
Cite this article: Oh, K., Lim, J.W., Cho, S., Ryu, J., Hong, Y.S. (2019) ‘A Framework for Development Architecture for
Modular Products: Cross-Domain Variety Management Perspective’, in Proceedings of the 22nd International Conference
on Engineering Design (ICED19), Delft, The Netherlands, 5-8 August 2019. DOI:10.1017/dsi.2019.299

ICED19

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED19
5-8 AUGUST 2019, DELFT, THE NETHERLANDS

ICED19

A FRAMEWORK FOR DEVELOPMENT ARCHITECTURE FOR
MODULAR PRODUCTS: CROSS-DOMAIN VARIETY
MANAGEMENT PERSPECTIVE

Oh, Kwansuk; Lim, Jong Wook; Cho, Seongwon; Ryu, Junyeol; Hong, Yoo S.

Department of Industrial Engineering & Institute for Industrial Systems Innovation, Seoul National
University

ABSTRACT
Variety management is a cross-domain issue in product family design. In the real field, the relationships
across the domains are so complex for most of the existing product families that they cannot be easily
identified without proper reference architecture. This reference architecture should provide the cross-
domain mapping mechanisms in an explicit manner and be able to identify the proper units for
management. From this perspective of cross-domain framework, this paper introduces development
architecture (DA) to describe the relationships between elements in market, design, and production
domains and to give insights for the cross-domain variety management in the product development
stage. DA has three parts: (1) the arrangement of elements in each domain, (2) the mapping between
elements, and (3) the identification of management sets and key interfaces which are the proper units
for variety management. The proposed development architecture framework is applied to the case of
front chassis family of modules of an automobile.

Keywords: Product architecture, Product families, Complexity, Variety management

Contact:
Oh, Kwansuk
Seoul National University
Industrial Engineering
Korea, Republic of (South Korea)
oh0421@snu.ac.kr

2921

https://doi.org/10.1017/dsi.2019.299 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.299

 ICED19

1 INTRODUCTION

Variety management is a challenging issue for global manufacturing firms (ElMaraghy et al., 2013).

Manufacturers implement variety management strategies such as product platform (Robertson and

Ulrich, 1998), modular design (Baldwin and Clark, 2000), or product family design (Meyer and

Utterback, 1993) in order to meet diverse customers’ needs while reducing costs. For successful

strategies, manufacturers should notice that they need to consider multi-domains including market and

production as well as design domains. As shown in Figure 1, product variety is influenced by both

external drivers in markets and internal drivers in production (ElMaraghy et al., 2013). For example,

regional characteristics of markets, dissimilar conditions of segments, and various customer needs

drive differentiation in products, while differences in suppliers, factories, and processes in production

domain generate additional variety of products.

Cross-domain variety management can be achieved by architecture. Ulrich (1995) defined product

architecture as “the scheme by which the function of a product is allocated to physical components.”

He emphasized that the type of relationships between elements in different domains is one of the most

important factors for variety generation. In line with his work, how to map relationships between

elements in market, design, and production domains is a key consideration on variety management.

Hansen and Mortensen (2014) have developed program architecture which covers those three

domains. Program architecture is a comprehensive planning methodology for product family design,

capturing the benefits of alignment of market, product, and production architectures. However, there is

a limitation on identifying complex relationships between elements in each domain, in that the

alignment cannot be completely achieved in reality. In this vein, two research questions (RQs) of this

paper are stated as below.

 RQ1. At the architecture level, how can relationships between elements in market, design, and

production domains be described?

 RQ2. How can we manage complexity induced from complex relations between elements in the

three domains?

This paper introduces development architecture (DA) to describe the relationships between elements

in market, design, and production domains and to give insights for the cross-domain variety

management in the product development stage. In DA, management sets and key interfaces are

derived for efficient management of variety. In section 2, other variety management methodologies in

the cross-domain perspective are reviewed. Section 3 describes DA consisting of elements in each

domain, their relationships, management sets, and key interfaces. Then, section 4 applies DA to a front

chassis component family of an automotive manufacturer, and section 5 discusses applications of DA.

Finally, section 6 concludes the paper.

Figure 1. Variety and architecture

2922

https://doi.org/10.1017/dsi.2019.299 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.299

ICED19

2 LITERATURE REVIEW

Variety management has been studied in a wide range of areas (ElMaraghy et al., 2013). This section

focuses on variety management methodologies based on the cross-domain and architectural

approaches. Two major streams of the issue are (1) modular product family design and (2) product

family architecture.

