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Abstract

Let { Xnk} be a triangular array of independent random variables satisfying the so-called tail-negligi-
bility condition, i.e. such that Prob{]ATnt| > a) -» 0 as both k,n -> oo. It is also assumed that for
each fixed k, Xnk converges in distribution as n -» oo. Theorems on the asymptotic behavior of the
row sums of the array, analogous to those of the classical theory under the uniform negligibility
condition, are presented.
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1. Direct theorems

Let {Xnk), n = 1,2,..., k = 1,2,...,/•„, rn -> oo, be a triangular array of
random variables such that in each row the random variables are independent.
The theory of limit distributions for 'Lk

n.xXnj is well established under the
uniform negligibility (u.n.) condition, i.e. under the assumption that, for each
a > 0, Umnmax1<A<r ^ ( { I ^ J > a}) = 0. In this paper we replace the u.n.
condition by a milder condition called the tail-negligibility (t.n.) condition, i.e., by
the assumption that, for each a > 0, Km(k n)&>({\Xnk\ > a}) = 0, or, equiva-
lently, that hmksupn^

>({\Xnlc\ > a}) = 0. (In this and similar relations, supn

extends over all n for which Xnk is defined for a given &.) Under the u.n.
condition, Xnk -> 0 in distribution for each k. We shall replace this by the

n

assumption that, for each k, Xnk converges in distribution as n -* oo.
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In this section we shall present two theorems on limit distributions for Hr
k
n=\Xnk

under our relaxed conditions, together with some examples. In Section 2, a
converse theorem is presented. Some proofs may be found in Section 3.

Let Mn, M be measures on R = (-oo, oo). Consider the following two state-
ments concerning an interval I <z R:

(1) Mn{l) < oo foralln, M{l) < oo.

(2) Mn ( / ) -» M( I) if / is a continuity interval of M.

We shall say that Mn -* M weakly, if (1) and (2) hold for all intervals, bounded or
n

unbounded. We shall say that Mn-* M weakly on bounded intervals, or b-weakly,
n

if (1) and (2) hold for all bounded intervals. We shall say that Mn-> M weakly on
n

tail-intervals, or t-weakly, if (1) and (2) hold for all intervals / separated from 0,
bounded or unbounded.

We shall use the following notation: For any set A c R, A will denote the
complementary set R - A. The probability distribution (measure) of Xnk will be
denoted by Pnk. The measure Dnk will be defined by dDnk(x) = x2dPnk(x). Our
exposition will follow closely [1], XVII.7, and the same centring constants will be
used, namely

= r
where h is the function defined by h(x) = x if \x\ < 1, h{x) = sgnx if \x\ > 1.
As in the classical theory under the u.n. condition, any continuous bounded
function behaving like x near 0 may be used instead of h. Summing with respect
to the second index k will be reflected in the notation by an upper bar. So we
shall write Xn = Lfc.iJU Pn = Efc.A*, A, = I£_iA,t, K = ^-i"»*-

Using our notation, we can now rewrite the two conditions mentioned above in
the following way

(Cl) (The t.n.-condition) For any a > 0

= 0.

(C2) For each k, Pnk converges weakly as n -* oo to a probability measure Pk.
It follows from (C2) that, for each k, Dnk converges Z>-weakly as n -* oo to a

measure Dk defined by dDk{x) = x2dPk(x) and that, for each k,

h(x)dPk(x).
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Also, if <pnk, <pk are the characteristic functions of Pnk, Pk respectively, then, for

each k, (pnk -> tpk uniformly on each [-tQ, tQ].
n

The following is the main theorem of the paper.

THEOREM 1. Let (Cl) and (C2) hold and let the following two assumptions be
also satisfied:

(C3) Pn converges t-weakly to a measure P.
(C4) A finite limit

exists for each a > 0 such that both ± a are continuity points of P.

Then Xn — vn converges in distribution, and the characteristic function of the limit

distribution has the form <&(t) = <S>1(t)<S>20)> where

(3) *,(o= n «•'•"* v*(o.
*=i

(4) $2(0 = exp|-ir280 + jf" {e"x - 1 - ith(x)) dP{x)},
-00

00

80= Urn « ( « ) - Z{Dk([-a,a])-vl)\ andP = P - £ Pk.
s ° \ k=i I k-\

REMARKS, (a) The infinite product in (3) is convergent uniformly with respect
to / in any bounded interval, so that $x is a proper characteristic function.

