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1. Introduction

It is known that a divisor d > 0 of the positive integer n is called unitary
[3; §1] if dS = n and (d,S) = 1, where (d, 8) denotes the g.c.d. of d and 5.
We write d | n. Let k be a fixed positive integer. A positive integer n is called
k-free if n is not divisible by the fcth power of any prime. Let ^k(n) be the
characteristic function of the set of k-free integers (i.e. i^k(n) = 1 or 0 according
as n is fc-free or not). For integers a, b, not both zero, let us denote by (a, b)k

and (a, b)*, the greatest fcth power divisor of a and b and the greatest fcth power
divisor of a which is a unitary divisor of b respectively. It is clear that
(a,b)1 = (a,b) and (a,b)* = (a,b)*, the greatest divisor of a which is a unitary
divisor of b [3; §1]. We say that a divisor d > 0 of the positive integer n is k-ary
[9; § 1] or semi-k-ary according as d8 = nand(d,d)k=lordd — nand(d,d)k = 1.
It is clear that a 1-ary divisor is a unitary divisor and a semi-1-ary divisor is a
semi-unitary divisor [1; §1]. It may be noted that if d is a /c-ary divisor of n
then njd (the complementary divisor to d of n) is also a /c-ary divisor of n, but
if d is a semi-k-ary divisor of n, then its complementary divisor need not be a
semi-k-ary divisor of n.

For any pair of arithmetical functions/(n) and g(n), we define

(1.1) Ft(n) = 2 f(d)g(S)
dd = n

(d,S)k = l

(1.2) F?(n)= L
dd--n

(.*.»)*. =1

where the summation in (1.1) and (1.2) are over the k-ary and semi-k-ary divisors
of n respectively.

For any r such that | r| ^ 1, let

(1.3) <r*k(n); o»(n); <*(n); <*/("),

denote respectively the sum of the rth powers of the k-ary divisors, fc-ary (k + 1)-
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free divisors, semi-fc-ary divisors and semi-/c-ary (k + l)-free divisors of n.
For | rj ^ 1, let

(1-4) < r r » ; O n ) ; <*/(«); <*/ 00,

denote respectively the sum of the rth powers of the /c-ary divisors of n whose
complementary divisors are (k + l)-free, fc-ary (fc+l)-free divisors of n whose
complementary divisors are (fc+l)-free, semi-£>ary divisors of n whose com-
plementary divisors are (k 4- l)-free, semi-/c-ary (k + l)-free divisors of n whose
complementary divisors are (k + l)-free.

Again, for J r| 2: 1, let

(1.5) <Hn); <?(»); <*'("); <?*' 00,
denote respectively the sum of the rth powers of the complementary semi-fc-ary
divisors of n, (k + l)-free complementary semi-fc-ary divisors of n, complementary
semi-fc-ary (fe + l)-free divisors of n, (k + l)-free complementary semi-fc-ary
(fe+l)-free divisor of n.

Any complementary fc-ary divisor of n is also a fc-ary divisor of n, so that
the four functions corresponding to (1.5) in case of fc-ary divisors reduce to the
first two functions of (1.3) and the first two functions of (1.4) respectively.

Further, if S is (k + l)-free, then (d,S)*k = 1 if and only if(d,5)k = 1. Hence
the first and third functions of (1.4) are equal and the second and fourth functions
of (1.4) are equal. Also, the second function of (1.5) is equal to the second function
of (1.3) and the fourth function of (1.5) is equal to the second function of (1.4).
Hence we discuss only the following functions together with the functions in (1.3):

(1-6) <CM); v*'k
c(n); <ff (n); <**' (n).

In this paper (see §4) we obtain the average orders of magnitude of the
functions F*(n) and Fs

k*(n) defined in (1.1) and (1.2) in the following cases and
deduce the average orders of magnitude of the functions considered in (1.3)
and (1.6):

(i) g(n) is bounded and/(n) = nr, ^ + i(n)nr, r 2: 1.
(ii) g(n) = 1, ^ + 1 ( n ) and/(n) = h(n)/nr, where h(n) is bounded, r ^ 1,
(iii) f(n) is bounded and g(n) = nr, r Si 1.
(iv) f{ri) = 1, ^k + 1(n) and g(ri) = h(n)/nr, where h(n) is bounded, r ^ 1.