2.1 Modular product family design

There are a few papers dealing with product family design which is based on modular product

architecture. Erixon (1998) developed a framework for modularization called modular function

deployment (MFD) to identify an appropriate level of modules for variety management. He found a set

of module drivers in the product lifecycle such as design, production, quality, and purchasing.

Gonzalez-Zugasti and Otto (2000) proposed an optimization method for obtaining design solutions for

products in a family. Jiao et al. (2007) reviewed product family design researches related to product

platform concept. They summarized the issues in a holistic view consisting of customer, functional,

physical, process, and logistics domains. Simpson et al. (2012) proposed an approach to integrate

product family design tools into a framework to translate customer requirements into commonality

specifications. After that, Otto et al. (2016) established a general framework for modular product

family design from market analysis to architecture roadmap design while reviewing related researches.

Another approach for modular product family design called Integrated PKT-Approach is developed by

Institute of Product Development and Mechanical Engineering Design (PKT; Krause and Eilmus, 2011;

Krause and Ripperda, 2013). Motivation of this approach is to reduce the complexity of internal variety

which is affected by external variety. The approach combines product-oriented and process-oriented views

and supports decisions on product variety by providing the analysis and visualization tools, for example,

variety allocation model (VAM) suggested by Blees et al. (2010). VAM is a tool for allocation between

attributes, functions, working principles, and components. Recently, Ripperda and Krause (2017) proposed

a method for quantification of variety-induced complexity throughout the product lifecycle, and Hanna

et al. (2018) constructed a data model for consistency of product family information. Many papers in this

field of product family design have recognized the need for the consideration of cross-domain variety

management, however from the architectural viewpoint, the researches have focused mainly on the product

architecture covering functions and modules within the design domain rather than dealing with cross-

domain architecture relating market, design, and production domains.

2.2 Product family architecture (cross-domain viewpoint)

After Ulrich (1995) claimed that the key factor of an architecture is the mapping between elements in

different domains, several concepts of an architecture have been proposed in the product family design

field. Tseng and Jiao (1998) defined product family architecture (PFA) as “the underlying architecture

within which various products can be derived from basic product designs to satisfy a spectrum of

customer needs.” They included functional, behavioral, and structural views into the architecture, and

connected the views for generation of variety of objects in a product family. For practical

improvement, Jiao et al. (2000) constructed a data structure, named generic bill-of-materials-and-

operations (BOMO), integrating customer order, engineering, and operations data for comprehensive

management. Du et al. (2001) introduced architecture of product family (APF) for logical

configurations of products. APF is also constructed based on the multiple views of marketing,

engineering, and manufacturing.

Harlou (2006) systematically summarized vocabularies for architectures such as design units, standard

designs, interfaces, and modules. Then, he proposed two supporting tools for architectures of a product

family, named generic organ diagram and product family master plan (PFMP). PFMP reflects three

aspects of modelling a product family which are customer, engineering, and part views. From the three

viewpoints, Mortensen et al. (2011) modelled market, product, and production architectures

respectively. Integrating the previous works, Hansen and Mortensen (2014) developed program

architecture in which the three architectures are aligned for multi-level development roadmaps of

product families. In their work, the term “alignment” is a key characteristic distinguishing program

architecture from product architecture. Bonev et al. (2013) established product requirement

development model for reflecting customer needs to multi-layered architecture by combining PFMP

with matrix-based methods. Other tools such as interface diagram (Bruun et al., 2015) and architecture

2923

https://doi.org/10.1017/dsi.2019.299 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.299

 ICED19

mapping and evaluation (AME; Mortensen et al., 2016) were continuously advanced to support the

overall framework for product family architecture design.

2.3 Summary

Cross-domain variety management has been mentioned widely in the fields of product family design

and product family architecture. Among those, the program architecture (Hansen and Mortensen,

2014) needs special attention because it has raised explicitly the cross-domain issues of product family

design and has emphasized importance of aligning the three architectures in market, design, and

production domains. In the real field, however, the relationships across the domains are so complex for

most of the existing product families that they cannot be easily identified without proper reference

architecture. This reference architecture should provide the cross-domain mapping mechanisms in an

explicit manner and be able to identify the proper units for management. From this perspective, we

first introduce the development architecture (DA) for cross-domain variety management, then provide

a methodology for defining the management sets and identifying the key interfaces between them.

