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Self adjoint operators
and matrix measures

Patrick J. Browne

Given a self adjoint operator, T , on a Hilbert space H , and

f N )given an integer n S 1 , we produce a collection hi . . ,

I %3)

U : H •*• £ i 2 P*- such that UTU'1 , restricted to the

N £ L , of n * n positive matrix measures and a unitary map

NeL

2. ( N
co-ordinate space L y. .1 , is the multiplication operator

I ^J J
F(t) •*• tF(t) in that space. This is a generalization of the

spectral representation theory of Dunford and Schwartz, Linear

operators, II (1966).

1.

In [7, XII.3], Dunford and Schwartz present a theory of spectral

representation for self adjoint operators on a Hilbert space. The basic

operator used for this representation can be described as follows.

Consider a totally finite Lebesgue-Stieltjes measure y on the real line

and define an operator A on L2(\i) by

(i) V(A) = {F(t) 6 L2(y) I tFit) i. L2(y)} ,

(ii) for F € ViA) ,

[AF)it) = tF(t) .
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It is well known that A is self adjoint. The basic theorem then states

that given a Hilbert space H and a self adjoint operator T on it, one

can produce a collection of totally finite Lebesgue-Stieltjes measures y

and a unitary map U : H -*• J L (y ) , such that for every Borel function
a

k defined on the spectrum of T ,

and

UV{k{T)) = IF I I L2{v ) | I f \k(t)F (t)\2d\i {t) < 4 ,

[vk{T)f)a{t) = Ht)(uf)a(t) .

The unitary map U is then called a spectral representation of H onto

J L (u ) relative to T .
a

When the collection of measures y has cardinality 1 the operator

T is said to have simple spectrum. In this case T may be regarded as a

unitary copy of the operator A described above. Well-known examples are

the self adjoint operators obtained from the Sturm-Liouville problem over

a finite interval or half line.

It can be seen that this representation is centred on the choice of

A as the basic operator. The purpose of this paper is to discuss a

corresponding theory when A is replaced by the operator B which may be

described as follows. Consider an n * n positive matrix measure [y. . ]

on the real line. For F = (F , F , ..., F ) ( i (y. .} and k a Borel

function defined on the line, let k{t)F{t) = ( f c U ^ U ) , ..., k(t)Fn(t)) .

Define B by

(i) V(B) = \FU) € L2{u..) | tF{t) € L2{u..)

(ii) for F € V{B) ,

(BF)(t) = tF(t) .

B is known to be self adjoint. Such a representation theory will cover

that discussed before - it can be obtained by taking n = 1 in this
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theory.

The theory of positive matrix measures is discussed fully in [ /,

pp. 1337-1350].

2.

Let H be a Hilbert space and T : V(T) c H •+ H a self adjoint

operator with resolution of the identity E . For a finite set N c H ,

N = {/-L. f2' ••••> f-n) ' H# w i l 1 d e n o t e t h e closure of the manifold in H

consisting of all vectors of the form k (T)f + ... + k (T)f where k.
J. X Yl Yt "Is

v a r i e s o v e r a l l B o r e l m e a s u r a b l e f u n c t i o n s f o r w h i c h f. € V[k.(T)) .

LEMMA 1 . Let the complex valued measures V . . , 1 5 i j j 5 n ,

be defined by y . . ( - ) = (E(-)f., f . ) . Then y . . is an n x n positive
*3 1* 3 1*3

matrix measure on the Borel subsets of the real line, R .

Let M be a Borel subset of R . Then

Vij(M) = [E(M)fi, fd) = C/\, E{M)f.) = u^ttf) .

Thus (y. -(W)J is an Hermitian matrix. From the spectral theorem we know

that each y. . is a-additive. Let £ , . . . , £ be complex numbers.

Then

n n -|

_* _ -i t* t- • -, fj (J j

t,~Ju J~J-

showing that y..(W) is positive semi-definite. Thus (y. .) is an
^3 1*3

n x n positive matrix measure. Note that y. . is defined on all Borel

subsets of R and

|y (W)| = \{E(M)f f)\ 5 li/.HlLf.H •

LEMMA 2. Let (y. .} Zse as above. Define y
i-3
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n
y ( - ) = I y . . ( - ) . Then y is a totally finite measure on the Borel

subsets of R and each y. . is continuous with respect to y . Further,
13

H,; is a Hilbert space which is unitarily equivalent to L (p. .} .

