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1. Introduction

Clay (3), Johnson (5) and Krimmel (6) have each considered the near-rings with
identity on dihedral groups. Krimmel actually generalised the class of dihedral groups
and investigated the class of finite non-abelian groups with a cyclic normal subgroup
of prime index: we shall call this class X. Krimmel considered the near-rings with
identity that might be denned on members of 31 and he determined the subclass of
groups in 3C which support near-rings of this kind. He also managed to calculate the
number of non-isomorphic near-rings involved for certain cases. His methods were
essentially combinatorial, and his results were expressed in terms of various integers
which characterised the individual members of 3C. Certain features of this work led us
to investigate the structure of near-rings on members of % from a more algebraic
point of view and thereby to complete and extend Krimmel's programme. Part of the
work in this paper formed the basis of the second author's thesis (7). We should like
to thank Dr. J. Krimmel for permission to include some of his results, and Dr. J.
Meldrum who detected an error in our original formulation of Theorem 7.1.

1. Preliminaries

A (left) pre-near-ring (p.n.r.) is an additive group (H +) together with a left-
distributive binary operation: a(b + c) = a-b + ac for a,b,c E.H. A p.n.r. is zero-
symmetric provided that OH — {0}. 0> is the class of non-isomorphic pre-near-rings.
All our structures will be left-distributive so, to accord with this, if G is a group and
g EG and n is a positive integer, we will write the sum g + g + g + --+g(n times) as
gn (rather than the more usual ng).

A (left) near-ring is a p.n.r. (// + •) in which ( H ) is a semi-group. •#", is the class of
zero-symmetric near-rings with identity, W\ is the class of non-zero-symmetric
near-rings with identity.

Suppose (H+) £ 0*. The group (H+) is then said to host the p.n.r. (H + -) and we
write (H+) G Gp{9>). If <€ is a subclass of 0*. then the cardinality of the subclass of <£
consisting of those non-isomorphic p.n.r. hosted by the group (H+) is called the host
number of H in •# and written [H: •#]. Let h be some fixed member of H and %> some
class of p.n.r. with identity elements. The cardinality of the class of non-isomorphic
p.n.r. (//+•) which are members of *# for which h is the identity element is called the
host number of H in <€ with identity h and written [//:<£; with identity h\. Clearly
[H:<€]^[H:<€; with identity h].
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70 R. R. LAXTON AND R. LOCKHART

Let (H+-)E.&> and suppose that 6 is an automorphism of the group (//+). The
p.n.r. (//+*) obtained by writing a * b = (a#~' • b&~x)6 is called the p.n.r. derived from
(// + •) and 0. (H + -) and (// + *) are isomorphic. They are distinct provided that there
exist elements a, b such that a • b^ a * b. For any automorphism 0, [//:<#; with
identity /i] = [//: <g; with identity (h)6].

Our primary interest is in near-rings, so for us pre-near-rings represent simply the
first part of the problem of constructing near-rings upon a given group. However, they
do arise naturally in, for example, projective geometry (4), and as matrices over
near-fields (and, more generally, as matrices over any near-ring hosted by an abelian
group). Ideals of p.n.r. are, of course, the kernels of p.n.r. homomorphisms. They
have the same structure as ideals of near-rings. When H is zero-symmetric and / is a
right ideal, then J • H C J.

2. Pre-near-ring construction

Throughout this paper we will only consider finitely presented groups H with a
presentation of the form

H = (Xl,...,xr:RuR2,...,Rs), (2.1)

where xt,...,xr are generators and Rt,..., Rs are relations. We write the elements of
H as words w = w(xi,...,xr) in the generators Xi,.. . ,xr

Suppose h\,...,hr are elements of H; then w(h\,.. ., hr) denotes the member of
H obtained by replacing each occurrence of Xj in w with an occurrence of hj.

Let F = ( « ! , . . . , <cr) be the free group on the symbols an,...,xr and <f> the
epimorphism F-*H defined by x.\4> = X; for all i = l , . . . , r . If we write J?; =
Rj(xt,..., <cr) for 1 =£/ =£ s, then the normal closure N of (Rit..., Rs) is the kernel of
(j> and FIN = H. Let iJ/:F-*H be a homomorphism such that Nip = {0}. Define a
mapping 6\-.{x\,. ..,xr}-*H by (JC;)0I = (as,)^ for all /; then we may extend 0\ to a
well-defined endomorphism 0: H-*H such that <\i = <f>0. Conversely, all endomor-
phisms 6: H -*H can be thought of as arising in this manner.

Definition. Let H be a group with presentation (2.1). An r-tuple (hu h2,..., hr) of
elements of H is said to satisfy the p.n.r. construction conditions for H if
/?,(/«,,/i2,...,/ir) = 0 for l ^ / ^ s .

The construction conditions depend on the particular presentation of H we choose
to work with, and we are at liberty to select the most convenient presentation or even
to use two simultaneously. It is easy to find r-tuples which satisfy the construction
conditions; (0 ,0 ,0 , . . . ,0), for instance. Our first theorem is a consequence of the
simple observations we have made already.

Theorem 2.1. Suppose that H is a group with presentation (2.1) and we associate
with each hGH some r-tuple (/I[JC,], . . . , h[xr]) of elements of H which satisfies the
p.n.r. construction conditions for the group H. Then the product (*) defined on H by
putting

h * Xj = h[Xj] for l ^ j s r
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and
h*w = w(h[xi],... ,h[xr])

for each w = w(X],..., xr) in H, is a well-defined p.n.r. product hosted by H. All p.n.r.
hosted by H arise in this manner.

The second part of this definition of product merely extends the product from the
generators x, to the whole of H; we normally omit reference to this obvious extension
in applications of Theorem 2.1.

Theorem 2.1 has been found useful in connection with the problem of calculating
the p.n.r. hosted by groups of low order. The theorem was used in (7) to determine the
p.n.r. with identity hosted by the quaternion group of order eight. On the other hand,
in the near-ring host problem, this theorem is used in conjunction with the asso-
ciativity subgroup to restrict attention to the behaviour of a set of additive generators
of the group in question. This usually makes the problem of calculating host numbers
much more manageable.

3. The associativity subgroup

Suppose that (H+) is a pre-near-ring. The subgroup A(H) =
{h G H :(a • b) • h = a • (b • h) for a, b G. H} is called the associativity subgroup of H, it
is easy to check that A(H) is a subgroup.

