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WEAK UNIQUENESS FOR ELLIPTIC OPERATORS
IN R3 WITH TIME-INDEPENDENT COEFFICIENTS

CRISTINA GIANNOTTI

The author gives a proof with analytic means of weak uniqueness for the Dirichlet
problem associated to a second order uniformly elliptic operator in R3 with coefficients
independent of the coordinate X3 and continuous in K2 \ {0}.

1. INTRODUCTION

Let C denote the class of second order, uniformly elliptic operators in R3 of the form

L-t •*)
with bounded, measurable coefficients a^ = a^ such that

(1.2) A|4|2 ^ £ ay(*K6 < A-^|2 V x,f € R3

for some A e (0,1).
We recall the definition of good solution to the Dirichlet problem associated with an

operator L 6 C (see for example [4]).

DEFINITION 1.1: Let L e C and let ft be a smooth, bounded domain in R3,
/ € L3(Q) and 0 G C°(9fi). A function u € C°(n) is called a good solution to the
Dirichlet problem

(1.3) Lu = f in n, u = 4> on dO.

if there exist a sequence of operators

with the same ellipticity constant A as L and a sequence of functions un with the following
properties:
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(a) for each n, the operator Ln has continuous coefficients in ft and a,-"' tends

to otij almost everywhere in Q, as n -¥ oo;

(b) un is the unique solution in W^(Q) n C°(fi) to the Dirichlet problem

Lnu = / in f2 u = <f> on 9Q

and un tends to u uniformly in fi.

Notice that by the results of Jensen in [8], the good solutions coincide with the U-

viscosity solutions to the problem (1.3) (see also [6]). Furthermore, in [9] the definition
of good solution is generalised to the case of fully nonlinear elliptic equations and it is
showed that also in this case the good solutions coincide with the viscosity solutions. For
reviews of the theory of viscosity solutions see for example [2, 3].

It is well known that a good solution to the problem (1.3) always exists. In fact, if
{Ln} is any sequence of operators approximating L, then Aleksandrov-Pucci and Krylov-
Safonov estimates imply that the corresponding solutions un are uniformly bounded and
equicontinuous in fi and hence the sequence {un} admits a subsequence which converges
uniformly in Q. (see [4])

On the other hand, one cannot claim that all convergent subsequences have to con-

verge to the same limit, that is, that there is uniqueness of good solutions. Indeed, for

operators with bounded, measurable coefficients there may be non-uniqueness. In fact,

Nadirashvili in [12] constructed an example of an operator defined on the unit ball in

K3, such that the Dirichlet problem with suitable data admits at least two different good

solutions (see also [14]).

However, the existence of operators, for which there is no uniqueness of good solu-

tions, brings to the following natural question: for which classes of operators we have

uniqueness? This question seems quite hard and up to now no complete answer is known,

but several results have been obtained assuming special hypotheses on the discontinuity

set of the coefficients e*y. In [4] uniqueness has been proved if the coefficients are con-

tinuous except at a countable set of points with at most a finite number of accumulation

points. In [10] Krylov generalises this result to include the case of a set of discontinuity

with countable closure. A further generalisation was obtained by Safonov in [13], where

uniqueness is proved if the set E of discontinuity points is so that for any subdomain

fto C fio C ft, the intersection E l~l fl0 has zero Hausdorff measure of dimension a for a

suitable a = a(X).

Notice that Safonov's result does not give control on such dimension a. In partic-

ular, his result is not able to imply the weak uniqueness in the case in which the set

of discontinuity points contains a straight line. Partial results on weak uniqueness for

discontinuities along a line were first obtained in [7, 5]. A recently published result of

Krylov ([11, Theorem 2.18]) implies that uniqueness holds for all operators L € C of the

https://doi.org/10.1017/S0004972700047481 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700047481


[3] Weak uniqueness for elliptic operators 93

form

d2

(1.4) L 5 > ^ )

where the coefficients a^ are bounded, measurable and independent of the variable x3,
without any further assumption of continuity. Krylov's theorem has been obtained using
probabilistic tecniques. We give here a proof of the following fact.

THEOREM 1 . 2 . Let Q be a smooth, bounded domain in R3, / 6 L3(fi) and
<t> € C°(dQ). Then, for any L € C with coefficients a^ independent of the variable x3

and continuous in R2 \ {0}, the Dirichlet problem

Lu = f in Q, u = <j> on bXl

has a unique good solution.

This statement can be obtained also as consequence of Krylov's result, but the proof
we present here is based on purely analytic means and, for this reason, we consider it of
certain interest.

2. PRELIMINARIES AND NOTATIONS

Let us introduce the following notations: for x € R3 we shall always denote the third

coordinate 13 by t and we indicate the 13-axis by r

T = { I £ R 3 : xi = x2 = 0} .

By T ~ (—7r, TT] we denote the 1-dimensional torus and for any p > 0,

Dp := {(11,12) G R2 : x\ + x\< p}, and D := Dx .

Finally,

Cp:=DpxT, C:=DxT, dCp := dDp x T 8C:=dDxT.

