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§1. Introductory.
The differential equation of Mathieu, or the equation of the

elliptic cylinder functions

(1)

is known by the theory of linear differential equations to have a
general solution of the type

<f> and if> being periodic functions of z, with period 2w.

I t is known that when a certain relation, or rather
one of an infinite series of relations exists between a and k,
H vanishes, and 4> and yt cease to be distinct. Thus in these cases
the general solution degenerates into a single solution, and it is the
object of the present paper to discover and investigate the nature
of the corresponding second solution.

These periodic solutions, or "elliptic cylinder functions,'
denoted by

ceo(a) ce^z) c«s(«) cejz)
««,(«) ««,(z) sen(z) *

reduce to
1 cosz cos2z cosnz

sinz sin2z sinnz

when the k in equation (1) reduces to zero, and hence the corre-

* Whittaker. International Congress, Cambridge, 1912.
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sponding second solutions may be taken to be such that they
reduce to

z sinz sin2z sinnz
cosz cos2a cosnz

when k becomes zero.
For these second solutions, or "elliptic cylinder functions of

the second kind," Professor Whittaker has suggested the notation
ino(z) in,(z) m2(z) injz)

and this notation will be adopted throughout the present paper.

§2. Method of procedure.

I t is known from general theory that if

be a linear differential equation of the second order, and if one
solution 1/1(2) of it be known, the second solution y2(z) can readily
be obtained, for it is simply

dz

The lower limit of integration is quite arbitrary, and the terms
arising from it may be discarded, as they merely give rise to a term
in y,(z) which may be considered as absorbed into the first
solution of the equation.

We shall now proceed to apply this process to finding the
function ino(z) which corresponds to the first solution ceo(z).

I t is very convenient, in the first place, slightly to modify
Mathieu's equation, and to exhibit it in the form

dry
— + (a + I6q + IGq cos2z)y = 0

where 32q = ir,

as we thereby avoid introducing high powers of 2 into the sub-
sequent working.

Retaining terms up to q*, the expression given for c«0(z) is
ceo(z) = 1 + iq cos2z + 2q~cos±z + 4g>*(̂ cos6z - 7cos2z)

(2)
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whence we easily find that

—-— = 1 - 8gcos2z + (20cos4z + 24)<?2 - (^~^cos6z + 112cos2z)g3
ceo\z)

+ i(667cos8z + 1376cos4z + 486)?
4

f dz
I —;— = z - 4gsin2z + (5sin4z + 24z)g2 - (-̂ V ŝi
J ceo(s)

+ i(-i|-I.sin8s + 344sin4z + 486z)^4

and
ceo(z)I

r3( - | f sin6z - 42sin2z)

We may divide out the constant multiplier (1 + 24q-+ ...) and
thus obtain the second solution in the form

tno(z) = z ceo(z) - 4ysin2z - 352sin4« + tj3( - | |sin6« + 54sin2z)

This method is very simple and convenient in the present case,
but its application becomes increasingly difficult when we proceed
to higher and higher orders of the functions ce and se, and con-
sequently we have to fall baok on another method detailed in the
next section of the paper.

§ 3. Second method of finding the Second Solution.
In this method we try to satisfy the differential equation by a

series in ascending powers of q, whose coefficients are functions of
z, and whose leading term is the corresponding second solution as
given in § 1 of the differential equation (1) when k is put equal
to zero.

As an example of this method we will investigate the function
irii(z), which is the second solution corresponding to the elliptic
cylinder function ce^z). When k (or q) vanishes it reduces to sinz,
and hence we assume the expansion

int(z) = sinz + qA(z)+ q*B(z)+q:>C(z)+ (4)

where A, £, C ... are functions of z alone and may be taken as not
involving sinz, which merely amounts to determining the arbitrary
constant by which the solution can be multiplied.
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The particular value of a which gives rise to the function ce,(s)
is given by

a + 16? = 1 - 8q - Sq"- + 8?
s - | ?

4 - %V+ •••

and hence the differential equation (1) becomes

Substituting the expression (4) in this differential equation we
obtain

- sinz + A"q + B'q- + C"q3 + ...