2. Preliminaries

Let 4>(n) denote the Euler totient function, Jk(n) denote the Jordan totient
function (cf. [4], p. 147; also [2]) and ®k(n) denote the Klee's function (cf. [6]
and [7]). Let n{n) denote the Mobius function and fi*(n) be defined by fi*(l) = 1
and fx*(n) = (—l)w("\ where w(n) denotes the number of distinct prime factors
of n. The function n*(ri) has been discussed by Cohen [3]. The following known
arithmetical forms are needed in our later discussion:
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(2.1) m = n l f = n n
d\n " p\n

(2.3) <Dt(n) = n E

the products being extended over all prime divisors p of n.

Let <£*(«) denote the number of integers h in the set {1,2, •••,n} such that
(h,n)* = 1. It has been proved in [10; Theorem 2.5] that

(2.4) tf(n) = „ S ^ = n n
*/«

L E M M A 2 . 1 .

x r + 1

( 2 . 5 ) S m r = —— + O ( x r ) , i f r ^ O , x ^ l .

(2.6) S -Jr = 0(1), if r > l , x ^ l ,
mix "»

= O(logx), if r = 1, x ^ 2.

(2.7) I - L = O ^ ) , if r > l , x ^ l .

This is well-known.

LEMMA 2.2. (cf. [11], lemma 2.3) For s > 1,

(2.8) Z =

(m,n) = l

wftere J s(n) = ns YIp\n (1 - 1/p') and £(s) is ifte Riemann zeta function.

LEMMA 2.3. (c/. [ 8 ] , theorem 1). Fo r s > 2 ,

(2.9) S °'(n) - C(S - 1}

B i n"

LEMMA 2.4. For s > 2 ,

( Z 1 0 )

p i

product being extended over all primes p.
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PROOF. The series is absolutely convergent for s > 2, since <£t(n) ^ « by
(2.3) and the general term is multiplicative. Hence the series can be expanded
into an infinite product of Euler type (cf. [5], Theorem 286) so that we have

£ rk+1(n)<l>k(n) = FT (
n = l n* p l < = 0 P'

By making use of (2.3), we get the lemma after simplification.

LEMMA 2.5. For s>2,

(2.11) E *^L = « ,

PROOF. This can be proved in the same way as lemma 2.4, by expressing
the series into an infinite product of Euler type and then making use of (2.4).

LEMMA 2.6.

_ | 1 if (m, ri)k = 1,
(2"12)

 d$m
 = ( 0 otherwise.

PROOF. We note that (a, b\ = 1 if and only if (a, b) is fc-free and

(2.13) TTk(n) = E n{d) so that
dk\n

S n(d) = ir
k((m, n)) = 1 or 0 according as (m, «)A = 1 or > 1,

Jk|(m,n)

which proves the lemma.

LEMMA 2.7. (cf. [1], lemma 2.3(ii)). For r ^ 0, x ^ 1, n ^ 1,

(2.14) 0r(^5«) = 2 mr = ^ . • ^ + OCx'* C«),
(m,n) = l

uniformly, where -&(n) ts the number of square-free divisors ofn.

LEMMA 2.8. For r ^ 0, x ;> 1,

(2.15) I n+1(m)m' = ^ ^ ^

uniformly, where

PROOF. By (2.13) and (2.14), we have
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2 -rk+1(_m)m- = 2 m' I n(t) = 2
m g x m i x rk + »|m J f c + ' sgx

= 2

- E u(f)t«+»'l * ( x \T+lm + n(r'm\\

= n r i i r f J jL "^"+ °(x^(n)
 r< f̂ctl

1
((.n)=l

r v v y Ml.1^ . n l r+i v> _(j + i) \

/ 1
(2.17) 2 fi*(d) =

dfclm ' 0

The first O-term is 0(xr+1/(*+1)) by (2.7). Hence the lemma follows, by (2.8).

LEMMA 2.9.

1 if (m,n)* = 1

otherwise.
d«\\n

PROOF. Suppose (m, n)* = 1. Then 1 is the only kth. power divisor of m
which is a unitary divisor of n so that the left hand side of (2.17) is /z*(l) = 1.

Suppose (w, n) * > 1. Then there exists a fcth power divisor > 1 of m which
is a unitary divisor of n. Let p\ai • • • pk

r'
r be the canonical representation of the

greatest fcth power divisor of m which is a unitary divisor of n. Then the left
hand side of (2.17) is equal to

tl{n*(l) + H*(p?)}=0.
i = 1

Hence the lemma follows.