Let C be the class of elliptic operators defined in the Introduction. Denote by C C C

the subclass of the operators of the form (1.4) with coefficients a^ independent of the

variable t and continuous in R2 \ {0}. Let us also consider the class Cc C C given by

the operators L whose coefficients are defined in C (that is, with coefficients periodic in

t with period 2TT). Obviously, C C Cc.

Note that the periodic cylinder C can be naturally mapped onto a solid torus and

hence that the following Aleksandrov-Bakelman-Pucci estimate holds: for any L € Cc

(2.1) supu
C

|(Lu)| 3.
C 8C v ;
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where N is a positive constant depending only on the ellipticity constant A.

The estimate (2.1) and the Krylov-Safonov inequality guarantee the existence of at

least one good solution to the Dirichlet problem in C for any operator L 6 Cc and the

estimate (2.1) remains valid if u is a good solution.

If u is a good solution to the Dirichlet problem (1.3) and {Ln}, {un} are sequences

which determine u by Definition 1.1, we shall refer to u as an {Ln,un}-good solution or,

shortly, an {Ln}-good solution.

Finally, in all what follows, if the problem (1.3) has a unique good solution for any

f G L3(fl) and any <j> 6 C°(dft) we shall say that uniqueness holds for L in ft.

Now, let us state some properties of good solutions, which we shall use in the proofs

of section 3.

PROPOSITION 2 . 1 . LetLeC and let ft be a smooth, bounded domain in R3.
Then, uniqueness holds for L in fl if and only if local uniqueness holds that is, if and
only if for any x 6 ft there exists a ball Br(x) C ft such that uniqueness holds for L in

Br(x).

The proof of the "if part in Proposition 2.1 is given in [4] while the "only i f part is

due to Krylov (see [10]). Notice that, by the natural identification between the periodic

cylinder C and a solid torus, the previous proposition holds also for L € £ and ft = C.

LEMMA 2 . 2 . (See [5].) Assume that for all f e L3(C), the problem

Lu = f inC, u = 0 on dC

with homogeneous boundary data has a unique good solution. Then uniqueness holds

for L inC.

LEMMA 2 . 3 . (See [13].) Let LeCc,fe L3(C) and <j> € C°{dC). If the problem

Lu = f inC, u = <j> on dC

has a solution u € W2'3(C) n C°{C) then u is also the unique good solution to the

problem.

LEMMA 2 . 4 . (Strong maximum principle. See [4].) Let u be a good solution to

Lu = 0 in C. Ifu achieves its maximum (minimum) in C, then it is constant in C.

LEMMA 2 . 5 . Assume that the problem

(2.2) Lu = f inC, u = <j> on dC

has a unique good solution u € C°(C). Then, for any g € L3(C), t/> 6 C°(dC) and for

any good solution v to

Lv = g inC, v = tj) on dC ,

the difference v - u is a good solution to the problem

Lw = f - g inC, w = <f> - ip on dC .
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PROOF: It follows by the fact that u is an {Ln}-good solution to (2.2) for all se-
quences {Ln} converging to L. D

LEMMA 2 . 6 . Let u be a good solution to

(2.3) Lu = f inC, u = 4> on dC .

Then, for any 0 < p < 1, u is also a good solution to the problem

Lv = f in Cp, v = u on dCp .

PROOF: Suppose that u is an {Ln, ttn}-good solution to (2.3) and, for each n, let vn

be the unique solution to the problem

Lnvn = / in Cp, vn = u on dCp .

Then

Ln(un - vn) = 0 in Cp, un - vn = un-u on dCp

and, applying the estimate (2.1),

sup(un — vn) ^ sup(un — u) -» 0 as n —>• oo ,
c, acp

that is, vn tends to u uniformly in Cp. D

3. P R O O F OF THEOREM 1.2

In this section, we shall prove that uniqueness holds for operators L G C in C and
then we shall show that this implies Theorem 1.2.

The first step consists in showing that the Dirichlet problem

(3.1) Lu = / in C, u = 0 on dC

for an operator L £ C and with periodic / of a special simple form, always admits a good

solution of class Cx'a{C).

THEOREM 3 . 1 . Let L e C and f : C -> K of the form

k

(3.2) f{xux2,t) = £ fv{xux2)e
ivt

v=-k

with k e N and /„ € C^{D). Then, the Dirichlet problem (3.1) has a (unique,) solution

u e w™{C) n C°{C) n Cl"{C), a e (0, l).
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PROOF: For this proof it is convenient to decompose the operator L as follows

= Su + L\ut + cutt ,

with coefficients atj, bj, c e L°°{R2) n C°(K 2 \ {0}). Notice that the uniform ellipticity

of L implies tha t also the operator 5 is a uniformly elliptic operator on R2.