3 DEVELOPMENT ARCHITECTURE

Product architecture is precisely defined as the arrangement of elements, the mapping from functional

elements to physical components, the classification of components to modules, and the specification of

interfaces (Ulrich, 1995). From the same perspective of cross-domain framework, development

architecture (DA) is defined as the arrangement of attributes, modules, and facilities in market, design,

and production domains, respectively, the mapping from attributes to modules to facilities, the

classification of elements to management sets, and the identification of key interfaces. Figure 2 shows

the overall framework for DA.

3.1 Arrangement of elements

As shown in Figure 2, DA has the three domains: market, design, and production, and each domain has

base units: attributes, modules, and facilities, respectively. An attribute (A), which is a base unit of

market domain, represents a characteristic of a product with which customers distinguish between

products (Robertson and Ulrich, 1998). In the automotive industry, for example, drive type and weather

type can be attributes because a firm develops differentiating products by sales regions based on those

Figure 2. Development architecture

2924

https://doi.org/10.1017/dsi.2019.299 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.299

ICED19

attributes. Vehicle width and wheel size can also be attributes as customers recognize differences

between products according to the values they appreciate. An attribute is usually specified by a

deterministic value such as ‘15 inch’ or ‘16 inch’ for wheel size for example. A manufacturer can

generate a product by configurations of different levels of attributes.

In design domain, a module (M) is regarded as a base unit. The modular product architecture, on

which this paper focuses, has advantages over the integral product architecture in generation of

products by replacing modules (Ulrich, 1995; Baldwin and Clark, 2000). Functional elements in the

modular product architecture are encapsulated into physical chunks, or modules, so that the modules

can be individually developed and connected with other modules through proper interfaces between

them. In DA, a product is first configured by attribute levels in market domain, then physically

composed into module variants in design domain. Thus, a module variant has unique specifications

which correspond to the related attribute levels.

In the production domain of DA, a facility (F) is a base unit. A facility is regarded as a place where

manufacturing and assembly processes are executed to produce modules and final products. Facilities

include suppliers, module assembly lines, final assembly lines, etc. The facilities may be

geographically dispersed because manufacturers generally outsource modules to various suppliers. In

addition, a single supplier may produce multiple module variants, while a number of variants of a

module may be sometimes produced by different suppliers. In this situation, since manufacturing and

assembly processes of a facility are usually shared across module variants and products, a firm’s

sourcing decision is extremely important for variety management, considering the cost savings by

economies of scale as well as scope.

3.2 Mapping from attributes to modules to facilities

After the arrangement of elements, the allocation of attributes to modules, and to facilities is

progressed. The mapping from an attribute to a module means that the module needs variations by

differentiating levels of the attribute. For example, a steering gear module of an automobile is

differentiated by drive type and engine type, so the mapping between them should exist. The mapping

of DA should be decided carefully after discussing with designers. Subsequently, the allocation from

modules to facilities is decided. Although the mapping can be a rough allocation plan, this is the

important step for variety management. For example, if the left-hand drive steering gear is planned to

be outsourced to supplier A, and the right-hand drive one to supplier B, then there exist two

relationships, i.e., from the single steering gear module to the two respective facilities.

Types of the relationships between elements vary according to the allocation plan such as one-to-one,

many-to-one, one-to-many, and many-to-many. For variety management, the one-to-one mapping is

more efficient than others because there is no complex relationships. However, the mappings in reality

cannot be completely one-to-one due to many practical situations the manufacturers are faced with.

Thus, classification of the relationships between elements is needed to constitute management sets

with which efficiently manage several modules together.

3.3 Classification of elements to management sets and identification of key interfaces

In this step, we classify the complex relationships into management sets and identify key interfaces

that need to be standardized. A management set is a set of modules related to the same attribute and

connected through interfaces. The classification of modules related to attributes and facilities is

determined by the following criteria (CRs).

 CR1. Modules in a set are interacted through interfaces within the product structure.

 CR2. (In the attribute-module mapping) Modules have the same relationships with attributes, or

one module covers all the relationships with attributes of the other module.

 CR3. (In the module-facility mapping) Modules share one or more facilities.

Figure 3 is an example of the classification. The results of mappings are represented by the cross-

domain mapping matrices as shown on the top of Figure 3. A mark ‘X’ means that there is a

relationship between a row element and a column element. After deriving the mapping matrices and

the product structure, the matrices are classified by the criteria, and the management sets and the key

interfaces are derived at the bottom of Figure 3. For example, M1 and M3 are connected within the

product structure (CR1), they

2925

https://doi.org/10.1017/dsi.2019.299 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.299

 ICED19

Figure 3. Classification of the mapping

are related to the same attributes A1 and A3 (CR2), and they share assembly processes taking place in

F9 and F11 (CR3). Thus, M1 and M3 is combined as a management set.