3. Auxiliary lemmas

In this section, we prove some more lemmas which are needed in our later
discussion.

LEMMA 3.1. For r ^ 0, x ^ 1,
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(3.1) &>t(x,n)= 2 m' = ^ ^

(m.n)i< = l

(3.2) #!*(*, n) = 2 ro' = ^
j

(m,n)t =1

uniformly, where §k(ri) = 2dk|n^2(<f) and r*(n) = 2<Jk||(Il.

PROOF. We prove (3.2) and (3.1) can be proved similarly. By (2.17), (2.5)
and (2.4),

#.*(*.»)= 2 mp = 2 2 n*(d) = 2 n*(d)dkr5r

m^x m^x dk\m dk5^x
( m , n ) . = l ^ 1 1 " <«fcl|n

= 2 n*(d)dkr 2 5r

ifc]|n SSx/d"

r + l dHn dk

= - — - • ̂ M + O(xrtt(n)).
r + l n v kK "

Thus (3.2) is proved. To prove (3.1) we use (2.12) and (2.3) instead of (2.17)
and (2.4).

REMARK 3.1. The functions #fc(n) and z*(n) can be replaced by xk{ri) =
Xdkjn 1 in (3.1) and (3.2) since &k(n) ^ rk(n) and t*(n) ^ ?k(n).

LEMMA 3.2. For r ^ 0, x Si 1,

(3.3) #.»(*, ii) = 2m-&x -f-

(3.4) ^ ( x , » ) ^

uniformly, where

(3.5)

(3.6)
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( 3 7 ) A ( B ) &

PROOF. Here also, we give the proof of (3.4) and omit the proof of (3.3)
as it can be proved similarly.

By (2.17) and (2.15), we have

dk\m
d*\\n

n2(d)fi*(d)dkr Z
iSx/dk

/ rr
Thus (3.4) is proved. To prove (3.3) we use (2.12) instead of (2.17).

REMARK 3.2. We note that Pk(n) and 9k(n) are multiplicative (follow from
lemma 2.4 of [9]) and fi*(n) and Q*(n) are also multiplicative (follow from theorem
2.4 of [10]). Their evaluations are given by the following:

- n {
(3.10) 8,W - (1 (l +

(3.12)

REMARK 3.3. Ok(n) = 0(ns) and d*(n) = 0(nc) for every £ > 0. These can
be proved by making use of theorem 316 of [5].

LEMMA 3.3. For s > 1,
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ffce products being extended over all primes.

PROOF. By (3.9) and (3.11), 0k(n) S 1 and j8*(n) g 1 so that the three series
are absolutely convergent for s > 1. Since Pk(ri) and jSf(n) are multiplicative,
the series can be expanded into infinite products of Euler type (cf. [5] theorem
286). By making use of (3.9) and (3.11) we get the lemma after simplification.

LEMMA 3.4. For r ^ 0, x ^ 1,

(3.16) tf,k(x,n) = I m* = J^- ^ >
r + 1 n

()
uniformly, where
(3-17) ^ W = »

d

(3.18) Ik(n) = 2
dk\n

PROOF. Interchanging m and n in lemma 2.9, we have

J if(M'm)r= X
0

\
Hence

rls*k(x,n)= I, m' Z n*(d) =

= E
dk|n

so that by (2.14),

Hence (3.16) follows.
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REMARK 3.4. We note that i^f(n) is multiplicative (follows from lemma 2.4
of [9]) and its evaluation is given by

where t = [a//c], a being the multiplicity of p in n.

LEMMA 3.5. For s>2,

PROOF. By (3.20), ij/*(n) ^ n, so that the series are absolutely convergent
for s > 2 and the general terms of the series are multiplicative. By expanding
the series into an infinite product of Euler type the lemma follows from theorem
286 of [5].

LEMMA 3.6. For r ^ 1, x ^ 2,

rO(log2x) if r = 1, k = 1

(3.23) Er,k(x) = X ^ = 1 O(logx) if r = 1, k> 1

•-O(i) if r > 1,

where tk(n) is as defined in Remark 3.1.

PROOF. We have

(3.24)

If r = 1, then by

d<

(2.6),

y x l

„*(*) = o( S i l o g j ) = O (log* X -U = O(log2x) or O(logx),

according as k = 1 or k > 1.
If r > l , by (3.24)and (2.6),

Er.k(x)= 0 ( d <
E

l k ^ ) = 0 ( ^ -

Hence the lemma follows.
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LEMMA 3.7.