It is obvious that y is a totally finite measure. Suppose

= 0 , then \i..{M) = 0 for each i = 1, 2, ..., n . Further

WiAM)\ = \(E(M)f f)\ 5 ...

= (E(M)f.,f.) \\f.\\=0 .

Thus y. .(/tf) = 0 and so each y. . is continuous with respect to y .
%3 13

Note that the existence of such a measure y enables us to construct the

space L (y • •} . Let (m . .} be the matrix of densities defined by the

equations

y. .(W) = I m. .{t)dv{t) , 1 S i, 3 5 n ,
3 1 M *'3

where M is any Borel s e t .

I t is clear that H i s a Hilbert space, being a closed linear

manifold in H . Let k1(T)f1 + . . . + k (T)f t Hff and define

k™(t) = k^t) i f \ki{t)\ 2 m ,

= 0 i f \k.{t)I > m , m = 1 , 2 , . . . , .

Then each k"!(T) exists as a bounded everywhere defined operator on H

and

I k(T)f = lim J kmAT)f .
i t l i l i t

Thus
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n 2 r n m

I k (T)f = lim \ l km(T)f I km(T)f

= lim _ I lk™(T)*ki(T)fit f .

n (°° m ~~m
= l im \ k .{t)k .{t)d\i. .

= lim f I m. .

= f { I m At)k,{t)kTt)]dV{t) ,
La, k,j=l z° % ° >

s i n c e I m. .{t)k.(t)k .{t) i s a monotone i n c r e a s i n g s e q u e n c e of
l 3 % 3

n o n - n e g a t i v e B o r e l f u n c t i o n s t e n d i n g p o i n t w i s e t o \ m . . { t ) k . { t ) k , { t ) .

Thus [k , . . . , k ) 6 L [\i. .) and

I k.(T)f, = \\[K, . . . , k j | |
v ' x.

{kx, . . . , / g i i
HN L

Using the correspondence \ k.{T)f. +-*• [k-., k^, ..., k ) we can now set

up a norm preserving linear map of a dense subset of H,. into L {u. • ] ,

p
which can therefore be extended to an isometry of H,, into L [u. .) . Now

N 1-3

let [k.., k „, ..., k ) € L [\i. .J . Then defining k. as before we see

n
from the above argument that J k .{T)f. S H,, and

. __ -. 1* % iV

7 , . . . , km\\ = \\ I k"!(T)f.\\ . Taking the limit as m -*• «» w e deduce

the existence of a point f f H such that jj [k , . . . , k )\\ = \\f\\ . This

shows that the isometry produced in the f i r s t half of the proof is onto

https://doi.org/10.1017/S0004972700046657 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700046657


294 Patrick J . Browne

and so the spaces H and L (\i. .} are unitarily equivalent.

LEMMA 3. Let n 2: 1 be an integer. Then there is a collection L

of finite subsets N c H , each containing n points, such that

NeL '"

Consider the family K of collections X of finite subsets N c H

each containing n points and such that the spaces H~ , N £ A , are

mutually orthogonal. Order K by inclusion. Let A "be a chain in K

and put E = U A . Then E is a collection of finite subsets N c H
AeA

each containing n points. Further, if iVj, /V2 € E , there exists

A € A such that Nl, N2 £ A and so H J_ H . We may now apply Zorn's
"1 "2

Lemma to deduce the existence of a maximal collection L of finite subsets

N c H each containing n points such that the spaces H , N 6 L , are

mutually orthogonal. Thus to prove the result, it suffices to show that

no / 5* 0 is orthogonal to each of the spaces H^ , N 6 L . If there

exists / + 0 such that / J_ H N £ L , then for bounded Borel

n
measurable functions k. , ..., k and any point y = J oc.(T)/. £ H ,

-L rl • ., Is 1* Li

we have

f I k (T)f, I a AT)f ) = \f, I k {T)*a (T)f) = 0 .
k=l % j=X 3 3) l i,j=l V 3 3>

( n 1
Thus I k.{T)f, y = 0 , for all y i H , and so H, , , ! « „ ,

for all /!?€/., contradicting the maximality of L . Hence H = £ H.. .