Another example of management sets is the case of M6, M2, and M4 which satisfies the criteria as

well. Management sets generate instances when specific attribute levels, module variants, and

production processes are planned. The instances will be shown in the case study.

A key interface is an interface that should be standardized or stabilized by design rules (Mortensen and

Løkkegaard, 2017). By determining the design rules, the key interface blocks the unexpected changes

propagated from other modules. When a manufacturer develops variety of products, the key interface

enables diverse configurations of module variants. Løkkegaard et al. (2018) argued that establishing

design rules is the critical step for managing product and manufacturing architectures. They defined

business critical design rules (BCDRs) between products and manufacturing lines by mapping the

architectures in design and production domains. From the same viewpoint, the key interface in this

paper considers the market domain as well as the design and production domains, and is derived by

configuring the attributes of a product.

When a manufacturer generates products by replacing modules, a number of combinations of module

variants can exist. However, not all interfaces should be standardized because the configurations of

attributes are aligned for modules in a management set. A module variant in the same set is always

connected with other module variants related to the same attribute levels. For example, a brake

assembly module for ‘15-inch wheel size’ of an automobile is always configured with ‘15-inch wheel

size’ wheel, not with ‘16 inch’ or ‘17 inch’. Thus, as shown in bold lines at the bottom right side of

Figure 3, we can set the interfaces outside of the management sets as key interfaces. Module designers

need to discuss the design rules in advance before products are developed.

4 ARCHITECTING WITH A FRONT CHASSIS CASE

4.1 Case description

In this section, the proposed development architecture framework is applied to the case of front chassis

family of modules of an automobile. A front chassis family is a part of an automotive platform of

which the constituent modules need some variations to satisfy global markets and customers. The front

chassis is composed of nine modules as shown in Figure 4: brake assembly, drive shaft, axle assembly,

cross member, lower arm, stabilizer bar, steering gear, strut assembly, and roll stopper. The

2926

https://doi.org/10.1017/dsi.2019.299 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.299

ICED19

manufacturer develops the front chassis family by replacing modules. The nine modules are produced

by different factories and suppliers, and the manufacturer assembles them in a single assembly line.

Since there are a number of products and module variants involved, it is necessary to establish DA to

manage the front chassis family in an efficient and effective manner.

4.2 Development architecture

The first step of architecting is the arrangement of base units. Since the front chassis is already divided

into nine modules, this step starts from the arrangement of market attributes which are related to the

modules. After discussion with designers, eleven attributes related to modules are selected: drive type,

weather type, vehicle width, body type, engine type, transmission type, MDPS type, disc size, brake

performance, shock absorber performance, and suspension type. The attributes are arranged in the rows

of the left matrix in Figure 5. For facilities, there already have been seven module factories and two

suppliers producing nine modules respectively, and one assembly factory for assembling all modules to a

final product. The facilities are arranged in the columns of the right matrix in Figure 5. The relationships

between attributes, modules, and facilities are ‘X’ marked on the matrices.

In the next step, we identify the management sets based on the criteria stated in the previous section.

After discussion with designers, the total of three management sets are derived: brake assembly & axle

assembly (management set 1), cross member, steering gear, & roll stopper (management set 2), and strut

assembly & stabilizer bar (management set 3). The classified matrices are described in Figure 6. For

management set 1, the brake assembly and axle assembly modules are related to the attributes of disc

size and brake performance. In addition, the two modules share the assembly processes in the same

assembly factory. Management sets for the horizontally symmetric product structure are represented in

Figure 7. Bold lines in the figure represent the key interfaces connecting beyond the boundaries of the

management sets. Specific design rules and parametric values of each interface are not treated in this

case study. Instead, we derive the instances of management sets based on the product family

configuration plan. When attribute levels, module variants, and production processes are planned,

Figure 4. Front chassis

Figure 5. Mapping result of the case

2927

https://doi.org/10.1017/dsi.2019.299 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.299

 ICED19

Figure 6. Classification result of the case

Figure 7. Management sets and key interfaces of the case

Figure 8. Instances of management set 1

configurations of attributes and modules of a product can be identified. From the configurations, six

instances of management set 1 are derived as shown in Figure 8. Each instance has own attribute

levels, and instance 1~3 and 4~6 can be separated by production facilities. An instance is considered

as a management unit for variety management of a product family.