Theorem 3.1. Suppose H is a group with presentation (2.1) and that (H + -) E.SP.
(H+) is a near-ring if and only if for all w,hE.H and ls=;=£r, (w • h) • xt,=
a) ( h - Xj).

The proof of this theorem is straightforward. Notice that (H •) is associative if and
only if each generator of H is in A(H). Simple though it is, this result is very useful
and it will be used in what follows. Of course, if (// + •) has an identity then it will lie
inside A(H).

4. The Krimmel class of groups

The class 3C consists of those groups H with a finite presentation of the form

H = (e, /x: ixm — ei, en, - fj. + e + y. - ej) (4.1)

where i, /, are positive integers, 1 < j < n, 0 « i < n and m is prime.
To avoid triviality we insist that jm = l(mod n) and i(j — l) = 0(mod n). It will be

seen that each group H 6 3Sf has exponent n or mn. In the latter case, we apply the
well-known result that the additive order of the multiplicative identity element of a
finite near-ring is equal to the group exponent to see that Hg. Gp(Jfx U W\). Thus we
may assume that n is the exponent of H throughout the remainder of the paper.

In his thesis (6) Krimmel considered a group H with a presentation of the form
(4.1) and calculated [H:Wt; with identity e], and [H:Jft; with identity e] for certain
cases only. His methods were combinatorial and he worked with the exact sequence
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of groups (e)^>H-+Hl(e). We will calculate the host number [H:Nu with identity e]
for all H E.X, thus completing the project. Our methods rely upon an extensive
investigation of the structures of members of *Vi hosted by groups H in % and, in
particular, on an exact sequence of near-rings / - » / / - • HI I, whose construction we now
describe.

In all that follows, H is a member of % with presentation (4.1) and exponent n.

Theorem 4.1. Let (// + •) G V̂, have identity e.
(a) There is a unique prime divisor p of n such that (ep)H = (ep).
(b) The ideal I = (0:(ep)), which annihilates (ep), has order mp.
(c) The order of the commutator subgroup of H is p.

Proof, (a) Let the prime decomposition of n be pf'pf2 • • • P°"- If ePi " M £ (e) f° r aH
i, 1 =£ i =£ v, then by associativity it follows that epfep"2... ep%° • fig. (e); but

epVep? • • • epl" • /x = en • /x = 0 £ (e).

Hence there is some prime divisor p of n for which ep • /J, G (e). This means that
(ep) • H = (ep). The uniqueness of p will follow from (c) proved below.

(b) Since H has order nm and (ep) = ep • H = HI I, it follows that / has order mp.
(c) This isomorphism also shows that [H, H] C /. But the commutator is also in

(e), since Hl(e) is of prime order, and so we may write [H, H] = (ed) for some d
which is a divisor of n. But then 0 = ep • ed = epd, so that pd = n and consequently
[H, H] has order p.

The commutator subgroup is of considerable importance to us in our in-
vestigations. The prime p does appear in Krimmel's work, but was not linked by him
to the structure of H. Actually, Krimmel calculated [H-.M't] for those HE.9C for
which m^p; these are the non-nilpotent members of % which lie in Gp(Nx). In the
present paper we attend to the outstanding nilpotent cases (when m = p). Our
theorem in (7) that if H G VI then

\H:Nj UW,] = [H:f£iUW.i; with identity e]

means that our (and Krimmel's) policy of making the element e the identity of the
near-ring represents no loss of generality. We shall not give the proof of this theorem
here; it is lengthy though not particularly difficult. It is sufficient for our present
purposes to prove this result when the group is nilpotent (see Lemma 4.7 below).

Our methods are quite different from Krimmel's. For completeness we give a short
summary, an algebraic reformulation, of some of his results of (6).

Theorem 4.2. (Compare Krimmel (6), Theorem 3.1)
Let H G 3if. / / G Gp(Wi) with identity e if and only if
(a) the exact sequence (e) -> / / -» Hl(e) splits,
(b) the commutator subgroup of H has order m,
(c) when m = 2, 4 divides nil.
If these three conditions hold, then [H: W^ = 1.
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Theorem 4.3. (Compare Krimmel (6), Theorem 3.2)
Suppose H E.JC is non-nilpotent. Then H 6E Gp(Jft) with identity e if and only if
(a) the exact sequence (e)-> H -*Hl(e) splits,
(b) the commutator subgroup has prime order p^m. If ffGGpW, then

The above theorem has as its corollary the result that non-nilpotent dihedral
groups Dn lie in Gp(Jf\) if and only if n = 2p where p is a odd prime and then
[D2p :*V|] = 1. This theorem was also proved independently by Johnson (5). The only
nilpotent dihedral host of members of J/~i is D4 and Clay (3) used computer methods to
prove that [DA:Jfi] = 7. It is, in fact, possible to prove this result using the methods of
this paper. To complete the story for dihedral groups, we proved in (7) that if D is the
infinite dihedral group, then [D: JV,] = 1 and [D: Wt] = 0.

Theorem 4.4. (Compare Krimmel (6), Theorem 3.3)
Let H 6 5if be nilpotent. H G. Gp(Jit) with identity e if and only if
(a) the exact sequence (e)^>H -*HI(e) splits,
(b) the commutator subgroup of H has order m.

The host number [H:JV | ] remains to be calculated when H is nilpotent. We do this
in this paper. We do not use any of the last three theorems, though we do find useful
the following one.

Theorem 4.5. (Compare Krimmel (6), Theorem 3.4)
Let H be a nilpotent member of 9if. Suppose that (H + •) G N, with identity e with

n = m"n' where (m,n')=\. Each of (ema) and (/J., en') are two-sided ideals and
(H + -) is a direct sum of them as near-rings.

As the sub-near-ring (em") mentioned in 4.5 is hosted by a cyclic group, it is
isomorphic to the ring of integers modulo n'. The group (/j,, en') is actually a nilpotent
member of % and has order ma+x with a & 2. Theorem 4.5 says that the Sylow
decomposition of the nilpotent group H goes over to near-rings. Thus, we need only
study m-groups in JC and do so for the rest of this paper. Such groups have a
presentation of the form

H = (e, fji.: em", fj.m, —fi + e + /x - e(l + m""1)), m a prime, a s= 2. (4.2)

We will assume always that m + a > 4, since the case m + a = 4 is the dihedral
group D4 already considered by Clay (3). The following is immediate:

Lemma 4.6. The order of H is ma+l and (em"'1) lies in the group centre. The
exponent of H is m" and elements of H can be written uniquely in the form pr + es
where 0*£r<m and 0 =£ 5 <m". For any integer I,

i/xr + es)l = firl + es{l + rni°-'/(/

Next follows the result we mentioned earlier (see above, Theorem 4.2):
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Lemma 4.7. [H: Jft] = [H: JV, ; with identity e\.