(3.25) Gnk(x) = E ^ = J O(logx) if r = l,k > 1
«S.t " I

rO(\og3x) if r = l,fc =

if r = l,

i f r > l ,

where Ik(n) is given by (3.18).

PROOF.

Gnk(x)= E 1 E #(</) = E ^

(3.26) = 2. —^— 2. - j - .

It is clear that «?(n) g x(n), where r(n) = E . , ^ 1 . If r = 1, then by (2.6),

GrAx)=o( E f l . g i ) a O ( iog X E T-

= O(log3x) or O(logx) ,

according as k = 1 or k > 1, since

E ^ = O(log2x) or 0 ( 1 ) ,

according as k = 1 or k > 1.

If r > 1 , then by (3.26) and (2.6),

Gr,k(x) = O^k ^-j = 0(1).

Hence the lemma follows.

4. Main Theorems

In this section we prove some theorems and deduce the average orders of

magnitude of the functions considered in (1.3) and (1.6).

THEOREM 4.1. / / in (1.1) and (1.2) g(n) is bounded and f(n) = nT then
for r ^ 1, x ^ 2 , k ^ 1,

(A 1\ y V"*(n\ — — y SWYkW , rp , ->
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where <S>k(n) and <j>%(n) are respectively given by (2.3) and (2.4) and £rJk(x) is

given by (3.23).

PROOF. We have by (3.1) and Remark 3.1.

E Fk*(n) = E E d'g(S) = E <?g(8) = E g(S) E <f
n<x « S J dd = n ddSx b&x SSx/i

(,d,6)k = l (d,d)k = l (d,d)k = l

g(n)<bk{n) |

+ O(x'Er,k(x)),

by (3.23) and the boundedness of g(n).
Since ^ ( n ) ^ n, the first O-term is O(x) by (2.7) and the second O-term

is xrEr<k(x) by (3.23). Hence (4.1) follows.
Trie proof of (4.2) follows similarly by using (3.2) instead of (3.1).

COROLLARY 4.1.1. (g(n) = 1). For r ^ 1, x 5: 2 , fe^l,

(4.3) J ^ * f c ( n ) = i ^ i ^ | ^

(4.4) E <rs*k(n) = ^ - E ^

REMARK 4.1. The case k = 1, r — 1 in (4.1) and (4.3) has been discussed
by Cohen [3] and the case k = 1, r > 1 in Theorem 4.1 and Corollary 4.1.1
has been discussed by Chidambaraswamy [1]. The case k > 1, r = 1 in (4.1)
and (4.3) has been discussed in [12].

REMARK 4.2. The coefficients of xr+1j(r + 1) in (4.3) and (4.4) can be ob-
tained from (2.9) and (2.11) respectively by taking s = r + 2.

COROLLARY 4.1.2. (g(n) = ^ + 1 ( n ) ) . For r ^ 1, x ^ 2 , k ^ 1,

REMARK 4.2. The coefficient of xr+il(r + 1) in (4.5) can be obtained from
(2.10) by taking s = r + 2 .
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THEOREM 4.2. If in (1.1) and (1.2) g(n) is bounded and f(n) = vk+1(n)nr,
then for r S; 1, x 2: 2 ,

(4-6) l F > ) ~ F " 3 ^
(47> .1 r'w - (T
vv/iere j5t(«) and /?*(») are given by (3.5) and (3.7) respectively.

The proof of this theorem is similar to that of Theorem 4.1.

COROLLARY 4.2.1. (g(n) = 1). For r ;> 1, x ^ 2 , k ^ 1,

(4-9) ? « « " F T O |
REMARK 4.4. The case k = 1, r = 1 in (4.6) and (4.8) has been discussed

by Cohen [3] and the case k = 1, r > 1 in Theorem 4.2 and Corollary 4.2.1
has been discussed by Chidambaraswamy [1].

REMARK 4.5. The coefficients of xr+il(r + l)C(fc + 1) in (4.8) and (4.9) can
be obtained from (3.13) and (3.14) by taking s = r + l.

COROLLARY 4.2.2. (g(n) = ^ + i ( n ) ) . For r ^ l , x ^ 2 , f e ^ l .

REMARK 4.6. The coefficient of xr+ lj(r + l)£(fc + 1) in the above can be
obtained from (3.15) by taking s = r + 1.