2928

https://doi.org/10.1017/dsi.2019.299 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.299

ICED19

5 DISCUSSION

The development architecture (DA) focuses on the relationships between elements in different

domains. The type of relationships is varied by various situations that a manufacturer is faced with. In

this context, DA classifies the relationships into management sets which are the groups of cross-

domain elements, and identifies key interfaces that should be standardized. In this section, we discuss

three possible application areas of DA that are variety planning, variant lifecycle management, and

change management.

First, DA can be applied to the decisions on variety planning. Variety planning of a product family

consists of differentiation plan and commonality plan (Robertson and Ulrich, 1998). Differentiation

plan decides specific attribute levels of a product, while commonality plan determines module

combinations of a product, considering a process sharing in production domain. From the cross-

domain perspective of variety planning, DA can efficiently inform the planner of which attribute

levels, module variants, and production processes are linked one another.

Another application area is the field of variant lifecycle management. When a manufacturer plans to

develop a product family, products in a family are on different timelines, although the products share

module variants and production processes. Thus, the timeline of a module variant should be planned,

in terms of development, production, upgrade, and discontinuation, in accordance with the timelines of

the products. The management set of DA can give us a direction for variant lifecycle management

since the module variants in the same management set should have similar lifecycles.

Change management is one of the most important issues in variety management. Change management

is to predict the impacts of and to cope with the propagation of change from one part of a product to

others. A change is propagated to all products, not just a single product in the product family design,

hence a methodology for predicting and managing the impact of change is needed. DA can give

insights for change management by the allocation of elements, and the standardization of key

interfaces can help prevent the propagation of change.

6 CONCLUSION

This paper defines development architecture (DA) from the perspective of cross-domain variety

management. DA establishes the relationships between elements in market, design, and production

domains, and identifies management sets and key interfaces which are the units of variety

management. Compared to other methodologies for variety management, this paper focuses on

managing the complexity induced from complex relationships between the elements across those

domains. In the case study, DA is applied to a front chassis family. On the practical side, further

studies to construct a more concrete methodology or framework are needed since DA considers only

the basic relationships yet. Thus, a more generalized framework for variety management and its

supporting tools such as costing or visualization models would be needed in the future work. On the

theoretical side, decision support models for variety planning, variant lifecycle management, and

product family change management should be developed following by the concept of development

architecture proposed in this paper.

REFERENCES

Baldwin, C.Y. and Clark, K.B. (2000), Design rules: The power of modularity, Vol. 1, MIT press, Cambridge, MA.

Blees, C, Kipp, T., Beckmann, G. and Krause D. (2010), “Development of modular product families: Integration

of design for variety and modularization”, International NordDesign Conference, Göteborg, Sweden, 25.-

27.08.2010, The Design Society, pp. 159–170.

Bonev, M., Wörösch, M., Hauksdóttir, D. and Hvam, L. (2013), “Extending product modeling methods for

integrated product development”, International Conference on Engineering Design, Seoul, Korea, 19.-

22.08.2013, The Design Society, Vol. 4, pp. 219–228.

Bruun, H.P.L., Mortensen, N.H., Harlou, U., Wörösch, M. and Proschowsky, M. (2015), “PLM system support

for modular product development”, Computers in Industry, Vol. 67, pp. 97–111.

Du, X., Jiao, J. and Tseng, M.M. (2001), “Architecture of product family: fundamentals and methodology”,

Concurrent Engineering, Vol. 9 No. 4, pp. 309–325.

ElMaraghy, H.A., Schuh, G., ElMaraghy, W.H., Piller, F., Schönsleben, P., Tseng, M. and Bernard, A. (2013),

“Product variety management”, CIRP Annals-Manufacturing Technology, Vol. 62 No.2, pp. 629–652.

Erixon, G. (1998), “Modular function deployment: A method for product modularisation”, Designation, Royal

Inst. of Technology.

2929

https://doi.org/10.1017/dsi.2019.299 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.299

 ICED19

Gonzalez-Zugasti, J.P. and Otto, K.N. (2000), “Modular platform-based product family design”, Design

Engineering Technical Conferences and Computers and Information in Engineering Conference, Baltimore,

Maryland, 10.-13.09.2000, American Society of Mechanical Engineers, New York, Vol. 2, pp. 677–688.