For / e H we let /„ be its component in H~ , that is

/ = I f» , f» € «„ •

LEMMA 4. For every Borel function k we have
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V[k{T)) = {/ | / ' 6 V{k(T)), N i L; I \\k(T)f f <

We f i rs t assert that

(•) lv{k(T)}} = H n

Clearly H n p(fe(T)) c p(fe(r)j c H , and so to establish (*) i t

suffices to show that P(k(2")) c p(fe(y)) . Let / € we must

show /^ € ^ ( T ) ) . Now

I \\E(M)f \\2 ,
If

and so [E(M)fN, fj S [E(M)f, f) . Thus

\k(t)\2{E(dt)fN, f) 5

showing t h a t / ^ € V(k(T)) . Thus (*) i s p r o v e d .

We n e x t show t h a t i f / f f € f(fe(2")) , t h e n k{T)f € H . S i n c e

fNdHN, t h e r e e x i s t B o r e l f u n c t i o n s a ^ ( t ) , 1 « £ < « , r i l , such

that

/ = lim I
" £=1

Defining fe ( t ) as "before and using the fact that k (T) is "bounded, we

see that

km{T)fN = lim I km{T)a'{T)f.
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and since km(T)fN - HT)fN as m •* °° , k{T)fN € Ĥ  . Again, since

km{T) i s bounded,

If f € Q[k(T)) , then by (*) / ^ € DfcCT)) and we have

lim feW(r)/ = &(2")/ , lim km(T)f = fc(f)/» . Thus for any f in i te set
rrr*™ m**

* c L ,

I \{k(T)fNf S \\k{T)f\\2 ,

showing that

I \\HT)ff < - .V

I t wi l l next be shown that / € V[k{T)} provided / € V[k{T)} and

I l\k(T)fN\\2 < « . Let {/l?fe} <= L be such that /ff = 0 i f N | {il/fe} .

Thus the terms of the sequence k(T)f are orthogonal and since
k

2 I \\k{T)fNf < co ,

the series J k{T)f converges. Mow &(T) is a closed operator and

•7=1 J

thus / € V[k{T)) and

/ = Z fc(2)/ .
J=l J /I/

Since k(T)fN i Wff , we also have [k(T)f)n = k{T)f^ . This completes the

proof of the lemma.

We shall now adopt the following notation:-
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^= j, >&' 4
21 N 1

LEMMA 5. H is unitarily equivalent to \ i ki.. .

N*L { %3]

By Lemma 3, H = \ H and by Lemma 2, H is unitarily equivalent

to L u. . , the equivalence being described in that lemma. Combining

these results, H is equivalent to \ L u. . . Let us suppose
^ t3>

U : H -*• J L y. . is the unitary map obtained above. Note that

= 0 ,

For F = l F (I L 2 L N ] let

FN = (FN1' FN2' " ' " ' F/l/n^ '

LEMMA 6. For every Borel function k we have

UV[k{T)) =

and

[uk(T)f)N(t) = fe(t)(y/)^(t) .

It is sufficient to prove the second statement since it and Lemma

together give the first result. Now

(uk(T)f)N = U{k(T)f)N = Uk(T)fN .

2 N
Suppose Uf = (CL, CL a ) ( I )).. . Defining <x!(t) = a.(t) if

|a. (t)| S m , = 0 otherwise and km(t) = k(t) if \k(t)\ Sm , = 0
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km(T)fN = lia J

otherwise we have

n

I
r-KO i=X

Thus

7 171 ,Ukm(T)f = l±m\km(t)al(t), ..., km(t)ar(t)

The result follows by letting m -> °° .

We can now make the following definition.

DEFINITION. Let T be a self adjoint operator on a Hilbert space H

and let j p. .1 > be a family of finite n * n positive matrix measures

defined on the Borel subsets of the line and vanishing on the complement

of the spectrum of T . Let U be a unitary map between H and

v 2 ( N }
I L p.. . The transformation U is an n x n speatral representation
N *• V3]

of H onto 1 L p. . relative to T if the following conditions are

satisfied:-

(a) for every Borel function k defined on the spectrum of T we

have

UV{HT)) = {? i l L 2 ^ ] | I f \k(t)\2 _ I F[t

(b) [uk(T)f) , , (£)= k(t){Uf) At) .