(b) If (C3) holds, then it is sufficient to check the existence of the limit 8(a) for
one single a > 0 in order to show that (C4) is also satisfied.

(c) It is easy to see that T.f-lPk < P, so that P is a measure well defined on
(-ooO) U (Ooo).The value P({0}) is irrelevant.

(d) 02 is the characteristic function of an infinitely divisible distribution.
As in the classical theory under the u.n. condition, Theorem 1 can be simplified

if all Xn have finite variances and if these variances converge to the variance of
the limit distribution. If this is so, then it is natural to use the expectations rather
than the constants vnk as centring constants, or to assume that the centring has
been already done, i.e., that all Xnk have zero expectations.

THEOREM 2. Let (Cl) and (C2) hold and let the following two assumptions be
also satisfied

(C5) For each n, k, Dnk(R) < oo, £(Xnk) = 0.
(C6) Dn converges weakly to a measure D.
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Then Xn converges in distribution, and the characteristic function of the limit
distribution has the form $(t) = ^ ( f )$2(f), where

00

(5) M O = r

REMARK. The infinitely divisible part $ 2
 c a n be written also in the form (4), if

we put So = 5({0}) = D({0}), and if we define the measure P on (-ooO) U (Ooo)
by dP(x) = l/x2dD(x); alternatively, as (C6) implies (C3), P can be defined
also as in Theorem 1.

We shall conclude this section with three examples. Trivial examples could be
constructed such that, in each row, several random variables would contribute
solely to Ox and the remaining solely to $ 2 . In the examples presented here each
Xnk contributes both to $ x and $ 2 .

In all three examples, rn = n and zk, k = 1,2, . . . , is a sequence of positive
numbers such that Lf^zj < oo.

EXAMPLE 1. Each Xnk assumes two values zk and 1 / {n with probabilities \.
Applying Theorem 2 to Xnk - E(Xnk), we get easily that Xn - \(Jn + T.Lizk)
converges in distribution, and the limit characteristic function is (Tlk

c-1 cos \zkt) •
e - i / 8 / 2 j ^ jjj particular, zk = 2~k, then the limit distribution is a convolution of
the uniform distribution with a normal distribution.

EXAMPLE 2. Each Xnk assumes four values ±zk, ± 1 / Jn with probabilities ^.
Applying Theorem 1 or Theorem 2, we get that Xn converges in distribution, and
the limit characteristic function is (Videos^zkt)

2e'l/4'\ If, again, zk = 2~k,
then the limit distribution is a convolution of a triangular distribution and a
normal distribution.

EXAMPLE 3. Each Xnk assumes the values of ±zk with equal probabilities
^(1 — i ) and the value 1 with probability £. This time the limit characteristic
function for Xn is (^[f^^coszkt)cx^e" — 1), i.e. the limit distribution is a
convolution of the probability distribution represented by the infinite product
and the Poisson distribution.
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2. A converse theorem

An interesting aspect of the classical theory under the u.n. condition is that it

describes all possible limit distributions—namely, the infinitely divisible distribu-

t ions—and provides necessary and sufficient conditions for the convergence in

the distribution of Xn. Under our more general conditions (C l ) and (C2), the first

problem is trivial; any probability distribution is clearly possible as a limit

distribution. We shall therefore discuss only the second problem, i.e., the necessity

of (C3) and (C4) for the convergence in distribution of suitably centered Xn. The

situation is slightly more complicated, as demonstrated by the next example.

EXAMPLE 4. Define three functions <j>(1), qp(2), <p(3) in the following way:

«p(2)(,) = e-W for a l l / ,

= e-\<\ i f | ; | < l

Then <p(1) and <jp(2) are the characteristic functions of well known probability

distributions, and <p(3) is also a characteristic function by the Polya theorem on

symmetric convex functions; moreover, [<j>(2)(0]1/n and [<p<3)(0]1/n are also

characteristic functions. The triangular array {Xnk} has rn = n + 1, and the

probability distributions are defined in the following way: Xnl has the character-

istic function <p(1) for each n; if n is odd, k = 2 , 3 , . . . , n + 1, then Xnk has the

characteristic function [<p(2)]1/n; if n is even, k = 2,3,...,« + 1, then Xnk has

the characteristic function [<p(3)]1/n.