Proof. The only candidates for the identity of a near-ring are those elements of H
with order equal to the group exponent. We will prove that all such elements are
images of e under appropriate automorphisms of H. Consequently it follows that each
member of Jf\ hosted by H will be derived from some near-ring with e as identity.

Let ft£/f have order m". We can assume h$£(e) so we may write h = /xr + es.
Now (fjLr + es)m = es(2 + 2"~lr) for m = 2 and (yur + es)m = esm for m^2. So a
necessary and sufficient condition that fir + es has order m" is that (s, m) = 1. Because
1 « r < m, we have fj.& (l^r + es) and therefore there is an automorphism 3> of H such
that e<t> = fi.r + es and ju.<J> = /x when (s, m) = 1.

As we have explained earlier, this lemma permits us to restrict our efforts towards
defining near-ring products on H which have identity e. Finally we note

Lemma 4.8. The p.n.r. construction conditions for a p.n.r. hosted by H with e as a
right identity are that for all h G H

(a) h • e = h,
(b) (h • ix)m = 0,

and
(c) -(h

5. The structure of near-rings hosted by m -groups in JK

Throughout this section (// + •) is a zero-symmetric near-ring hosted by the group
(H+) with presentation (4.2) and identity e. We shall investigate the structure of

Lemma 5.1. The annihilator ideal I = (0:(em)) is not cyclic if m is odd. We may
assume that I = (/A + el"'1) in cyclic cases and I = (/x, em"~x) otherwise.

Proof. / has order m2 and so is either a cyclic group or a direct product of two
cyclic groups. We know that / contains a member of the coset {/x + (e)} so when / is
not cyclic we can assume that / = (/u., em"~'). If / is cyclic then em • fi = e\ma~l where
l « A < m , so / is generated by ix-ekm"'1. Take 0^s<m", 0=£r<m and put
(fir + es) • (/* - e\m"~2) = (/x - e\m"'2)g for some 0 « g < m 2 . (/x - e\m"~2)m =
— eXma~l, so (,/j.r + es) • (-eAm°"') = —e\m"~lg and thus s = g(mod m).

Also -(fi-eXma-2) + e + (fji-e\ma-2) = e(\ + nia-1), therefore -(/J. - e\ma'2)g +
fir + es + (fx — ekm"~2)g = (fir + es)(l + m"~l), which reduces to the congruence sg = s
(mod m).

The two congruences modulo m express the distributivity in the near-ring (and
correspond to the p.n.r. construction conditions). For them to hold simultaneously for
arbitrary s in the range given we must have m = 2. But if m = 2, then A = 1 and
(/A - e\m"~2)3 = fx + e2"'2, which generates /.

We introduce the following notation.
(a) a, T are integers and A, B, C members of the annihilator ideal / in H.
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(b) We write or = or (mod m^1), and ar = or (mod m"), where 0 =£ or < m"'1 and
0 =s CTT < m", and put Wl(a, T) = or - or.

(c) We write (a, A, B) for (ea + A) • B.
(d) Finally, the symbol y is ft when I = (ft, em"~l) and /* + e2"~2 when / =

(M + *2"-2>.
We begin by deriving various properties of (a, A, B). The following result expres-

ses the associativity law in the near-ring (H+).

Lemma 5.2. (a, A, (r, B, C)) = (or, eWl(a, f) + [e<r, -A] T(T - l)/2 + AT + (cr, A, B),
C), where [ea, —A] = —ea + A + ea — A.

Proof. It is proved by first establishing

(ea + A) • (ef +B) = ear + eWlia, f) + [ea, -A]f(f - l)/2 + AT + (a, A, B) (5.1)

and then selecting an integer y and expanding (ea + A) • (ef + B) • (ey + C) in two
ways.

Lemma 5.3. / / / is not cyclic and (a, nr + esm"~', /t) = /u./ + ek, then fc^O
(mod m""1) and al = a (mod m).

Proof. Lemma 4.8(b) implies k^O (mod m'"'). Since ea + fir + esm"~l =
fir + ea(\ + rm"~l) + esm"'1, we may apply 4.8(c) to obtain

-pi + /j,r + ea(\ + mi""1) + esm"'1 + /j.l = fir+ ea(\ + mi""1) + esm"'1 + eam"~ll.

This reduces to the required congruence.

Corollary. / / / is not cyclic and (a, m) = 1 then (a, A, /J.) = ft + ekm"'1 for some
0=£fc<m.

Lemma 5.4. / / / is cyclic and (a, A, n + el"'1) = (fi + e1a~2)k for some 0 *£ k < 4,
then k = a (mod 2).

Proof, (ea + A) • (n + e2"~2)2 = (fi + e2"~2)k2 reduces to the required congruence.

The following lemma is a simple consequence of our assumptions and definitions.

Lemma 5.5. (a) (1,O,A) = A,
(b) (sm,0, A) = (sm, ekm"'\ A) = 0 for all integers s and k,
(c) (a, A,B + C) = (a, A, B) + (a, A, C),
(d) (a, A, ekm"-1) = eakm"-'.

Lemma 5.6. (a) (a, A, (1, ekm"'\ y)) = (cr, A + eakma~\ y),
(b) (a, A,(\,B, y)) = (a,A + (a, A, B),y).

Proof. We merely apply Lemmas 5.2 and 5.5.

Lemma 5.7. / / a = 0 (mod m), then (a, A, y) e (em"'1).
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Proof. 5.4 covers the cyclic case. In the non-cyclic case 5.5(b) permits us to
restrict our attention to the situation in which A£ (em"~l). Thus, put A = fiw + esm"~l

with l=e<i><m. Suppose {<r, A, n) = pr + ekm"~l with l=£r< /n . We may choose
1 ̂  t; < m such that rv = —w (mod m). By the corollary to Lemma 5.3, (1,/tv, fi) =
H + etm"-\ Therefore,

{a, A, (I,) = {a, A, fi + etm"'1), by Lemma 5.5,
= {a, A, (l,nv, ft)) = {a, A + {a, A, fj.v), ft), by Lemma 5.2,
= (a, fi.(w + rv) + e{s + kv)m"~', fi) = 0, by Lemma 5.5.

