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A COMMUTATIVITY CRITERION FOR PRESPECTRAL OPERATORS

WERNER RICKER

It is shown that if a bounded linear operator A commutes with a
prespectral operator 7T of class T , then A4 commutes with the

resolution of the identity of class I for T , say P(-) , if and
only if A*(T) ¢ [F°1*T . Here A* is the dual operator of A and
(F°1*r is the linear span of the set {U*; U ¢ P(-)c, £ e}

where P(.)¢ denotes the commutant of the range of P(.) .

One of the fundamental results in the theory of spectral operators
is the commutativity theorem: a bounded operator commutes with a spectral
operator if and only if it commutes with its resolution of the identity
[(7; Theorem 6.6]. This commutativity result is known to fail for pre-
spectral operators. Indeed, U. Fixman showed that there exist on lw a
prespectral operator T with a resolution of the identity P(:) of class
r = 21 and a bounded operator A which commutes with T but not with
every value of P(+) [1; p.144]. The crucial point in this example is
that T is not mapped into [P°]*T by the dual operator A* of A .
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Here [P°J*T is the linear span of {U*E; U ¢ P(-)c, £ €T} anda P(-)°
denotes the commutant of the range of P(.) . The purpose of this note
is to establish the fact that if a bounded operator A commutes with a
prespectral operator T of class T , then A commutes with the

resolution of the identity of class I' for T , say P(-) , if and only

if A*(T) < [F°1r .

If X is a Banach space, then L(X) denotes the space of all
continuous linear operators of X into itself. The identity operator is
denoted by I . The space of all continuous linear functionals on X is
denoted by X* . Let ¢ denote the complex number field and B the
o-algebra of Borel subsets of ( .

Let T be a total subspace of X* . A set function P: B - L(X)
is called a spectral measure of class T if and only if

(i) . P(¢) =1,
(ii) P(E n F) = P(E)P(F) for all E,F ¢ B, and

(iii) for all x e X and all & € T' the (-valued set function

<P(-)xz,E€> is countably additive on B .

It is usually assumed, in addition,that sup{||P(E)|| ;: E ¢ B} is finite,
but this already follows from the requirements (i)-(iii) [2; p.150]. Since
I belongs to the range of P(+) it is clear that T ¢ [PPI#T c x* ,

LEMMA 1. Let P: B + L(X) be a spectral measure of class T .

Then P(-) 1is also a spectral measure of class A = [PPI4T.

Proof. Let z e X and g e p. Then ¢ = Z;LlU;gr for some

Ur € P(-)° ana Er €T, r=1,...,n. It follows that
(] n n
<P(E)x,g> = | <P(E)x,Ukg > =] _ <U P(E)x,g > =] ,<P(E)U x,€> ,

for each E ¢ B. Accordingly, <P(.-Jxz,&> is countably additive. O

An operator T ¢ L(X) is called a prespectral operator of class T
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if there is a spectral measure P(-) of class I , necessarily unique

[1; Theorem 5.13], such that T ¢ P(.)° and the spectrum of the
restriction of T to each closed invariant subspace P(EJX, E € B, is
contained in the closure of E in £ . The measure P(.) is called the
resolution of the identity of class T for T . Spectral operators
correspond to the case when T = X* []; Theorem 6.5]. An example of a

prespectral operator (of some class I') which is not a spectral operator
is given by Tf =g, fe X = L ([0,11), where g(s) = sf(s), s ¢ [0,1],

and T = LZ([O,JJ).

PROPOSITION 1. Let T e L(X) be a prespectral operator of class
T and P(.) be its resolution of the identity of class T . Then T is

also a prespectral operator of elass A = [F°I*T with the same P(-)
being its resolution of the identity of class A .

Proof. It follows from Lemma 1 that P(.) 1is a spectral measure
of class A which also satisfies, if considered as being a class A
rather than class TI' , the properties T ¢ P(-)¢ and the spectrum of the
restriction of T to each closed invariant subspace P(E)X, E e B is
contained in the closure of E . Accordingly, P(.) 1is a resolution of
the identity of class A for T and so is the resolution of the identity
of class A for T []; Theorem 5.13]. d

If T € L[(X) is a prespectral operator of class I with resolution
of the identity of class TI' , say P(.), and A4 € L(X) commutes with
T , then it is known that

(1) A(J' fdp) = (j fdP)a , f e Cl(a(T)),
o(T) o(T)

where o(T) is the spectrum of 7 [71; Theorem 5.12]. The 'integral' is

defined via a process of continuous extension from the B-simple functions
[(1; p.120].

The main result can now be published.

THEOREM 1. Let T ¢ L(X) be a prespectral operator of class T
and A € L(X} commute with T. If P(.) is the resolution of the
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identity of class T for T , then A commutes with each value of P(.)

if and only if A*(r) < [P°I1*r .

Proof. If A commutes with each value of P(-) , then 4 € P(.)¢

and hence, A*(T) E[Pp]*r by definition of (F°1#r .

Conversely, suppose that A*T) < [F°1*#T . Fix x € X and £EerT
Define ([-valued set functions ¥ and v on B by v(.) = <P(.JAx, &>
and wu(.) = <AP(.)x,E> = <P(.)x,A*> . Then v is o-additive by

definition of P(.) being a spectral measure of class I' and yu is

o-additive by the hypothesis A*£ ¢ [P°1*T and Lemma 1. Since u and v
are regular it follows from (1) that

fdv = faw, fecClalm)) ,

Io(T) Icx(T)

and so the Riesz representation theorem implies that v = u . Since
x € X and £ € T are arbitrary it follows from the totality of T that
AP(E) = P(E)JA for each E € B . 0

COROLLARY 1.1. Let X be a Banach space and T ¢ L(X*) be a
prespectral operator of class X . If A e L(X) satisfies A*T = TA* ,
then A* commutes with the resolution of the identity of class X for T.