It is easy to see that (Cl ) and (C2) are satisfied and that Xn converges in

distribution with the limit characteristic function <p(1V2) = <p(1)<p(3). On the other

hand, if n -* oo through odd numbers, then Pn -* Px + P f-weakly, where P is

the spectral measure of the infinitely divisible characteristic function <p(2); if

n -* oo through even numbers, then P -* i \ + Q /-weakly, where Q is the

spectral measure of <p(3). The measures P and Q must be different, and, therefore,

(C3) does not hold.

This example shows that we must reformulate our problem if we want to make

the conditions (C3) and (C4) necessary. Put, for each k, Xnk = 'Zrj>_kXnj (so that

Xn = Xnl). It is easy to see that if (C1)-(C4) hold, then not only the sequence

Xnl — vn, but also each sequence Xnk — vn (with k fixed) converges in distribu-

tion as n -* oo, and it turns out that under (C l ) and (C2), the conditions (C3)

https://doi.org/10.1017/S1446788700033991 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033991


122 Miloslav Jirina [6]

and (C4) are also necessary for this kind of convergence. More exactly, we have
the following theorem:

THEOREM 3. Let us assume that (Cl) and (C2) hold and that there exist
constants an such that Xnk — an converges in distribution for each fixed k as
n -* oo. Then (C3) and (C4) hold, and vn — an is a convergent sequence (so that
an can be always replaced by the vn used in Theorem 1).

3. Proofs

As many details would be similar to those appearing in the theory under the
u.n. condition, particularly to those in [1], XVII.7, we shall present a number of
relations without a complete proof. In addition to the symbols introduced in
Section 1 we shall use the following convention: a bar above a symbol provided
with two lower indices n, k indicates summation with respect to the second index
in the original symbol between k and /•„; thus Xnk = Lrf=kXnj, Pnk = Lr/=kPnj,
etc.

To demonstrate the main ideas of the proofs of Theorems 1 and 2, we shall
start with Theorem 2 rather than with Theorem 1, the proof of which is
complicated by the necessary centring.

PROOF OF THEOREM 2. We shall assume that (Cl), (C2), (C5) and (C6) hold,
and we shall use the following relations:

(7) Dnk converges weakly (as n -» oo) to Dk,

_ k-l

(8) Dnk converges weakly (as n -» oo) to D — £ Dj,

_ * - l _ oo

(9) D - X! Dj converges weakly (as k -» oo) to D - £ Z)y,

(10) lim sup sup \<pnk(t) - l | = 0 for any f0 > 0,
k

(11) sup sup £ \<pnj(t) - l | < oo,
I'K'o " 7-1

and

(12) sup t\vj(t)-l\< co,
ll

for any tQ > 0.
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The relations (7), (8), and (9) follow easily from (C2) and (C6), and (10) follows
from (Cl). To prove (11), we may use the inequality

(13) \9nk(t)-l\<\t2
0Dnk(R) foraHM</0,

which follows from

(14) (<Pnk(t) - 1) = r (e'« - 1 - itx) dPnk{x).
• ' -00

Finally, (12) follows from (11) by (C2).
In the rest of the proof, Inz will denote the main branch of the natural

logarithm of a complex number z and we shall use it only for \z — 1| < 1, so that
the usual power series development holds. In particular, if \z — 1| < \, then

Inz = (z — 1) + a, where \a\ < \z — 1| .

Using this, and (10) and (11), we see that to any e > 0 there corresponds k0 such
that

(15) sup sup sup (MO - < e.

The proof of Theorem 2 will be concluded in three steps,
(a) By (14),

(16) ?*
and, by (8) and (9),

00 eitx - 1 - itx ,,- , s
5 ^Dnk{x),

(17)

where

n

l i m l i m ^ (<Pn>(0 - l ) = / ( 0 uniformly in \t\ < t0,k n j-k

00 e'tx - 1 - itx dD(x).