Lemma 5.8. / / o- = 0 (mod m), then for all integers s (a, A + esm"'\ y) =
(<r, A, Y).

Proof. We write (a, A, y) = elm"'1 and observe from Lemmas 5.3 and 5.4 that
(1, B, y)£(ema-1). Now, (a, A, y) = (<r, A,(\, B, y)) = (a, A +(cr, A,B), y).

First suppose MO (mod m), Choose l=£r<m such that / r= l (mod m) and on
putting B = yr we obtain (a, A, y) = (a, A + em"~l, y).

Now suppose / = 0 (mod m). If, contrary to our claim, (cr, A + esm"~\ y) ̂  0 for
so'me s, we could put A'= A + esm"~l and apply our first supposition to obtain a
contradiction.

Notation. An integer a (0 < a < m""1) will be written in the form a — m'q where
1 =£ q < m"~l~s with (q, m) = 1 and 0 s s « a - 2 .

Lemma 5.9. Let l « q < m " " H , ( ( } , m ) = l , l « j « f l - 2 . / / 0 « r < m , then
(m', yr, y) = {m'q, yrq, y).

Proof. We use Lemmas 5.2, 5.3, 5.4 and 5.5 to obtain (m',yr,y) =
(m',yr,(q,y,y)) = (m'q,yrq + (m',yr,y),y) = (m'q,yrq,y), with this last equality
coming from Lemma 5.8.

Lemma 5.10. / / (m't yr, y) = ekma~\ then {m'q, yr, y) = ektpn°-\ s 3= 1.

Proof, ekqm"-1 = {q, y, ekm"-x) = {q, y, {m', yr, y)) = {qms, (q, y, yr), y). Since
(<?> y. yr) £ {yr + («m'"')}, it follows that {qm', yr, y) = ekqm"'1, as required.

Lemma 5.11. Suppose {m', y, y) = ekm"~l and 0<q<rn. Then {m',yq,y) =
etrrt"'1, where k = qt{mod m).

Proof. If m = 2, then q = 1 and the result is obvious. If m > 2, then
{m'q, fiq, fj.) = ekm"~l, by 5.9. Hence Lemma 5.10 implies that k = qf(mod m).

Lemma 5.12. If m*2, then (0, /xr, /*) = 0 for all 0 « r < m .

Proof. We write (0, /xr, (/,) = ekm"'1 and fix 0<q<im. Then ekqm"'1 =
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(q, A,(0, fir, /u.)) = (0,(q, A, fir),fi) = (0, fir, fi) = ekm"'1. Thus the congruence kq = k
(mod m) is valid for all 0 < q < m, which implies that k = 0 (mod m) when m * 2.

Lemma 5.13. (a) If rk = \ (mod m), then

(r, A, (1, ekm"-\ y)) = (r,A + em"-1, y).

(b) / / the ideal I is non-cyclic, then

(\,esm"-\ fi) = (l, em""1, fis)- fi(s -I)for0<s<m.

Proof. For (a) observe that (r, A, (I, ekm"~\ y)) = (r,A + erkma~\ y), whilst for (b)
(1, em"'1, (1, em"'\ fi)) = (1, em"~l + em"'\ p). The result then follows by induction.

Lemma 5.14. If m=2, then (1, e2a~\ y) = y.

Proof. By an appeal to Lemmas 5.3 and 5.4 we have only to show that

(1) Suppose that (1, y, y) = y + e2tt~l and (1, e2a'\ y) = y + e2a"'. Then
(1, e2"-\ y) = (1, e2°-\(1, y, y) + rf-1) = (1, « 2 - ' + (1, e2-\ y), y) + e2<-'>= (1, y, y) +
e2"-' = y.

(2) Now suppose that (1, y, y) = y and (1, e2a~\ y) = y + e2'~l. Then (1, e2a~\ y) =
(1, e2"-\ (1, y, y)) = (1, e2"-' + (1, e2a-', y), y) = (1, y, y) = y.

Lemma 5.15. / / m = 2, f/ien {a, A + e2"'\ y) = (a, A, y).

Proof. 5.8 permits us to assume that a = 1 (mod 2). But then (a, A, y) =
(a, A, (I, e2"-\ y)) = (a, A + e2a'\ y).

From elementary number theory we recall the fact that each of the 2"~2 units of
the ring of integers modulo 2""1 is of the form +(5J) (mod 2"~') for some unique

Lemma 5.16. Let m=2. Suppose a = 1 (mod 2), (5,0, y) = y + ek2'~l, and
(-5,0, y) = y + el2"~\ where 0 =£ /, k < 2. Then

(a) (a, 0, y) = y when a = 1 (mod 8).
(b) (a, 0, y) = y + ek2"'1 when a = 5 (mod 8).
(c) (a, 0, y) = y + e/2""1 when a = 3 (mod 8).
(d) (a, 0, y) = y + e(l + k)2a~* when <r = l (mod 8).

Proof. When a = 3, 5 = 1 and the result is obvious. We therefore assume a s» 4.
(52,0, y) = (5,0, (5,0, y)) = y. If s is some positive integer, (5'-\ 0, (5,0, y)) = (5f, 0, y)
and, using Lemma 5.15, induction on s proves that (5J, 0, y) = y if s = 0 (mod 2), but
(5J, 0, y) = y + ek2"~l if s = 1 (mod 2). This proves (a) and (b). (c) and (d) are proved in
a similar way.
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Lemma 5.17. Let m=2. Suppose <r = 1 (mod 2) and (1, y, y) = y + et2"'\ Then
{a,y,y) = {a,0,y) + et2a~x.

Proof. This is immediate, since (a, y, y) = (a, (a,0, y), y) = (cr.O, (1, y, y)) =

In what follows n is to be a primitive root modulo m2, with 1 < IT < m, when m is
an odd prime. Thus for all positive integers b, TT generates all the units modulo ms.

Lemma 5.18. Let m be an odd prime. Suppose r, s are positive integers and
0 =£ s < m. Then (r, A + esma~\ fi) = (r, A, fi).