Combining Lemmas 1 - 6 we can state:-

THEOREM 1. Every Hilbert space admits an n * n spectral

representation relative to an arbitrary self adjoint operator defined in

it, for any value of the integer n .

We conclude this section by showing that any n * n spectral

representation may be realized in the fashion described in the lemmas.
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THEOREM 2. Let U be an n * n spectral representation of H

onto 1 L p. . relative to a self adjoint operator T . Then to each K
{ 13)

c o r r e s p o n d s a f i n i t e s e t N c H s u c h t h a t p . . = m . . l , H i s a
{ I'd) [ ^3)

direct sum of subspaces H,, and U maps H.. onto L \\i. . .J ^ N e N [ is \

We first note that given an n x n spectral representation, the

resolution of the identity E for T is given by

V~i — p ( V \

For each K let I. be that element of \ L p. . defined by
K *• 1 J J

(^^(t) = (0, 0, ..., 0) , J * K ,

= (1, 0, ..., 0) , J = K .

Let C be that element of £ L p. . defined "by

i^2)/t) = (0, 0, ..., 0) , J * K ,

= (0, 1, 0, ..., 0) , J = K .

Continuing in this way, we finally let £ be that element of T i p . ,

defined by

{^jit) = (0, 0, ..., 0) , J * K ,

= (0, 0, ..., 0, 1) , J = K .

Note that the £ are elements of £ L p. . since we assumed the
V3

measures p.. to be finite. Now define j . = U ET 5 i = 1, 2, . . . , « ,

and set N = j/:, ... , /^l . Then for any Borel set M c R ,
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The remaining statements follow from the ear l ie r lemmas.

3.

As in [?] we now give an analytic representation of the unitary map

U . We shal l assume that T i s a self adjoint operator in the space

L2[S, £, v) where (5, E, v) is a positive measure space. We also

assume that there exis ts an expanding sequence {S } covering S , each

element of which has f in i t e measure, and that for bounded sets M the

range of E(M) contains only functions which are v-essentially bounded

on each of the sets S , (cf. [ !] , p. 1210). We shall use the 1><1

representation theory ({.11, Theorem 11, p. 1213) to develop corresponding

resu l t s for the general case.

We shall require some results from the theory of positive matrix

measures and we s ta te them here without proof. Full detai ls may be found

in [ I , pp. 13i*l-131»2].

LEMMA 7. Let (p. .) be an n * n positive matrix measure whose

elements are continuous with respect to a positive a-finite measure p .

If (m. .) is the matrix of densities of u. . with respect to p , then

there exist non-negative ^-measurable functions <$>• , x - i - n ,

\i-integrable over each bounded interval, and \i-measurable functions a. .

1 - i , 3 - n , such that for \i-almost all t

n
(a) I ai;j{t)a.k{t) = 6.fe , and

0 -̂

n
(b) J

https://doi.org/10.1017/S0004972700046657 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700046657


Operators and matrix measures 301

LEMMA 8. Let (p..) , [m..] , 4>. , a.. , y be as above. For

each i = 1, 2, ..., n let v. he the positive measure defined by
if

v.(M) = f <f>.(t)dy(t) .
% hi %

2 n 2
Then there exists a unitary map V : L (y-. .) •* \ L (v.) . r is given

%3 i v

7=1 ^ » j=l

while its inverse is given by

THEOREM 3. Let {S, E, v) fce a positive measure space and let

{S } fee an expanding sequence of sets of finite measure covering S . Let

U be an n x n spectral representation of L2[S, T., v) onto

2 L y. . relative to the self adjoint operator T in L2(5, Z, v) .

Let E be the resolution of the identity for T and suppose that for each

bounded Borel set M the range of the projection E(M) contains only

functions which are v-essentially bounded on each of the sets Sn . Then

for each N € L there are functions wt , 1 5 i 2 n , defined on the

cartesian product of S with the real line and having the properties:

(a) wt is measurable with respect to the product measure v x y^ ;

(b) for each bounded Borel set M c R we have

! ( r N i ~1 1

v-ess sup \ I m..(t)W^(s, t)ir{s, t)>d]i ( t ) < °° 3 n > 1 ;
s*Sn >M H,j=\ V3 >

(c) (( i / /yt)) = (| /(s)(^(S, t)dv(s)} , / € L2(S, Z, V) ,
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the integrals existing in the mean square sense in L \]x. . .
I %3)

See [/], p. 1350 for a discussion of mean square existence of

2( N 1 1
integrals in L p. . .