Notice that exp/(f) = $2(r) is the characteristic function defined in Theorem 2.
(b) Take an e > 0. By (17),

(18) lim £ (<pn,(0 - l) - J(t) < e
" j-k

for all |f| < t0 and all sufficiently large k. By (12), Il£
uniformly in |/| < t0, so that

k-l oo

(19) n<p,(o - n <pj(t) < e

for all |<| < /0
 an<l ^ sufficiently large A:.

is convergent
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(c) Take a fixed k0 satisfying simultaneously (15), (18) and (19) for all |/| < t0.
Then there exists n0 such that, for all n > n0 and all |/| < tQ, we have

(20)

(21)

By (18),

(22)

and, by (19),

I
ko-\

rn

n
(21) and (22),

7 - 1
(0

ln<PnJ(t)

)

<

<

<: 2e

< e.

: 2ee2\

2e(l + e2e).

for all « > n0 and all |/| < r0, which proves the assertion of Theorem 2.

PROOF OF THEOREM 1. We shall assume that the assumptions (C1)-(C4) hold.
We shall indicate only the changes that have to be made in the proof of Theorem
2. An auxiliary triangular array X*k = Xnk — vnk will be used, and the corre-
sponding symbols associated with X*k will be provided with *. So P*k will denote
the probability distribution of X*k, etc. In particular, v*k = j™x h(x) dP*k(x).

Under (C1)-(C4), the array X*k satisfies similar relations, namely:

(Cl*)

(C2*)

(C3*)

where

Um supPn^([ -a, a ]) = 0 for each a > 0,
k n

for each &, P*k converges weakly (as n -* oo)
to a probability measure P£,

P* converges /-weakly to a measure P*,

7 - 1 7 - 1

and
(C4*) D* converges b-weakly to a measure D*

which, for each a > 0, satisfies

D*([-a,a]) = 8(a)- t {Dj([-a,a]) - v2) + £ Z)/([-fl,a]).
7 - 1 7 - 1
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The proofs of (C1*)-(C3*) start with the formulas:

(23) P;k([a, b]) = Pnk([a + vnk, b + vnk\)
and

(24) lim sup | vnk | = 0,
k n

which follows easily from (23) and (Cl). A starting point for (C4*) is the formula

Dn*k([-a, a]) = Dnk{[-a + vnk, a + vnk\)

h{x)dPnk{x)

-v\P J\-a + v u a + v J ) .
/tn n/c\L ft fc * vt K J /

This holds for any 0 < a < 1, for all n, and for all sufficiently large k (such that
-1 < -a + vnk < 1, which is possible because of (24)).

The relations (8) and (9) will be replaced by
(25) P*k converges f-weakly (as n -» oo) to P* - LjllPf,

(26) P* - LkjZlP* converges f-weakly (as k -^ oo) to P,
where P is the measure from Theorem 1,

(27) D*k converges 6-weakly (as n -> oo) to D* - E * ; ^ * ,

and

(28) D* — HjZlDf converges fc-weakly (as k -» oo) to a
measure D* such that I>*({0}) = 80, where
80 is the number defined in Theorem 1.

They follow trivially from (C2*)-(C4*).
The relations (10), (11), (12) and (15) also hold if <pnk is replaced by <p*k. We

shall call these relations (10*), (11*), (12*), and (15*), respectively. To prove
them, (14) must be replaced by

(29) 9:k(t) - 1 = iv*kt + f {e"x - 1 - ith(x)) dP*{x)
- 00

and (13) by the inequality

which holds for all \t\ < /0. The relation

(31) sup E \v*j| < oo
n _/™l

must be also used. It follows from (C3*) and from

(32) 1^1 < 1\vnk\P,
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which holds for all n and all sufficiently large k (such that \vnk\ < \). Another
consequence of (32) and (C3*) is