Proof, r = 0 (mod m) is catered for by 5.8, so we can assume that r^O (mod m).
Put {TT, 0, fi) = /A + ekm"~l, as we may by the_corollary to 5.3; then (TT2, e3R(ir, TT), /U.) =
(7r,0,(7T,0, fi)) = ft + ekm"'1 + ekirma-\ [eir2, -eW,iT, TT)] = 0, therefore Lemma 5.2
gives (ir\ e2R(ir2, IT) + e3R(n, >rr)n, /x) = {TT2, eWl(Tr, TT), {TT, 0, fi)) = fj, + ekma~x +
ekirm"'1 + ekTr2m"~l. By a simple induction, we obtain our basic equality,

{TTS, eWir*~\ TT) + em{TTs~2, TT)TT + • • • + eWl{-7T, TT)TTS-2, ft)

= ft + ekma~\\ + TT + TT1 + • • • + 7TJ-').

But S^TT 1 - ' , TTW-' = {TT*2J_? - 7r J- ' +V'~' , _jo eTH{^s~l, TTW~X = e{irs-' • TT -
TTs~i+i)Tr'~u, hence e{1siZ} 3R{TT'~1, TT)™') = e{TTs - TTS). Accordingly, we amend the basic
equality to obtain

{TTS, e{ns
 -V°),IJL) = IX + ema->k{irs - 1)/(TT - 1). (5.2)

Fix <f> = (f>{ma~l) = m"~2{m — 1) and observe that because n is a primitive root
modulo m", TT*^ 1 (mod m"), although n* = 1 (mod ra'"1). Thus
e Ifj} TK.ir*~', ir)^1'1 = e(ir* - I) ^ 0, so we may write e{TT* - 1) = e^ima'x with 0 <
\\i<m. 77* = 1 (mod m) thus ema~\Tr* - \)I{TT - 1) = 0, and putting s = <f> in 5.2 gives
us {\,eij/ma-\ti) = lx.

If we write (1, ema~\ /x) = /u. + eum"~l for some 0 =£ M < m, we can use 5.13(b) to
obtain (1, e\fima~\ p) = fi + eu4m"~', which implies u = 0. We know now that
(1, etm"~l, n) = fi, for all 0 =£ t < m. If 0 < s < m we can choose 0 < t < m so that rt = s
(mod m), then

(r, A, M) = (r, i4, (1, efm"-1, ft)) = {r,A + ertm"-\ /*) = (r, A

This completes the proof.

Lemma 5.19. {a, A, (T, B, C)) = {<rr, AT + {a, A, B), C).

This relationship is the basic expression of the near-ring associativity law. It
follows from Lemma 5.2 together with 5.15 when m =2 and 5.18 when m ̂ 2 . The
following result is immediate.

Lemma 5.20. Let m be an odd prime. Then (1,/AT. A<-) = (1, M, pir) —/a.(r-1). / /
f^ 0 (mod m) then {a, 0, (1, fir, fj.)) = {a, fir, fi).
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Lemma 5.21. If m > 3, then
(a) (TT, /A, ti) = (TT, 0, tt),
(b) (l ,tt,tt)=tt,
(c) w/ien o-^ 0 (mod m), (er, /A, /A) = (a, 0, /A).

Proof. Put (ir,O,ti) = fi + ekm"-i, {TT, it, ti) = /A + eifim"~\ (1, tt.tt) = tt + etm"-\
where O^k, t, ift<m. (TT, /LA, /A) = (TT,0,(1, ti, tt)) = /A + e{k + irt)m"-\ so ifi = k + tTr
(mod m).

Now (TT2, AITT + it,, it) = (TT, tt, {TT, tt, tt)), so induction on s gives (TT-5, tt(7r* - 1)/(TT -

l),/t) = ti + e^m'I-1(7rJ-l)/(7r-l)- Yet {ITS - 1)/(TT - 1) = 0 (mod m) if and only if
s = 0 (mod m - 1). (5.2) gives {irs, 0, /t) = ti + ema^k{iTs - 1)/(TT - 1). If w is integral,
(irJ, tta>, tt) = (TT1, 0,(1, ttw, tt)) = (TTS, 0, (1, tt, ttco) - tt(w - 1)) = (TTJ, 0, tt + etom-1).
So the substitution w = (TTS - 1)/(TT - 1) gives tt + eil/ma-\irs - 1)/(TT- 1) =

tt + ema"1fc(77s-l)/(7r-l) + ^ma"l7rI(77s-l)/(7r-l) . From which we conclude,
(A(7TJ-l)/(7r-l) = (k + f7rs)(-n-J-l)/(77--l) (modm). We substitute the value s=2
and note that s ^ O ( m o d m - l ) thus, k + tv = i/̂  = fc + tn2 (modm). This means that
t = 0 and (/» = &. Lastly, (<r, 0, /t) = (<r, 0, (1, /A, ti)) = (a, tt, tt) and this completes the
proof.

Corollary. / / m = 3 and fc, (/», /, are as in f/ie proof of 5.20, f/ie« TT = 2 and
(mod 3).

Definition. Suppose H is a group with presentation (4.2) and y is a fixed element
of H defined by: y = ti if wi # 2 and y = / i o r y = tt + e2"~2 otherwise. Let / be the
subgroup (y, em"'1). A mapping [, ,]:Zm«-i x J x / - » / is a frip/e if for some integers
k, I, t, a, v(l),... v(a - 2) in [0, m - 1], the following conditions hold.

(1) If m = 2 [5,0, y] = y + ek2"-x and k = 0 if a = 3.
(2) If m =* 2 [TT, 0, y] = y + ekm"~] where IT is a primitive root.
(3) If AM = 2 [-5 ,0 , y] = y + el2a~\
(4) [1, y, y] = y + etm"-1 and t = 0 if m > 3.
(5) For any integer r in [1, m - 1], [0, yr, y] = ewm"'1 and w = 0 if m ̂  2.
(6) [<r,A,0] = 0.
(7) If o- = 0(mod m) then [cr, 0, ,4] = 0.
(8) [a,A,ema-]] = eam"-\
(9) If 1 =£ s ss a - 2 then [/nJ, y, y] = ^(5)ma"'.

(10) For any integer r in [1, m - 1], if a = ms<j where 1 «s a. < m""1"', (m, a.) = 1 and
1 « s *£ a - 2 then [er, yr, y] = ezqm"~l where u(s) = rz (mod m).

(11) If m = 2 and o- = 1 (mod 2) then,
(a) [cr, 0, y] = y when a = 1 (mod 8),
(b) [a, 0, y] = y + ek2a~l when a = 5 (mod 8),
(c) [a, 0, y] = y + e/2"-' when cr = 3 (mod 8),
(d) [cr, 0, y] = y + <?(/ + fc)2a-' when a = 7 (mod 8).

