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Abstract

Let/and g denote immersions of the n-manifolds M and N, respectively, in R"+l. We say that/is
athwart to g if/(A/) and g(N)m have no tangent hyperplane in common. In this paper necessary
conditions for athwartness are obtained.

1980 Mathematics subject classification (Amer. Math. Soc.): 57 R 42, 53 A 04, 53 A 05, 53 A 07.

Introduction

We study the following problem. Let M and N be smooth (= C°°), closed,
connected manifolds and let / and g be smooth immersions of M and N,
respectively, in Euclidean (n + l)-space R"+l. We say that / is athwart to g,
written f-Prg, if and only if f(M) and g(N) have no tangent hyperplane in
common. In what circumstances i s / f t g?

It is easy to think of instances where/-R-g and others where/is not athwart to
g. Some examples, for the case n = 1, are shown in Figure 1 below. In examples
(i) and (ii) /-ft- g while / is not athwart to g in (iii) and (iv).

We observe that, for all n > 1, if / is a convex embedding of the n-sphere S"
and if g(N) is inside f(S") then/-R-g. However convexity of / is obviously not
essential for athwartness. It is natural to consider whether any analogue of case (i)
in Figure 1 exists for n> 1. In fact, we shall prove the following two main
theorems which give necessary conditions for athwartness and show that there is
an interesting difference between the cases n = 1 (Theorem 4.1) and n > 1
(Theorem 5.1). Precise definitions are given in Section 2.
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Figure 1

THEOREM 4.1. Let f and g be two immersions of S] into R2. If /-fi-g then the
image of one of the immersions is inside all the loops of the other.

THEOREM 5.1. Let f:M-+ Rn+\ g: N -> R"+] be immersions such that f-Pt-g.
Then one of the manifolds, say M, is diffeomorphic to S", f is an embedding with
starshaped inside and g(N) is contained in the interior of the kernel of the inside
off.

Thanks are due to Dr. L. Lander and Professor H. B. Griffiths for helpful
discussions on the case n — 1. The authors are also grateful to the referee who
suggested several improvements and called their attention to [3].

F. J. Craveiro de Carvalho is indebted to INIC-INSTITUTO NACIONAL DE
INVESTIGA£AO CIENTIFICA-LISBOA-PORTUGAL for financial support.

2. Notations and definitions

Throughout the paper we shall be dealing with compact, connected C°°
/j-manifolds without boundary. All the maps are C°°.

For any immersion / : M -» R"+] the tangent n-plane to f(M) at f(x) will be
denoted by Tx and is the affine w-dimensional subspace of /?"+1 determined by
f(x) and f*x(TxM), where fmx : TXM -> Tfix)R

n+l = Rn+l. Such an immersion
induces a C°° map F: M -» R"n

+\ where R"n
+l denotes the Grassmannian of

affine n-planes in Rn+' [5].
Transversality will be denoted by the usual symbol ffl. Thus, from Section 1, if

/ : M -» Rn+l and g: N -> Rn+] are immersions then/-R g if and only if Tx ffl Tv,
for any x e M,y e N.

A loop is a C00 map g: [a, b] -> R2 such that g\[a, b) is injective, g'(t) ¥= 0 for
t e [a, b], and g(a) — g(b). A loop is a Jordan curve and therefore the comple-
ment of its image in R2 consists of two disjoint open connected subsets of R2
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Figure 2

according to the Jordan Curve Theorem [4]. Of these two subsets one is bounded
and will be called the inside of the loop g (or the inside of g([a, b])) while the
other is unbounded and is called the outside. If a set 5 is contained in the inside
(outside) of a loop g we say that S is inside (outside) g (or g([a, b])).

If we look at an immersion of S1 into R2 as a periodic map f:R^>R2 of
period one we can speak of loops of an immersion. We shall not distinguish
between two loops of/with the same image in R2. Figure 2 illustrates this idea:
the image of the "cloverleaf' immersion of S1 is indicated by a broken line with
the image of one of its six loops shown as a solid line.

If/: M -> R"+i is an embedding then the complement of /(A/) in Rn+l is the
union of two disjoint open connected sets B and U of which B is bounded and U
is unbounded [1]. We say that B is the inside of/(or/(M)) and U is the outside.
As before we shall speak of being inside (outside)/(or/(Af)).