+ (1 -8q -8q* - 8q* - ...)(sinz + Aq + Bq2 + Cq3 + ...)
+ 16£cos2z(sinz + Aq + Bq2 +...) = 0.

The terms in this equation independent of q are together
identically equal to zero. If we equate to zero the term in the
first power of q we obtain

A" + A- 8sinz + 16cos2zsinz = 0,
or A" + A - 16sinz + 8sin3z = 0,

whence we obtain A = - 8zcosz + sin3z.

No terms in sinz and cosz are introduced since we have decided to
normalise the function in^(z) by assuming that the coefficient of
sinz in it is strictly unity, and we may further assume that no
term in coss appears, or in other words, that the function tn,(z) is
to be purely an odd function of z.

Equating now to zero coefficients involving the second power
of q, we have

B" + B - 8sinz -8A + 16A cos2z = 0,
or B" + B + 8sin5z - 8sin3z - 64z cos3z = 0,
i.e. B = Jsin5z + 5sin3z - 8z cos3z.

The coefficients of higher powers of q may be obtained in the
same way, and thus we obtain an expression for in^z), viz.:

+ sinz + q sin3z + j5(^sin5z + 5sin3z) + q*( j^sin7z + f sin5z - -\5-sin3z)

)

(5)
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This method has the great advantage over the former that, if
we know a in terms of q, we can proceed to obtain as many new
terms as we desire in the expansion, without beginning the whole
process over again, as is necessary in the case of the first method.

§ 4. Summary of results obtained.
By the use of the above methods, both of which were employed

in order that the one might be a check upon the other, the
following expressions have been obtained, viz. :

Corresponding to a+ I6q = - 32q"- + 22iq* -**-«™q' + ..., the
second solution is
ina(z) = zceo(z) - 4gsin2z - 39*6in42 + q*{- |4sin6z + 54sin2z)

- 26068sin2z)
+ (3)

Corresponding to a+\6q = l—8q- 8j2 + 8q* - §q* - ..., we have
inl(z)= - 8q( 1 - 3g2 + 6qs + ̂ q4 + ...)zce1(z) + sins + qsin3z

^sin5« + 5sin3z) + q*(^\n7z + |sin5« - -\5-sin3a)

Corresponding too + 16gr=l+85'- 8g2 - 8^ - %q* - ..., we have
.)zse,(z) + cosz + gcos3z

- f cos52 -
-V-cos3a) + (6)

Corresponding toa+16# = 4 + -8^a - "l^q* + ..., we have
z) + sin2z + %q siniz + |^2sin6z
4(T|T7sinl02 - tf£ain6») + (7)

Corresponding t o o + 1 6 g i = 4 - l£q* + ̂ q* - ..., we have
...)z*e.2(z) + cos2z + 2 ? ( |

+ (8)
Corresponding bo a+lSq=9 + 4q*-8q3 + Igq* + ..., we have

sin5z - sinz) + ̂ {^aiDUz - sinz)
^ i n S z - Jsinz)

and corresponding toa+16gi = 9 + 4gs + 8̂ * + ̂ q* + ..., we have
) + cos3z + q( Jcos5z - cosz) + {"(^cosTz + cosz)

- Jcosz)
* 7

https://doi.org/10.1017/S0013091500002285 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500002285


Graphs of in<,(z) and iw,(«) for the particular case of q = -01 are
appended.

1

I
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§ 5. Imaginary Values of the Argument.

If in the differential equation

-^ + (o + i 6 ? + \Qq Cos2z)y = 0

we write iz for z, we obtain it in the form

^ 0 (11)

The first solutions of this equation are obviously
ce^iz) cej(iz), ce2{iz)

se^iz) sej(tz),

or they may be expressed by the notation
cehQ(z) cehi(z) ceh^z)

seh1(z) seh^z)

where cehn(z) = cejiz), sehn(z) = - i sejz).