N N N N
Let <£., a. ., V., F be those functions, measures and unitary maps

I fl )
as described in Lemmas 7 and 8 corresponding to m . . . Thus we have

I %3)

L2(s, z , v) % I £2fy^,l I I I L2Lf[ ,

where T is a unitary map constructed from the T in an obvious manner.

Hence TU is a unitary map between L2(S, L, v) and J £ L V. .
NeL i=l V %>

Further, for any Borel function k defined on the spectrum of T ,

VUD{k{T)) = T\F = \\k{t)FAt)f < -
* N

l l f
Hi1-*

N
This result follows readily from the representations of the maps F as

given in Lemma 8. That lemma also shows that

[ruk{T)f)i(t) = k(t)(ruf)i(t) .

Thus YU i s a s p e c t r a l r e p r e s e n t a t i o n of L2{S, L, v) onto

Y I L2\^-\ i n t h e sense of [ J , p . 1208] , ( - a l x l s p e c t r a l
il/ei. i = l <• 1'-)

r e p r e s e n t a t i o n i n terms of our d e f i n i t i o n ) . Applying [ / , Theorem 1 1 ,

p . 1213] , we see t h a t t h e r e ex i s t measurable funct ions W ( s , t) defined

on S x R such t h a t for each bounded Borel s e t M c R

2
v-ess sup

n

N."
d\)N.{t)

^
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and

*(t) = f f{a)W (s, t)dv{s) , f € L2(S, I, v) ,

the integral existing in the mean square sense in L v. . Now for

N € L , 1 < i 5 * , define ^ by

tye, t) = I aid(t)WN_(8, t) .

C l e a r l y e a c h w t i s m e a s u r a b l e , a n d f o r n i l

V-ess sup I m.At)W°(s, t)t£{s, t)d\i (t)
seS lMjk=l 3K N w N

= v-ess sup | I $a, .{t)a.v{t)Wn{s, *)s£(s, t)duw(t)

n
= v - e s s sup I \ I a ,{t)a (t)a (t)a (t)W(a, t )

i = l >Mj,k,p,q=l V° ZK J P kq "P

= V-ess sup J [ \W -(s, t)\2dvN.(t)
£=1 >M %

n r

5 I v-ess sup \Wm(s,
i=X s*S >M

/ • ( * ) < - •

Finally, for / 6 i 2(5, 2, v) ,

(TUf)N(t) = lim ( f(s)WNi(s, t)dv(s) ,

the limit being taken in the topology of L v. . Applying T we have
I "£ J
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= lim f I 'aTJtj \ f(s)W (B, t)dv(s)]

= lim ff / (s) i^(s , t)dv(s)\

i = 1

2 tf ^ 1

This completes the proof of the theorem.

THEOREM 4. With the notation of the previous theorem we have

f(s) = I f I m (t)[uf) (t)l^(S, t)d» {t) ,

f 6 L2{S, £, v) j t>!e integrals existing mean square in LZ(S, Z, v) and

the series converging in the norm of L2(S, Z, v) .

For / € L2(5, S, V) , / = I f = J J £ where /* i s t h e

N N i N N

component of / i n (TU) L v. . Fur ther by [ / , Corol lary t o Theorem

1 1 , p . 1213] ,

ft, = I 4 = I l i m f (ry/)j(t)w (a, t)dAt)
i=l i=l x*+™ ' -r

rr n
= l im I (Uf) Xt)ai At)WM(s, t j ^ t t j d i i ( t )

1***° -r i,j=l "

= limf I (uf) At) a. AmAt) I W As, t) [ a~Tt)a At)dv At)

rr n
= lim I m (t)[uf)(t)hP(s, t)du{t)
r-*° >-r j,p=\ op « J a a

From this, the result follows immediately.
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