/i 's. (We won't distinguish between one-cells and generators
from the presentation.) Assume things are arranged so that, for i = 1,2, a lift of the
one-cell Xi is parallel to the x-axis and in the positive x-direction. Similarily assume
that a lift the one-cell yi is parallel to the y-axis and in the positive y-direction. The
two-cells are lifts of the two-cell corresponding to R. Thus they are attached according
to lifts of R. Fs, the universal covering space of Fs, is gotten from F by merely
changing the attaching maps to lifts of the word 5 . We need to understand exactly
how to change the lifts of R into lifts of 5 .

We will consider first the case n — 1. Thus

5 = (w^x) • w2(y) • (w^x))-1 •

Assume that 1̂ 2(2/) = (2/' a(j/)) where a(y) is a plus-null word. Now F is tessellated
by rectangles with corners at the integral lattice points. We have oriented things so
that the attaching maps traverse the boundary of the rectangles in a counter-clockwise
direction. Take as basepoint the lower left-hand vertex. Consider the two-cell with
lower left-hand vertex being the point (j,k). In Fs there is a corresponding two-cell.
Denote it by S^j^. Its attaching map can be described as a product of four subpaths
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14 S.G. Brick [14]

corresponding to lifts of the four subwords w1(x),w2(y),(w3(x)) 1, and (wi(y)) 1.
The first subpath starts at the point (j,k) and ends at the point (j + l,Jb) remaining
entirely on the line y = k. So in particular, its intersection with the line x = j + 1 is
only a point (namely the point (j + 1,*)). In fact, one easily sees that the only part
of the path of the attaching map intersecting the line x = j + 1 in more than a point
is the subpath corresponding to the lift of the subword w2(y) = (y • a(y)).

ii

Figure 3.1 Figure 3.2

Now let if be a finite subcomplex of Fs- Choose (j,k) so that K contains the
two-cell S(jtk) but no cell £(»,,») with m ^ k and n ^ j . See Figure 3.1. It is then
immediate from the topological interpretation of a plus-null word that the edge

is free in K — that is, is not in any other two-cell of K. See Figure 3.2 where the
attaching map of S^tk) is pictured. Hence, we can collapse across S(jtk) and so, by
induction on the number of two-cells of K, it follows that K collapses onto a graph,
and thus, by Proposition 2.9, Fs is DR.

Now assume that

^2(y) = (y • a(y) • y'1 • y • b(y))

where a(y) and b(y) are plus-null words. Let K and {j, k) be as above. Set

Using the topological interpretation we see that we have a combinatorial extension (in
the sense of [1, 3]) L -» K -> X where X is the Dunce Hat. See Figure 3.3 where the
attaching map of S(jtk) is pictured.

Now the Dunce Hat is known to be Kervaire and by induction on the number of
two-cells L is Kervaire. Since combinatorial extensions preserve the Kervaire property
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Figure 3.3

[B, Proposition 3.4], it follows that K is Kervaire. And by Proposition 2.9 we have
that Fs is Kervaire.

If the word of special form is toi(x) then a similar argument applies to obtain our
result. In the case of 103 or ti>4 we change the orientation and proceed as above. This
handles the case n = 1.

If n > 2 then only the tesselation of the plane changes. The argument is essentially
the same. Alternately one can use extensions to reduce to the case of n = 1. We assume
that the word of special form is one of toi , . . . , 104. Let F be the one-complex consisting
of the edges X2,2/2 > • • • > xn j Vn • Then FT = Fsf/T is DR (respectively Kervaire) by the
initial case of n = 1. Applying Lemma 2.10 (respectively [1, Proposition 3.4] as above)
yields the desired result for Fs • Q

This result gives us a method for generating examples of DR and Kervaire com-
plexes. For instance, the two-complex mentioned above in the introduction,

K(x,y I *2z-V+V"x*z-*-1
!/-

m-12r>,

is thus seen to be DR and hence Kervaire.
Things are somewhat more complicated for modifications of non-orient able sur-

faces. The problem is that, in the standard presentation, some subwords are powers of
generators. We will deal with this in the next section when we generalise our ideas to
one-relator extensions.