The corresponding second solutions are then
= zceho(z) - 4gsinh2z - 3g2sinh4z + q*( - |^sinh6z + 54sinh2z)

tnAi(«) = - 8q(l - 3(/2 + 6g^

+ ^(l8111*15* + 5sinh3z) +

jnh^z) = - 8^(1 - 3q2 - Qq3..^zseh^z) + coshz + qcosh3z
+ g2(|cosh5z - 5cosh3z) + ... (12)

and so on, where
inhn(z) ~ - i inn(iz)
jnhn{z)

§6. Nature of the functions.

The elliptic cylinder functions of the second term are, of course,
not periodic, but they exhibit a kind of quasi-periodicity, as is
shown by the equations

inn(z + 2rwr) = inje)
jnn(z + 2«ir) =>n(z)

where n is any integer and Pn and Qn are power series in q, viz.,
the coefficients of zcen(z) and zsejz) in the expansions of
inn(z) a.ndjnK(z) respectively.
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Thus ino(z + 2nir) = ino(z) + I
in1(z + 2nir) = in1(z)- 16n7rg-(l -
jn^z + 2nir) =jn1(z) - 16mrq(l - 3q*- 6q3 + ...)sex(z),

and so on.
It is also noteworthy that the terms of inn(z) coincide with

those of sen(z) as far as the term in qn~\ and thus up t.o this point
are purely periodic. A term in q"z cejz) is then introduced, and
the sine terms in q" and higher powers of q differ to a certain
extent from the corresponding terms of sen{z). The function jnjz)
bears similar relations to the function cen(z).

§ 7. Genesis of the functions of the second kind.

I t has already been mentioned that Mathieu's differential
equation admits of a general solution of the type

where <f> and t// are purely periodic functions of z, and that when
one of a set of particular relations exists between the o and the It
(or q) of the differential equation, /* vanishes and <f> and ^ cease
to be distinct, but reduce to one or other of the elliptic cylinder
functions ce or se. I t thus remains to attempt by a limiting
process to obtain the corresponding second solution directly from
the general solution.

In Professor Whittaker's notation,* the general solution which
reduces to ce^z) and sex(z) when p vanishes is

y = AA(z, O-, q) + BA(z, - <r, q)

where A(z) = e u(z),

u(«) being purely periodic in z, a is a parameter connected with
a and q by the relation

a + 16? = 1 + 8grcos2tr + ( - 1 6 + 8cos4o-)g2

and /t and u(z) are given by the relations

/* = 4 £sin2<r - 12q3sin2cr - 12g4sin4o- + ...

u(z) = sin(z - a-) + a,cos(3a - <r) + 63sin(3z - <r) + a5cos(5« - <r) +

• Whittoker. Proc. Edin. Math. Soc, XXXII. (1913-1914), p. 78.

2 Vol. 33
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where

bs = q + a2cos2o- + ( - -1/ + 5cos4o-)g3 + ( - -7
¥*cos2<r + 7cos6o-)g4

a3 = 3q2sin2<T + 3j3siii4o- + ( - ^ t s i n 2 w + 9sin6o-)a4 + ...

and so on,

M(Z) being a Fourier series whose coefficients are periodic
functions of ar..

When o- vanishes, /x = 0 and A(z, <r, q) and A(z, - <r, q) become

identical and reduce to se^z); when a-——, ft. vanishes and

A(z, o-, q) and A(z, - o-, q) both reduce to ce,(z).

First of all consider the case when o- vanishes. In the first
place, i t is evident that if b3', a3, &„', aB'... are the coefficients w(z, - a)
corresponding to the b3, «s, ba o6 of u(z, a-), then

b3' = b3 6B' = 66 b-' = 6r

a3 = - a3as' = — a5 07' = - ay...

We now form the function

2F(z) = A(z,<r,q)-A(z, -<r,q)

= e^u(z, <r)-e~^M(Z, -o-).