Hanna, M., Schwede, L.N. and Krause, D. (2018), “Model-based consistency for design for variety and modularization”,

International DSM Conference, Trieste, Italy, 15.-17.10.2018, The Design Society, pp. 239–248.

Hansen, C.L. and Mortensen, N.H. (2014), “Proactive identification of scalable program architecture: How to

achieve a quantum-leap in time-to-market”, International Journal of Industrial Engineering, Vol. 21 No.2,

pp. 74–85.

Harlou, U. (2006), “Developing product families based on architectures”, Desingation, Technical University of

Denmark, Copenhagen, Denmark.

Jiao, J., Tseng, M.M., Ma, Q. and Zou, Y. (2000), “Generic bill-of-materials-and-operations for high-variety

production management”, Concurrent Engineering, Vol. 8 No. 4, pp. 297–321.

Jiao, J., Simpson, T.W. and Siddique, Z. (2007), “Product family design and platform-based product

development: a state-of-the-art review”, Journal of intelligent Manufacturing, Vol. 18 No. 1, pp. 5–29.

Krause, D. and Eilmus, S. (2011), “A methodical approach for developing modular product families”,

International Conference on Engineering Design, Copenhagen, Denmark, 15.-19.08. 2011, The Design

Society, Vol. 4, pp. 299–308.

Krause, D. and Ripperda, S. (2013), “An assessment of methodical approaches to support the development of

modular product families”, International Conference on Engineering Design, Seoul, Korea, 19.-22.08.

2013, The Design Society, Vol. 4, pp. 31–40.

Løkkegaard, M., Mortensen, N.H. and Hvam, L. (2018), “Using business critical design rules to frame new

architecture introduction in multi-architecture portfolios”, International Journal of Production Research,

Vol. 56 No.24, pp. 7313–7329.

Meyer, M. and Utterback, J. (1993), “The product family and the dynamics of core capability”, Sloan

Management Review, Vol. 34 No.3, pp. 29–47.

Mortensen, N.H., Hansen, C.L., Hvam, L. and Andreasen, M.M. (2011), “Proactive modeling of market, product

and production architectures”, International Conference on Engineering Design, Copenhagen, Denmark,

15.-19.08. 2011, The Design Society, Vol. 4, pp. 133.

Mortensen, N.H., Hansen, C.L., Løkkegaard, M. and Hvam, L. (2016), “Assessing the cost saving potential of

shared product architectures”, Concurrent Engineering, Vol. 24 No. 2, pp. 153–163.

Mortensen, N.H. and Løkkegaard, M. (2017), “Good product line architecture design principles”, International

Conference on Engineering Design, Vancouver, Canada, 21.-25.08. 2017, The Design Society, Vol. 3, pp.

141–150.

Otto, K., Hölttä-Otto, K., Simpson, T.W., Krause, D., Ripperda, S. and Moon, S.K. (2016), “Global views on

modular design research: linking alternative methods to support modular product family concept

development”, Journal of Mechanical Design, Vol. 138 No. 7, p. 071101.

Ripperda, S. and Krause, D. (2017), “Cost effects of modular product family structures: Methods and quantification

of impacts to support decision making”, Journal of Mechanical Design, Vol. 139 No. 2, p. 021103.

Robertson, D. and Ulrich, K. (1998), “Planning for product platforms”, Sloan Management Review, Vol. 39 No.

4, pp. 19.

Simpson, T.W., Bobuk, A., Slingerland, L.A., Brennan, S., Logan, D. and Reichard, K. (2012), “From user

requirements to commonality specifications: an integrated approach to product family design”, Research in

Engineering Design, Vol. 23 No. 2, pp. 141–153.

Tseng, M.M. and Jiao, J. (1998), “Design for mass customization by developing product family architecture”,

Design Engineering Technical Conferences, Atlanta, Georgia, 13.-16.09.1998, American Society of

Mechanical Engineers, New York, DETC98/DTM-5717.

Ulrich, K. (1995), “The role of product architecture in the manufacturing firm”, Research policy, Vol. 24 No. 3,

pp. 419–440.

ACKNOWLEDGMENTS

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the

Korea government (MSIT) (No. NRF-2017R1E1A1A03070846).

2930

https://doi.org/10.1017/dsi.2019.299 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.299

	049_ICED2019_460_CE
	049_ICED2019_460_PE
	203_ICED2019_557_PE
	296_ICED2019_461_CE
	296_ICED2019_461_PE