4. ONE-RELATOR EXTENSIONS

Let X be a combinatorial two-complex. We say that a combinatorial two-complex
Y is a one-relator extension of X if the following holds:

(1) XCY,
(2) Y \ X = {e, A} where e is a one-cell and A is a two-cell,
(3) the attaching map, 9A, for A is cyclically reduced in the free product

structure of i^\{X U e),
(4) the attaching map 9A strictly involves e, in the sense that it is not

homotopic in X U {e} to a map into X.
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Note that this is almost equivalent, in the terminology of Howie, to saying that the pair
(Y,X) is an elementary reduction, the only difference being that we do not assume the
two-cells of X are all attached according to cyclically reduced words (see [6]).

We say that Y is a one-relator extension, by a non-power, of X if the attaching
map dA is not, up to homotopy in X Ue, of the form wn for some edgepath w and
some integer n ^ 2.

We say that a two-complex Z is staggered on one side if given any finite subcomplex

U C Z there exists an integer n ^ 0 and subcomplexes Ui for i = 0 ,1 , . . . ,n with

(1) UOCZW,
(2) Ui is a one-relator extension of Z7;_i for each i = l , 2 , . . . , n ,
(3) U = Un.

Howie, in [6], also calls such a complex Z reducible. Further, we will say that Z is
staggered on one-side without proper powers if each Ui is a one-relator extension of
Ui—i, by a non-power.

There is a stronger notion of staggering. Let us recall it (see [3]). A two-complex
X is staggered (sometimes called staggered on both sides) if the two-cells are attached
according to cyclically reduced words, and there are linear orderings of the one-cells
and the two-cells of X, both denoted by -< , so that whenever a -< /? are two-cells we
have

min{e|e £ da} -< min{e|e 6 8/3} and max{e|e 6 da} -< max{e|e 6 9/3}

where the min and max are defined via -< .

In Theorem 5.5 of [3], Gersten proves that a staggered two-complex satisfies the

Reciprocity Law and is hence Kervaire. We will prove a slightly sharper version in the

absence of proper powers.

Note that if Z is a two-complex then Z' = Z/Zw is DR if and only if Z is DR.

This is true because any spherical diagram over Z' pulls back under the quotient map

Z —> Z' to a spherical diagram over Z. This simplifies our proofs. We start with

the following result (Recall that a group is said to be locally indicable if each finitely

generated subgroup maps onto the integers):

PROPOSITION 4 . 1 . Suppose Y is a one-relator extension, by a non-power, of a

two-complex X. Assume that X has a single vertex and that TTJ (X) is locally indicable.

(1) If X is DR then Y is DR.

(2) If the universal cover X of X is Kervaire then Y is Kervaire.

PROOF: AS above, let Y \ X = {e, A} where e is a one-cell and A is a two-cell.

Suppose that X is DR. Let p :Y —> Y be the universal cover. We will show that

Y is DR. By Proposition 2.4 , this suffices. And by Lemma 2.6, we need only see that

every finite subcomplex of Y is DR.
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So let K be a finite subcomplex of Y. We use induction on UK — card{JO2) \

p~1(X) }. If nx = 0 then K = L U T where £ is a possibly disconnected subset of

p~*(X) and F C Y^. Now p~1(X) is a disjoint union of covers of X. Each cover of

X is DR, by Corollary 2.5. Since a disjoint union of DR complexes is DR, and since

a subcomplex of a DR complex is DR it follows that L is DR. Further any spherical

diagram over K has image contained in L since F is a graph. Thus such a spherical

diagram has to have a pair of opposite faces and it follows that K is DR in the the case

of nic — 0.

So assume the result is true for finite subcomplexes L C Y with nj, < UK • We

will show that K collapses onto a such a subcomplex.

By [6, Theorem 4.2], m(Y) is locally indicable. And by [2, Corollary 2], n^Y)

is left-orderable. So let -< be a linear ordering on iri(Y) that is preserved by left

multiplication (Note — in [2] they discuss right-orderings; of course any right-orderable

group is left orderable, apply the involution g \-> g-1).