Next suppose that o- is very small, and that therefore we may
write o- for sino- and 1 for coso-. We thus have

2F(z) = (1 + Sq<rs - 24g3o-« - 48oVz + .. .){sin(a - a-) + o,cos(3z - IT)

+ 6ssin(3z - o-) + a5cos(5z - cr) + 6,sin(5z - a) + ...}

- (1 - 8qcrz + 2iq'<TZ + i8q*<rz + ...){sin(z + o-) -a3cos(3z + o-)

+ ojsin(3z + <r) - a5cos(5z + a-) + 65sin(5z + <r) + ...}

= 2cosz sino- + 22>3cos3z sino- + 26scos5z sino- + 267cos7z sino- + ...

- 2a3cos3z coso- - 266cos5z coso- - 2a7Cos7z coso- - ...

+ 8qz<r(\ - 3q2 - 6g3...)( - 2sinz coso- - 2o,sin3zcoso-

- 266sin5z coso- — 2oTsin7z coso- - ...

+ 2a,sin3z sino- + 2a,sin5z sino- + 2a;sin7z sino- + . . . ) .
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Hence, to the fourth power of q

F(z) = o-cosz + o-cos3z(g- - 5y2

+ (I?S + 4?* + • • -)si
- 8qz<r(\ - Zqi - 6q3 - .. .){sinz + q sin3a + qi{^sin5z + sin3«)

+ crcosa + <rq cos3« + <rq*(^cos5z - 5cos3«!) +

Hence we see that the function jn^z) arises as the limit, when a-
tends to zero, of the expression

2o-

We may now proceed in a similar manner to investigate the origin
of the second solution which arises when o- tends towards the value

— and A merges into the particular function cea(z).
2

For convenience we may employ instead of er the parameter

<r' = — - <r, so that when a- becomes —, <r' vanishes.
Z Z

p is now given by the expression

and u(z) by
u(z) = - cos(« + <r') + assin(3z + tr') - &3cc-s(3z + „.') + ...

where

b3 = q - ?2cos2or' + ( - ^ + 5cos4(r')93 + (-7/cos2o-' - 7cos6cr')y4 + ...

Oj = 3y!sin2<r' -
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As before if as', b3', a,', 65' are the coefficients of M(Z, - cr') corre-
sponding to the a* b3, a,, bs of w(z, a-') we have

Also, as before, we form the function

2F(z) = A'(z,<r',q)-A'(z, -o>,q)

= e u(z, (r')-e u(z, -cr'),

A' being what A becomes when for cr we write — - cr'.

We then obtain, using the condition tha t cr' is to be small,

2F(z) = (1 - 8q<r'z + 24c/Vz + 48c/Vz+. . . ) ( - cos(z + a') + a,sin(3z + <r')

- 6jcos(3z + cr') + a5sin(5s + a-') - 66cos(5« + cV') + ...)

- (1 + &q<r'z - 24t>Va - i8q*<r'z+...)( - cos(z - a-') - ajsin(3z - a')

- 63(cos3a - cr') - a6sin(5z - cr') - 6ecos(5z - a-') + . . . ) .

= 2sinz sincr' + 26<,sin3s sincr' + 265sin5z sincr' + . . . .

+ 2ajSin3z coscr' + 2o6sin5z coscr' + ...

+ 8q<r'z( I - 3q*+ Gq3 + ... )(2cos«coscr' + 26,cos3z coscr'+266cos52 coscr' + . .

- 2a3cos3z sincr' - 2o5cos5z sincr' - . . . ) .

Hence to the fourth power of q.

F(z) = cr'sina + cr'sinSzfa + oql -

+ 8qcr'z( 1 - 3cf + 6c/3){cosa + cos3z(e/ -c/2 - - \ V + ^q* + ...)

cosz + gcos3z + ^2(^cos5z - cos3z)

+ cr'sinz + cr'gsinSz + cr'gs(^sin5z + 5sin3z) + <r'
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Thus the function in^{z) is seen to be the limit when cr' tends
to zero, of the function

A'(g, <r'q)-A'(z, -<r',q)
2<r'

Hence the function in, (2) arises as the limit, when cr tends to

the value —, of the expression
Z

Mz> *< 1) - Mz> - °". ?)
TV -2a-
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