(12) If m * 2 and 1 =£ s < m"-\m - 1) then [IT', 0, y] = y + em"-lk(n' - 1)/(TT - 1).
(13) If <r?£ 0 (mod m) then for all integers r [o-, yr, y] = [a, 0, y] + eartm"'1.
(14) [a, ,4 + em"'1, B] = [a, A, B].
(15) [cr, A, B + C] = [cr, A, B] + [cr, A, C].
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Theorem 5.22. Let (H+) be a group with presentation (4.2) and suppose (//+•) is
a zero-symmetric near-ring with identity e. Then, the annihilator of (em) is an ideal
I = (y, em"'1), where y may be taken as n when m^2 and either as n or as p. + e2a~2

when m =2. Elements of H may be uniquely written in the form ecr + A where
0 =s a < ma~[ and A £ I; and the product (•) on H is given by the equation:

(ear + A) • (er + B) = ear + [ecr, -A]T(T - l)/2 + AT + [a, A, B]

where [,,] is a triple.

Our result simply sums up the work of this section. Conditions (1), (2), (15)
in the definition of a triple come from the lemmas we have proved by putting
[a, A, B] = [cr, A, B] for all a, A, B.

6. Near-rings

Theorem 6.1. Let H be a group with presentation H =
(e, /A: em", /mm, —n + e + fi — e(l + m'"1)) where m is prime and a 5= 2. Define an ele-
ment y in H by fixing y = /u. if m^l and y = i± or y = n + el"'1 otherwise. Let
1 = (y,ema~l). Elements of H can be uniquely expressed in the form ea + A where
0 =s o- < m"'1 and A S / with 0 =£ a, r < m"'1 and A, B e /. The product (•) defined on
Hby

(ea + A) • (er + B) = ear + [ecr, -A]T(T- 1)12 + AT + [a, A, B], is a zero-symmetric
near-ring product with identity e, provided that [,,] is a triple.

Proof. It is readily apparent from the definition of a triple that our product is
zero-symmetric and has identity e. As to verifying that it is indeed a pre-near-ring, we
turn to Lemma 4.8. for all cases in which y = fi. Condition (a) is immediate. Condition
(b) follows from points (1), (2), (3), (4), (5), (7), (9), (10), (11), (12), (13) of the definition
of a triple. Condition (c) requires that for all 0 =£ a < m"~l and A G / (putting T = 0 and

-[a, A, /i] + ecr + A + [a, A, ^] = (ecr + A)(l + m"'1).

When cr = 0 (mod m) the definition of a triple means that [a, A, /*] is in the centre
of (H+) and so

-[a, A, fi] + ecr + A + [ecr + A] = ecr + A = (ecr + A)(\ + m""1).

When OT^O (mod m), [cr, A, /x] = fi + eipm"~l for some integer t/r in [0, m — 1].
Condition (c) now is — fM + ea + A + /x = (ecr + A)(\ + m"~l) which is seen to be true in
the group H (A has order m).

To complete the proof of distributivity we simply note that if, as we may, we write
er + B the form ey + fir where 0 « y < m " and 0 « r < m, then the definition of our
product and points (15) and (8) of the triple definition ensure that

(ecr + A) • (er + B) = (ea + A) • (ey + fir) = (ea + A)y + [a, A, fi]r.

The distributivity of our defined product in the case y = fi + e2"~2 may be
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established in similar fashion. Thus, we have proved that the product makes (H+) a
pre-near-ring for each triple.

Now we complete the proof of Theorem 6.1 by showing that the product is
associative.

We need to consider four distinct cases:
(a) the case m = 2 and a - 3, (b) the case m = 2 and a > 3, (c) the case m = 3,

(d) the case m > 3.
We will avoid excessive repetition if we treat cases (b) and (c) only; the proofs for

the other two cases are similar and simpler in places.

Case (b) with m = 2 and a > 3.
We let (H + •) be one of the p.n.r. products under examination. The associativity

subgroup A(H) already contains e so we can achieve our aim by proving y G A(H).
We choose to do this for y = fi + e2"~2; the other, non-cyclic, case is the same.

We need to verify that for 0=So-, T < 2 " - ' and A, B G </x + el"'2)
((ea + A) • (er + B)) • (ft + e2a~2) = (ea + A) • ((er + B) • (fi + e2a~2)).
By the definition of a triple this becomes

[or, AT + [a, A, B], y. + e2"~2] = [a, A, [T, B,fi + e2o"2]]. (6.1)

We shall verify this equality by treating different cases,
(i) a = T = 0 (mod 2).

[T, B, fi + e2a~2] G (e2'-1) so [a, A, [r, B,n + e2°~2]] = 0.

CTT = 0 (mod 2) and AT + [a, A, B] £ <e2""l> thus

[or, AT + [o-, A, B], fi + e2a~2] = 0 also.

(ii) a = 1 (mod 2) and T = 0 (mod 2).
Assume T * 0 and put T = 2'q with (q, 2) = 1,1 =s q < 2"~x~' and U j « a - 2 . Now

[T, B, fj. + e2°-2] = 0 if B G (e2°-') whilst [T, B, fi + e2°~2] = ev(s)2t>-i if B£ {ela~x). or =
0 (mod 2) and dT# 0. Also, AT G <e2a-'), consequently AT + [a, A, B] G (e2"~'> if and
only if B G <e2a-|>. Thus if B G <e2fl-'), then [or, AT + [a, A, B], ft + e2"-2~\ = 0 and
(6.1) follows. On the other hand, if B£{e2a'x), [a, A, B] £ (e2°~x) and [<TT,AT +
[a, A, B], n + e2°~2] = [or, ft + e2a~2, fi + e2-2] = e u W = [a, A, et>(s)2o-'] = [a, A,

n
Now assume that T = 0. A direct inspection of (6.1) (and in particular conditions

(6), (7) and (14) of the definition of a triple permits us to discharge as trivial all cases
in which BE.{e2"~x). When B&(e2a-X), we have [T,B,fi + e2"'2] = eu>2°~1 so that
[a, A, [T, B,H + e2"-2]] = eta2a~x. We know CTT = 0, so [or, AT + [a, A, B], fi + e2a~2] =
[0, [a, A, ft + e2"-2], fi + e2a~2] = [0, /u. + e2"~2, fi + e2"~2] = ea>2a''. Hence once again
(6.1) is shown to be valid.