(33) Kmvn* = £ " / •
7 = 1

The series in (33) is absolutely convergent.
The proof of Theorem 1 may be concluded in three steps (a), (b), (c) similar to

those in the proof of Theorem 2.
(a) By (29), we have

(34) E ( < ( 0 - l) = iv;kt + I" {e'« - 1 - ith(x)) dPn\.
j = k -oo

Applying Theorem 2 of [1], XVII.2 to (34) twice, once with n -* oo and then with
respect to k -» oo, using (25)-(28) and (33), we get

(35) limlim £ (<P*y(0 ~ l) = J{t) uniformly in |r| < t0,
k " j=k

where 7(0 = - ±80t
2 + pK(eitx - 1 - ith(x)) dP(x). Hence, exp/(0 = $2(/)

is the characteristic function defined in Theorem 1.
The steps (b) and (c) would be virtually the same as in the proof of Theorem 2,

but with <pnk replaced by <p*k and (17) replaced by (35).

PROOF OF THEOREM 3. We shall demonstrate only the essential part of the
proof.

(a) We shall first assume that all assumptions of Theorem 3 are satisfied and
that (11*) also holds (although, in the prevoius proof, (11*) was the consequence
of (C3*), which we do not assume now). Under these assumptions, (10*) and
(15*) also hold.

Let us denote the characteristic function of Xnk - an by 4>nk{t), so that

4>mk(t) = ap(it(yHk - <*„)) • El < ( ' ) •
j-k

Take a fixed t0 > 0. Because of (10*), there exists k0 such that lnq>*j(t) is well
defined for all \t\ < t0, all n and all k > A:o. The function

is then the continuous logarithm of ^nki1) (such that Xn^(0) = 0). It follows from
the assumptions of Theorem 3 that, for each k, >l/nk is uniformly convergent on
[-t0, t0] as n -» oo. Hence, for each k > k0, Xnk converges uniformly on [-/0, t0]
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as n -* oo. We are going to show that the sequence of functions /„ defined by
r

Jn{t) = it(pH -an)+ £ {q>;k(t) - 1)
A = l

is also convergent uniformly on [-/0, /„]. For a given e > 0, choose k0 so that
(15*) holds. Then

where pn(t) = Xnk(j(t) + TL)°.\l{itvnJ + <p*/0 - 1], and where \Sn(t)\ < e for all n
and all \t\ < t0. Because \nko(t) converges uniformly in |f| < t0 as n -» oo, and
because (C2) and (C2*) hold, there exists n0 such that \pm(t) - pn(T)\ < e for all
m, n > n0 and all \t\ < /0. Then | / m ( 0 - Jn{t)\ < 3e for all m,n> n0 and all
|?| < t0. Notice that it is in this part of the proof where the assumption that
Xnk — an converges in distribution as n -» oo for each k, rather than just for
k = 1, is used. The functions Jn can be rewritten in the form

{e"x ~ 1 - ith(x))dPn*(x).

Hence, by Theorem 2 of [1], XVII.2, the conditions (C3*), (C4*) are satisfied,
and the sequence vn — an + v* is convergent. We can see from the discussion of
the proofs of (C3*) and (C4*) that (C3*) imphes (C3) and that, under (C3*),
(C4*) implies (C4). Further, (33) holds under (C3*), so that vn — an is conver-
gent. This concludes the proof of Theorem 3 under the additional assumption that
(11*) holds.

(b) To show that the assumption (11*) may be dropped, i.e. that the assump-
tions of Theorem 3 imply (11*), the symmetrization procedure used in [1], XVII.7
may be applied. We shall not elaborate on the details.

4. Related papers

In [3] necessary and sufficient conditions are given for Xn to be asymptotically
normal without the assumption of asymptotic negligibility. In [2], the method of
[3] is generated, admitting limit distributions belonging to Linnik's /0-class of
infinitely divisible distributions. Within this restriction on the limit distribution,
the theorems of [2] are more general than those of the present paper, as a kind of
relaxed asymptotic negligibility is a part of both the necessary and sufficient
condition. On the other hand, as a sufficient condition, Theorems 1 and 2 of the
present paper are more general because they do not impose any restriction on the
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limit distribution, and are constructive in the sense that, contrary to the theorem
of [2], they provide an algorithm for finding the limit distribution in concrete
cases.
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