If V is a subset of Rn+l the kernel of V is the set {p e V\ tp + (1 - t)q e V
for all q e V and 0 < t < 1}.

3. A basic result

THEOREM 3.1. Letf:M-* Rn+l and g: N -» Rn+l be immersions. Iff(M) has
two tangent n-planes such that one meets g(N) and the other does not then f is not
athwart to g.

PROOF. Assume that, under the above hypothesis, /•&• g. Then g <\\ Tx, for any
x e M.

Let U denote the set {x E M\ Tx D g(N) ¥=• 0 } . This set and its complement
are both non-empty. Since g(N) is compact then U is obviously closed. We show
next that it is also open.

Let x e U. By transversality there exist yx, y2 in N such that g(^,) and g(y2)
do not lie in the same half-space complementary to Tx. The set of hyperplanes
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which separate giy^) and g(y2) is open in #£+1. Therefore, since the map induced
by / i s continuous, there exists an open neighbourhood Ux of x such that, for any
y E Ux,Ty separates g(yt) and g(y2) and so Ty n g(N) ^ 0 .

Having proved that U is simultaneously open and closed we conclude that M is
not connected. Consequently athwartness must fail somewhere.

COROLLARY 3.1. Let f: M -» JR"+1 and g: N -» / T + l fee immersions such that
f(M) D g(N)¥= 0 . 77ie«/is no/ athwart to g.

PROOF. Suppose t h a t / = (/•)» g = (ft). ' = 1.•••.«• Looking, for instance, at
the absolute maxima of /, and g, we see that either f(M) and g(#) have a
common tangent n-place or one of them has a tangent n-plane which does not
meet the other. Since f(M) D g(N)¥= 0 we are then in the position of the
previous theorem.

We remark that, for n = 1, Corollary 3.1 is also a corollary of Theorem 4 in [2].
From now on we shall deal with the cases n = 1, n > 2 separately.

4. Plane curves

THEOREM 4.1. Let f and g be two immersions of Sl into R2. If fPt g then the
image of one of the immersions is inside all the loops of the other.

PROOF. Suppose that neither of the images lies inside all the loops of the other.
Then either /(S1) n g(S') ¥= 0 or /(51) n g(S') = 0 . If /(S1) n g(Sl) * 0 ,
by Corollary 3.1, there is a common tangent. If f(Sl) n g(Sl) = 0 then we must
have two loops, one of each curve, such that neither of them is inside the other.
As before, we can assume that there is a tangent to one of the images which does
not intersect the other and again we are in the position of Theorem 3.1 in view of
the following lemma.

LEMMA 4.1. Let f: [a, b] -» R2 be a loop andp an outside point. Then at least one
tangent to the loop passes through p.

PROOF. We shall assume that no tangent line to / passes through p. Let
* : [a, b] -» S1 be given by *(/) = (f(t) - p)/\\f(t) - p\\. Consider the covering
map: g: R-> S\ with g(t) = (cos 211/, sin 2110. Let x e R be such that g(x) =
Sf'(a) = ¥(£) and ^ the lift of ¥ which starts at x. The winding number of /
relative top is given by ^(b) — ¥(a). Since we are assuming that no tangent line
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passes through p, ¥ has no critical points and the same happens to Sk This map
is either increasing or decreasing and thus the winding number is non-zero.
Therefore, p is an inside point.

5. Hypersurfaces

THEOREM 5.1. Let f: M -» Rn+X, g: N -> Rn+] be immersions such that fPtg.
Then one of the manifolds, say M, is diffeomorphic to S", f is an embedding with
starshaped inside and g(N) is contained in the interior of the kernel of the inside of

/ •

PROOF. We shall use the following remarkable result due to Halpern [3].
Let/: M -» Rn+\ dim M = n, be an immersion. If UxeM Tx =£ Rn+1 then Mis

diffeomorphic to S", / i s an embedding, the inside of f(M) is starshaped and
Rn+X\ UxeA/ Tx is the interior of the kernel of the inside of/.

Since/-R-g, there exists a tangent «-plane to one of the images, say f{M),
which does not meet the other, as in Section 3. By Theorem 3.1, no tangent to
f(M) meets g(N). The theorem now follows from Halpern's result.

Added in Proof. The conditions of Theorem 5.1 are not only necessary but also
sufficient [3].
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