Take the natural action of K\[Y) on Y to be on the left. Denote the action by • .
Thus the zero-cells of Y are in one-to-one correspondence with iri(Y) and the one-cells
and two-cells of Y correspond to g*e and g*a where g E 7ri(Y), e is a one-cell and a
is a two-cell of Y. The attaching map for the two-cell g * a is somewhat complicated.
Let e i-> [e] denote the natural map Y^ —> it\{Y) (recall that Y has a single two-cell).
Then the attaching map is described as follows:

d(g*a) = (g*ai)((g[a1])*a2)--- ((g[aia2 .. .ai\) •o i + i ) • • • (g[ai . . .am_!]*am)

where 9a = 0102 . . . am.

Let 1 * dA — &i 62 . . . bk • We claim that the one cells

&i, [bi] * b2,..., [6162 • • • k] * bi+1,..., [61. . . fejt—1] • h

are all distinct. This is true as otherwise we could conclude that some subword

[bi...bj] = 1 in Ti (y) contradicting [6, Corollary 3.4]. Further it follows that the

edges in the boundary of g * A are all distinct.

Pick t so that [61. . . 6j] is maximal under -< among those t with 6<+i = e or

bi+i = e. Since the edges are distinct this is a strict maximum. Call this index imax.

As 7Ti(Y") is left ordered, it follows that <7[&i... &jmal] is a strict maximum under -<

among g[b\ ... 6,] with 6»+i = e or 6j+i = e.

Choose g £ 7 r i (^) which is maximal under -< subject to the condition that

g*e C d(h * A) , where e = e or e = e, for some h* A C K. By the above, we know

that g = h[bi... &imOE]. We claim that g • e is a free edge in K. If not then there are

elements /ii,/i2 G i*i{Y) such that hj*AcK and g*e C d(h,*A) for j = 1,2. By
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our choice of g we must have g = hj[bi... bimax] for j = 1,2. It follows that /ii = h2

and thus g • e is a free edge in if. Collapsing across this edge reduces njc and by
induction, using Lemma 2.7, K is DR. And hence Y is DR.

Now suppose that the universal cover X of X is Kervaire. We will show that
the universal cover Y of Y is Kervaire. By Proposition 2.2 this suffices. The proof is
identical to that above, except that we use [1, Proposition 4.3] in place of our Lemma
2.7, and except for the initial case of induction, that is, when UK = 0. So suppose
K = L U F where L C p~*(X) and T C Y^ is a graph. As a spherical diagram over
K has image in L, it suffices, by Proposition 1.1, to show that L is Kervaire. Also,
since a disjoint union of Kervaire complexes is Kervaire, and since a subcomplex of a
Kervaire complex is Kervaire, it suffices to see that each component C of p~1(X) is
Kervaire. By the Freiheitssatz for locally indicable groups (see [5, Theorem 4.3]), it
follows that the inclusion X CY induces a injection on fundamental group level. But
then p \ C : C —y X is the universal cover, which by assumption is Kervaire. 0

Since one-complexes are DR, we immediately get the following corollary about
staggered complexes.

COROLLARY 4 . 2 . Ii Z is a, two-complex that is staggered on one side without
proper powers then Z is DR.

We now address modifications of one-relator extensions. We will change the at-
taching map of the extra two-cell while preserving DR or Kervaireness. Initially, the
attaching map is a cyclically reduced word in the edges of Y. We will restrict ourselves
to a special type of extra two-cell. We need a few definitions.

Let W be a cyclically reduced word in the free group on e, ej, e2, . . . , ej. Consider
W as a cyclic word. A full piece will be a subword w of W that involves only one
generator (or its inverse) and is maximal with respect to this property. So for example
the full pieces of ee2f~3ee are e2, f~s, e, and e2. We will refer to a word such as e2

as a full e-piece, a word such as f~3 as a full /-piece, and so on. So each such word
W, after perhaps a cychc conjugation can be written as a product of pieces

W = W1{f1) W2(f2)-Wp(fp)

where W,-(/i) is a full /^-piece (so it is of the form /,-"*). We will replace each piece
W{ with a possibly unreduced word that freely reduces to Wi. We will assume that W
has only one full e-piece, say W\.