THEOREM 4.3. / / in (1.2) f(n) is bounded and g(n) = nr, then for r ^ 1,

w/iere i^f(n) is f̂iyen fry (3.17) a n i Grt(x) is given by (3.25).

PROOF. By (3.16),
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d<x S^x/d d<x

xr +1

r + r „ * s *

by the boundedness of /(n). Since ^*(n) ^ n, the first 0 -term is 0 (x) by (2.7)
and the second 0-term is xrGr,k(x) by (3.25). Hence (4.11) follows.

COROLLARY 4.3.1. (J(n) = 1). For r ^ 1, x ^ 2, fc ^ 1,

(4.12) 2 « n ) = ^ - E 1 ^ + ^Gr,t(x)>

COROLLARY 4.3.2. (/(n) = ^t+^n))

(4.13, Z,TM=£-i^ + sc,,A*.
nSx ' i l n = l "

REMARK 4.7. The coefficients of xr+ijr + 1 in (4.12) and (4.13) can be ob-
tained from (3.21) and (3.22) by taking s = r + 2.

THEOREM 4.4. If in (1.1) and (1.2) g(n) = 1 and J(n) = h(n)lnr where
h(n) is bounded, then for r ^ 1, x ^ 2, fc j> 1,

(4.14) 2F*(n)=x i h ^ g l + Er,k{x)
n<x n= l "

oo

(4,5) J f ! . ( ,H !!<f) t , l W.
nix n = l "

The proof of this theorem is similar to the proofs of Theorems 4.1 and 4.3.

COROLLARY 4.4.1. Qi(n) = 1). For r ^ l , x ^ 2 , f c ^ l ,

(4.16) S a*r,k(n) = x £ § @ + Er,k(x)

(4.17) E a!*r,k(n) = x £ *j£± + Gr,k(x).

REMARK 4.8. The coefficients of x in the above can be obtained from (2.9)
and (3.21) by taking s = r + 2.

https://doi.org/10.1017/S1446788700012908 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012908


[14] Sum functions of k-ary divisors 161

COROLLARY 4.4.2. (h(n) = rk + l(n)). For r ^ 1, x ^ 2, k ^ 1,

n = l

(4.19) £.->, = , £ ^ | | * » + W

REMARK 4.9. The coefficients of x in the above can be obtained from (2.10)
and (3.22) by taking s = r + 2.

THEOREM 4.5. / / in (1.1) g(n) = ^ + 1 ( n ) and f(n) = h(n)jnr where h(n)
is bounded, then for r ^ l , x ^ 2 , / c ^ l ,

(4.20) I Ft(n) = * £ *<^I + o

The proof of this theorem is similar to that of Theorem 4.1.

COROLLARY 4.5.1. (h(n) = 1). For r ^ 1, x ^ 2 , k ^ 1,

(4.21)

REMARK 4.10. The coefficients of x/£(k + 1) in the above can be obtained
by taking s = r + 1.

C O R O L L A R Y 4 . 5 . 2 . (h(n) = "f~k+i(n)). F o r r ^ l , x ^ 2 , k ^ l ,

C4?T> T a*'0 (n\ - X T

REMARK 4.11. The coefficient of */£(&: + 1) in the above can be obtained
by taking s = r + 1 in (3.15).

THEOREM 4.6. If in (1.2)/(n) = l a n d #(n) = h(n)/nr, where h{n) is bounded,
then f o r r ^ l , x ^ 2 , k ^ l ,

(4.23)

The proof of this theorem is similar to that of Theorem 4.3.

COROLLARY 4.6.1. (h(n) = 1). For r ^ 1, x ^ 2 , k jg 1,

(4.24) 2 ais*,(n) = x £ ^ g

REMARK 4.12. The coefficient of x in the above can be obtained from (2.11)
by taking s = r + 2.
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THEOREM 4.7. / / in (1.2) / ( n ) = ^ * + 1 ( n ) and g(n) = h(n)jnr, where h(n)

is bounded, then r ^ 1, x ^ 2, k et 1,

(4.25) E FrOO = a ^ r r r £ ^ ^ + Ofr1'**").

The proof of this theorem is similar to that of Theorem 4.3.

COROLLARY 4.7.1. (h(n) = 1). For r ^ 1, x ^ 2, fc ^ 1,

(4.26) 2 <' f c („)= —^— £ ££> + 0 (*^+1>).

REMARK 4.13. The coefficients of x[C(k + 1) in the above can be obtained
from (3.14) by putting s = r + 1.
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