(iii) a = 0 (mod 2) and T = 1 (mod 2).
[T,B,n + e2a-2]£e2"-x, thus [a,A,[T,B,ti + e2'-2]] = [(T,A,v + e2°-2] =

[or, A, fi + e2"~2] (by condition 10 of the definition of a triple) =
[or, AT + [a, A, B], ft + e2a~\

(iv) or s 1 (mod 2).
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This is the hardest case to prove. We split it into four sub-cases which correspond
to various values for A and B.

(a) A,B£(e2a-1).
From (6.1) and condition (14) of a triple we have to verify

[err, 0,n + e2°-2] = [a, 0, [r, 0, (i 4- e2-2]].

We may write [a, 0, (j, + e2"-2] = (i + e2a'2 + ex2"~i and [T, 0, (i + e2"'2] =
ft + e2"~2 + eip2a~', with x and "A depending on the congruence classes of a and T
modulo 8. [a, 0, [T, 0, /A + e2°~2]] = (i + e2"~2 + e(x + <i>)2"~1 so we must show that this is
the value of [or, 0, (t + e2"~2]. Now its value depends only on the congruence class of
OT modulo 8. When a = 1 (mod 8) x ~ 0 and <rr = T (mod 8), which means that
[ar,0, At + e2o~2] = [T,0,/i + e2fl-2]==/A + e2fl~2-t-ei/r2fl~1. The same is true when T = 1
(mod 8) (when if/ = 0).

The multiplicative group of units in the ring of integers modulo 8 is isomorphic to
the Klein group. Thus, whenever <x = r (mod 8), ar=l (mod 8) and x= «A> so
[or, 0, ft + e2"~2] = fi + e2"~2 = fi + e2"~2+e(x + ^)2""'. If o- and T are distinct modulo
8 and neither is congruent to I, err is distinct from each of them and from 1. We
appeal to point (11) of the condition for triples to see that wherever P,Q,R are
pairwise distinct members of {3,5,7}

[P, 0,(i + e2°-2] + [Q, 0,(i + e2°-2] = [R, 0,n + e2a~2\ + n + e2a~2.

In consequence of this [a, O,(JL + e2"~2] + [T, 0,p, + e2a~2] = [or, 0,n + e2"~2] + fi + e2a~2

and [<r, 0, [T, 0, fi + e2a~2]] = [a, 0, /JL + e2a~2\ + [r, 0,(i + e2"~2] + (ji + e2a~2) + e2"~x =
[or, 0, M + e2"-2].

(b) A e (e2"-i) but B£ (e2a~x).
The form of (6.1) to be checked is now

[err, ft + e2°-2, ft + e2a~2\ = [a, 0, [r, /* + e2°'2, /t + e2fl-2]].

Applying condition (13), [or, (i + e2"~2, /x +e2a~2\ - [<rr,0, n + e2a'2]+'et2a~i =
[a, 0, [T, 0,(i + e2"-2] + et2a~l] = [a, 0, [T, (A. + e2"-2, fi + e2°-2]], as required.

(c) Ag (e2a-1) but B G (e2-1).
This time we must show that

[or, (i + e2°-2, (i + e2-2} = [a,ft+ el"'2, [r, 0, M + e2a~2\\

But [or, (i + e2"~2, (i + e2°-2] = [or, 0,(t+ el"'2] + et2a~x = [a, 0, [T, 0, (i + e2a~2]] +
et2"'1 = [a,(i + e2"~2,[T, 0,(i + e2°"2]], again as required.

(d) A£ (e2°-1) and B£ {e2a'x).
The relation to be verified here is

[or, 0,(i + e2<-2] = [<r,(t + e2a~2
y [T, (i + e2a~2, (i + e2-2]].

But [a, (JL + el-2, [T, (JL + e2a~2, (i + e2<-2]] = [«r, (JL + e2-2, [T, 0,(i + e2"-2]] + eat2a~1 =
[a, 0, [T, 0,(t + e2°-2]] + e2t • 2a~l = [a, 0, [r, 0,(JL + el"'2]].

This completes the proof for m = 2, a > 3. A slight variant of this proves the
non-cyclic case also.
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Case (c) with m = 3.
Let (H+•) represent one of the 3" distinct p.n.r. which can be formed using the

conditions for a triple. Once again e G A(H), but this time we show that fi E A(H)
that is

((eo- + A) • (er + B)) • y, = (ea + A) • ((er + B) • /x)

This reduces to the relation

[or, AT + [a, A, B], p] = [a, A, [r, B, /*]]. (6.2)

Again we must consider cases
(i) a = 0 = T (mod 3).
Now OT = 0 (mod 3), so [or, AT + [CT, A, B], ft) = [CTT,0,/A] = 0. [T, B, ft] G <e3°-1)

whence [<r, >\, [T, B, ft]] = 0.
(ii) o- = 0 (mod 3) and T ^ 0 (mod 3).
Since [a, A, B] G <«30"') we need only prove that

[or, AT, fi] = [a, A, [T, B, /«,]].

Condition (7) for a triple proves this for A G <e3a"'), and when a = 0 we may
invoke condition (5). Thus we put A =/xr + ex3"'1 with 0 < r < 3 , 0 = s # < 3 , and
a = 3'q with l s s s s s a - 2 , (3, q)=l, 1 «<? <3 a - ' - J . We do know that
[tr, 4̂, [T, B, ^I]] = [cr, A, ft] = eoM^""1 where v(s) = wr (mod 3]. OT = 3Jg for some
1 =£ g < 3""'"J with (3, g) = 1; whence: [or, AT, ^] = [3'g, firr, /A] = ezg3"~l, where

zrr (mod 3), so a> = zr (mod 3). But then [or, AT, /LI] = ezg30"' = ezg3"~l~'3'g =
-'^ = ez3a-lrq = ewq3a~l = [o-, A, [T, B, /*]].

(iii) <T£ 0 (mod 3) and T = 0 (mod 3).
We need to establish the following form:

[or, [a, A, B] , fi] = [a, A, [T, B, /*]],

of (6.2). The relation clearly is true when B G (e3"~]). Accordingly, put B =
fi.r + ex3"~l with 0 < r < 3 . Triviality is avoided by assuming T = 3'q where l « q <
3°-'-', (3,q)=l, l = S i « a - 2 . [T,B,ft] = e<oq3tt-1 and t>(s) = &>r(mod 3).
[a, A, [T, B, fi]] = eacjq3"~\ At the same time, [or, [a, A, B], fi] = [or, ttr, fi] =
eaqz3"~\ where v(s) = zr. This means that z = w (mod 3) and the equality is
established.