View words w{e) in the free semigroup A generated by {e,e-1} as circuits in the
one-complex S1 = K.{e\). Consider the universal cover K of 5 1 . The vertices of M
correspond to the integers. Orient things so that the edge from i to i +1 is a lift of the
one-cell e. Denote it by £,-. As in Section 3, let vio be the lift of w(e) to R that starts
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at the vertex 0. Consider the word en where n is positive. An admissible replacement

of e n is a word w{e) in A that freely reduces to e n , such that WQ only involves e, for
t ^ 0 and one of the following holds:

(1) t u 0 n{e 0 } = eo
(2) w0 n {eo} = Co • eo"1 • £o

In the first case we call u a replacement of type t, in the latter case a replacement

of type tt~1t. An admissible replacement of e m , where m is negative, is simply w^1

where w is an admissible replacement of e'ml.

So given a cyclically reduced word W in the free group on e, e.\, e%,..., ej, we write

W = W1{e)-Wi(fa)---Wp{fp)

where, for each i ^ 2, /; £ {e, ei, e2,. . . , ej} and Wi(/j) is a full /j-piece. Assume that
we have that Ui(e) is an admissible replacement of W\{e). And assume that for i ^ 2
Ui(fi) freely reduces to Wi(f). Then we will call the word

U = U1(e)U(f2)--U(fP)

an admissible modification of W. We will call U a modification of type t if the subword
U\ is of type t. Otherwise, U is of type tt~1t.

Suppose that Y is a one-relator extension of X by a non-power with extra one-cell
e and two-cell A. The attaching map for A is represented by a cyclically reduced word
in the free group on the edges of Y. Assume that the attaching map has only one full
e-piece. We say that Z is obtained from Y by an admissible modification if

Z = {A'}U(Y\{A})

where the attaching map U for A' is an admissible modification of the attaching map
W for A. We say that the modification is of type t or tt~1t according to which type
U is. We adapt the proof of Proposition 4.1. Because we are assuming that there is
only one full e-piece we can omit the local indicabillity requirement.

PROPOSITION 4 . 3 . Suppose Y is a one-relator extension, by a non-power, of
a two-complex X with a single full e-piece. Assume that X has a single vertex. Let
Z be an admissible modification of Y.

(1) If X is DR and Z is of type t then Z is DR.
(2) If the universal cover X of X is Kervaire, and Z is of either type, then

Z is Kervaire.

PROOF: The proof is a simple modification of the proof of Proposition 4.1. It
suffices, as it did above, to prove by induction on nx — card-f-K^2) \p(~1\X) } that

https://doi.org/10.1017/S0004972700011643 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700011643


20 S.G. Brick [20]

each finite subcomplex K of Z is DR in case 1 and Kervaire in case 2. The argument
given in the proof of Proposition 4.1 applies if TIK = 0 . So assume the result for
sub complexes L C Z with TIL < UK •

Take a component I of p~1(e) that has intersection with K larger than a collection
of vertices. This component can be identified with the real line with vertices at integral
points. Denote the edges of t by ej = [i,i + 1] where i £ Z. We assume that things
are orientated so that e lifts to some e; (as opposed to some ê~ ). Further assume
that the full e-piece of the extra two cell of Y has positive exponent (the argument for
negative exponent is similar; merely reverse the orientation of I). Since K is finite,
there is a left-most edge, ej, in I D K. And there is a unique two-cell A in K with ej
lying in dA (see Figure 4.1). Since the modification is admissible, either e,- is free in
K or we get an extension of some L, with nj, < TIK , by the Dunce Hat. In any case,
as in Proposition 4.1 we obtain the desired result. D

K

Figure 4.1

As mentioned in Section 3, the preceding handles modifications of non-orientable
surfaces (other than the projective plane). Also, it is clear that we can enlarge the class
of admissible modifications once we know more equations in one unknown, over groups,
that can be solved.

5. A CONJECTURE

We close with the following conjecture (see Proposition 2.9):

CONJECTURE. Let X be a combinatorial two-complex and X its universal cover. Sup-
pose that X is DR. Then X is the ascending union of a family of finite subcomplexes,
each of which collapses onto a graph.
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