The difficulty with Theorem 1 is that to apply it in practice it is

necessary to be able to identify the subspace [Pc]*r which, in turn,

requires a specific knowledge of the resolution of the identity of class

r for T, say P(-) , and its commutant P(-)° . However, it is clear
that if T itself happens to be an invariant subspace of A* , then

certainly A commutes with P(.) . This sufficient condition, although

more stringent than the hypothesis A*(T) ¢ [Pc]*r and hence less likely
to be satisfied, nevertheless has the advantage that it is easier to

verify. Actually, under some reasonable topological assumptions it turns
out that the containment A*(T) ¢ I' is not too far from the condition

A*(T) < [F°1*r .
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PROPOSITION 2. Let T be a total subspace of X* such that T 1is
sequentially closed for the weak topology o(T,X) 1induced by the dual
pairing <T,X> . If P: B > L(X) 1is a spectral measure of class T such
that each operator P(E) , E € B, 1is continuous from (X, o(X,T)) into
(X, o(X,T)) , then T coincides with the linear span [U(P)1*T, of
{V*t; V e U(P}), £ € T} where U(P) denotes the closed algebra generated
by {P(E); E ¢ B} with respect to the uniform operator topology in L(X).

Remark. An operator S: X + X is continuous from (X, o(X,T))
into (X, o(X,T)) if and only if S*(T) c T .

Proof. The inclusion T ¢ [U(P)]*I always holds. To show the
reverse inclusion it suffices to show, by definition of [U(P)]*T and
the fact that T is a subspace, that V*f ¢ T whenever £ ¢ I' and
V e UP) . Noting that the range of P(:) is a TI'-o-complete Boolean
algebra in the sense of Definition 2 of [2] it follows from [2; Lemma 2]
that if K is the maximal ideal space of U(P) , then there exist a
spectral measure &: BK + L(X) of class T' and a function f e C(K)

such that V = J fdQ , where BK is the o-algebra of Borel subsets of
K

K . 1In addition, the range of § coincides with {P(E); E ¢ B} . Choose
a sequence of BK-simple functions, say {fh} , such that fh > f

uniformly on K . Then V = lim j fth , where the limit exists in the
K

uniform operator topology of L(X) ([7; p.120]. Accordingly
(2) <x,V*> = <Vx,E> = lim <(I f,d)z, &> = lin <x,(f £,dR) *e>
K K

for each x € X . But, if g = )"

r=1%XF () is a BK—51mple function

then it follows from the identity (J gda) *g = 22=1arQ(F(r))*£ , the
K

inclusion {Q(F(r))}2=1 c {P(E); E ¢ B} and the assumption that T is

invariant for each operator P(E)*, E € B, that (f gd)*t e T .
K
Accordingly, the sequence {(j fth)*g}:=1 is contatned in T and, by
K

(2), it converges to V#*f with respect to the topology d(T,X) . Then
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the o(T,X)-sequential closedness of T implies that V* £ ¢ T. 0

Remark. It is always the case that U(P) c P(-)c and hence, under

the assumptions of Proposition 2, the subspace TI' can be a proper sub-
space of (p%3+r only if the containment U(P) < P(.)¢ is proper. Of

course, if it is known for some reason that U(P) = P(.)¢ , then under the
assumptions of Proposition 2 it follows that a bounded operator A4
commuting with a prespectral operator 7T of class T (having P(.) as
its resolution of the identity of class T) commutes with P(.) if and

only if A*(T) < T .

Example. Let X be a weakly sequentially complete Banach space
and T € L(X) be a spectral operator with a cyclic vector (that is if
@: B ~ L(X) is the resolution of the identity for T , then there exists
a vector z, in X such that the linear span of {Q(E’)xo; E € B} is

dense in X). Then T* ¢ L(X*) is a prespectral operator of class X

with the property that if AT* = T*4 for some 4 ¢ L(X*) , then A
commutes with the resolution of the identity of class X for T* if and
only if A*(X) ¢ X . Indeed, with T = X it follows from [Z; Lemma 3]
that P(E) = Q(E}*, E ¢ B , is the resolution of the identity of class

I for T* ., Since T with the o(T,X*) topology is simply X with
its weak topology and P(E)* = Q(E)** has T = X ¢ X** as an invariant
subspace for each E € B , it suffices to show that U(P) = P(.)° (see
Proposition 2 and the Remark following it). But, if :z:g € X* is any
Bade functional for T, . then :c; is a T=X-cyclic vector for

{P(E)*; E ¢ B} in the sense of Definition 3 of [2]; see the Remark on
page 153 of [2]. Accordingly, the Corollary on page 155 of [Z] implies

that UP) = p(.)° .

For a specific example, let X = ll(lN) and {An}:=1 be a bounded
sequence in £ . Then X 1is weakly sequentially complete and the operator
T € L(X) defined by Tx =y, x € X, where Yy = A%y 1= 1,..., isa

spectral operator with a cyclic vector (for example z, = {n-z}n=1
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