(iv) 0r£O(mod3).
Again it is the last case which gives us the biggest problem, forcing us to consider

sub-cases. We shall write a^ir' (mod 3""1), r = 7r"(mod 3""1), with 1 =s s, u =£ 2 • 3""2.
Of course IT = 2, since m = 3.

(a) A,BG<e3fl-').
By condition (14) for a triple (6.2) now reduces to

Now [o\0,/x] = /i + efc(2I-l)3<1-1 from Condition (12). [a, 0, [T, 0, fi]] =
fi + ek(2' - 1)3°-' + eerfc3fl-'(2" - 1) = /* + ek(2' - D3"-1 + ek2'(2u - 1)3°-' = M +
ek3a-\2'+u - 1). <rr = 2'+" (mod3a-') and so [<rr,0,fi] = n + ek(2'+u - 1)3-'.
(Note the possibility that s + « > e"~22.)
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(b) A G <e3<-!) and B£ (e3"-1).
Then B = fir + e*3a~' for some 0 < r < 3. The form of (6.2) we need to verify is:

[or, fir, fi] = [a, 0, [T, ̂  Mil-

Now [T,fir,fj.] = [7ru,fjLr,fi] = ij. + ek3a-\2u-l) + e2urt3a-1 and so [o\0, [T,fir,fi]] =
H + ek3°-1(2'+u - 1) + e2tt+'3"-lrt. But also [<rr, fir, fi] = [2'+u, fir, fi] = fi + ek3a-\2'+u -
1) + ert3"-12'+u.

(c) A<£ (e3-1) and B G (f^0"1).
Now we write A = fir + ex3"~l with 0 < r < 3 and prove the equivalent

[or, fin, fi] = [a, fir, [r, 0, fi]].

Now [a, fir, [T, 0, fi]] = fi + e2'rt3a~x - ek3°~l + ek3'-12'+u. [or, firr, fi] ~ [2'+u, fir2", fi\ =
fi + ek3"-l2'+u - ek3"-' + ert2'+u3"-l2u = fi + ek3"-l2'+u - ek3°~l + ert2'3a~\
ert 2'+u3''-121' = fi + ek3°-l2'+u - ek3a~l+ ert2'3a-1.

(d) A£(e3°-*) and B£(e3°-}).
Put A = fir + ex3"~\ B = fig + ez3"~l with 0 < r, g < 3. It is enough for us to prove

that

[or, fir, [T, fig, fi]] = [or, firr + [a, fir, fig], fi],

and this is verified by direct substitution.
This completes the proof of the theorem.
It is straightforward to show that the subgroup / = (y, em"~l) defined in the

statement of the theorem is, in fact, the annihilating ideal of (em).

7. Host numbers

In this section we complete the project started by John Krimmel in (6).
Throughout H is a group in 3C with the presentation (4.2) and (a), (b), (c), (d) refer to
the four subcases considered in the proof of Theorem 6.1.

Theorem 7.1.
(i) Case (a). If m =2 and a =3, then \H:Jf,} = 32.
(ii) Case (b). If m =2 and a>3, then [H:Jft] = 2a+\

(iii) Case (c). If m = 3, then [H: ./V,] = 3""1.
(iv) Case (d). If m>3, then [H:Jft] = m"'1.

Proof. In consequence of 6.1, each allocation of values to the unknowns appear-
ing in the conditions of the definition of a triple results in a zero-symmetric near-ring
product with identity e hosted by H. Of course, by Theorem 4.7 there are no members
of Jf{ hosted by H which do not arise in this way (up to isomorphism). In (a), when
m = 2 and a = 3, there are 16 distinct near-rings which arise in this fashion in each of
the cyclic and non-cyclic cases. Our theorem is completed by utilising our knowledge
of the automorphisms of H which fix e to show that no two of the 32 distinct
near-rings arising can be isomorphic (see a similar argument below). Similar
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arguments apply in case (b), where there are 2a+3 near-rings to be considered (that is:
2a+2 ways of assigning value to each of: fc, /, t, <o, u( l ) , . . . , v(a -2) in each of the
cyclic and non-cyclic cases).

We will now consider (c) and (d) in more detail. Values must be affixed to
k, t, v(l),..., v(a - 2) in such a manner that these are non-negative integers less than
m, and f = 0 when m^3. There are 3" ways of doing this if m = 3, and m"'1 ways
otherwise. Automorphisms <& of H which fix e satisfy the following: -(/**) + e +
/u.4> = e(\ + m'"'), (fL&)m = 0. Thus /i<t = fi + egm"~l and to avoid triviality, restrict g
to the range 1 =£ g < m.

Suppose that (H+-) and (H+*) are distinct near-rings (see Section 1 for the
definition of distinct near-rings). We may write: err • f* = /JL + ekim"~1, (e + fi) • /x. =
fi + etim"'1, (em* + n) • n = evt(s)m"~l for l s = s « a - 2 ; eir*fi = fi + ek2m

a~l, (e +
fi)*fi, = /i + et2m"~\ (em* + fi)*fi = ev2(s)m"''1 for 1 =£ 5 *£ a - 2. If (if+*) is derived
from (H + •) and $ , then for all x, y G H, (x<&)*(y<I>) = (x • y)<£. In this way, we obtain the
congruences

ki = k2 + g(ir — 1) (mod m),

t2=t] (mod m)

and

( m o d m ) ( l « j « a - 2 ) ,

where n is a primitive root (mod m) as defined after Lemma 5.17.
Thus (H+-) and (H + *) will be isomorphic if and only if t2 = f! and v2(s) = t>i(s) for

1 =£ s =£ a - 2. When m = 3 it follows that there are 3""1 non-isomorphic members of
^"i hosted by H; these correspond to the distinct possible choices for:
t, v(l), v(2),..., v(a -2 ) . When m > 3 there are m"~2 distinct choices for
v(l), ...,v(a- 2), so that [H :•//",] = m H .

8. Generalisations

Various particular generalisations of the presentation (4.1) can be made, and it
seems that the work in this paper is still at least partially applicable to these
generalisations. In (7) we considered groups similar to those defined in (4.1) except
that m is allowed to be a square-free integer, rather than prime. Also we considered
Abelian groups with cyclic subgroups of prime index. Neither generalisation was
completed in (7), although some progress was made.
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