Now, let u 6 W2£(C) and let us expand u in Fourier series with respect to t

+00
ivtu(xi,x2,t)= 2^ uv(xux2)e'

f=—oo

It follows from definitions that uv is in W%f(D) for any v € Z. Moreover, u is a (strong)
solution to the problem (3.1) if and only if for all v e Z the function Uj, solves the problem

r

5uv + ivL\Uv — cv2uv = /„ in £>

, = 0 on dD,

where /^ = 0 for all \v\~2 k + 1. Now, by the estimates in [1] and a standard continuity
method, this problem admits a unique solution uv G W^(D). Moreover, using the
estimates in [15] and a standard interpolation technique, it can be shown that such a
solution is also in Cl<a(D) for some a 6 (0,1) independent of v. In particular, we have
that uv = 0 in D for all \v\ ^ k + 1. We conclude that the function

k

u(xi,x2,t) =

is the unique solution to the problem (3.1) with the required regularity. D

REMARK 3.2. The solution u in Theorem 3.1 is also the unique convolution type good
solution to the problem (3.1), according to the definition in [7].

The second step consists in constructing a suitable auxiliary function.

LEMMA 3 . 3 . Let f be of the form (3.2) and u the solution to (3.1) in Theorem
3.1. Then:

(a) tie function

(3.3) u{xu x2, t) = u(0,0, t) + XluXl (0,0, t) + x2uXl{0,0, t)

is in C°°(C) and there exists a positive constant Kx such that
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(3.4) Lu ^ Ki(an + a22) in C;

(b) if supp / C C \ T and f = 0 in Cro for some 0 < r0 < 1, then the function

(3.5) U(x, t) = u(x, t) - u(x, t) + ^-(x2 + x2)

satisfies the following three conditions:

(i) U € W*<2(C) n C°{C) n C ^ C ) ;

(ii) \U(xitX2,t)\ ^ K2r
1+a in C with r = {x\ + xlf'2;

(iii) LU = -Lu + Ki(an + o22) ^ 0 in Cro.
k k

P R O O F : Since u(0,0,t) = ^2uv(0,0)eivt and uX{{0,0,t) = E u ^ ( 0 , 0 ) e i l " (i = 1,2)
-k_ -k _

are in C°°(T), we have u € C°°(C). Moreover, Lu is bounded in C and hence (3.4) is
satisfied for suitable large values of K\.

For what concerns the function U, (i) and (iii) follow immediately from the definition
of U and (3.4). The inequality (ii) is a consequence of the fact that U 6 Cl>a(C) and

£/(0,0, t) = UXI (0,0, t) = UX2 (0,0, t) = 0. D

Now, in order to prove uniqueness for L 6 C in C, we need only another lemma.

LEMMA 3 . 4 . Let h € C°{C) n W££{C \r) be a nontrivial solution to

Lh = 0 inC\r, h = 0 on dC

and assume that h has a positive maximum M in C. Then h satisfies

(3.6) h < M(1 - r) in C ,

where r = (x{ + z2)1 / 2-

P R O O F : Let us consider the cylindrical coordinates (r, 6,t), where xi = rcosfl,
x2 = r sin 0. Using these coordinates, L has the following form:

d2 b d b d2 U d2 U d n, d2 2/i d2 d
9r2 rdr r2d62 r drdO r2 dB drdt r d0dt dt2 '

where b > 0 by (1.2). Then, if g(r) = M( l - r) , we have that g - h satisfies

L(g-h) = -—<0 in C\T

g - h = M — h^ 0 on r

- /i) = 0 on dC

Thus, inequality (3.6) follows by maximum principle. D
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THEOREM 3 . 5 . Tie Dirichlet problem

(3.7) Lu = f inC, u = <j> on dC

has a unique good solution for any f G L3(C) and <f> G C°(dC).

PROOF: By Lemma 2.2, it is enough to consider <j> = 0. Assume first that / is of
the form (3.2) and that / = 0 in Cro, for some r0 G (0,1). Let u be the solution to the
problem (3.7) given in Theorem 3.1. Suppose that uniqueness does not hold and assume
that v G C°{C) n W^(C \ r) is a good solution to (3.7) different from u. Then the
difference h = v-u belongs to C°(C) f~l WJ£(C \ r) and it solves

Lh = 0 in C \ T, h = 0 on dC.

Since h is not identically zero in C, it has a positive maximum or a negative minimum in
C and, by maximum principle, this maximum or minimum must be taken on r. Without
loss of generality, let us assume that h has a positive maximum M in C and let PQ G T be
a point such that h(P0) = M. Then, by Lemma 3.4 the inequality (3.6) holds for h. Now,
let us consider the function V = v — u+ (A"i/2)(iJ + x\) where u is defined in (3.3) and
K\ is the constant in (3.4). If U is the function (3.5), we have that h = v — u = V - U.
By the inequality (3.6) and Lemma 3.3, it follows that

V = h + U ^ Af (1 - r) + K2r
l+a in C.

Now, the function ijj(r) : [0, +oo) -4 R, ip(r) = M{\ - r) + K2r
1+a has a strict local

maximum equal to M in r = 0. Thus, there exists 0 < r ^ r0 such that V(xi,x2,t)
^ ip(T) < M on dCf. On the other hand, we have that V = h on r and so v(Po) = M.
We claim that this is impossible. In fact, by Lemma 2.3 and Lemma 2.5, V is a good
solution to the problem

Lw — f - Lu + Ki(an + 022) in C

= -u + Ki/2 on dC.

By Lemma 2.6, V is also a good solution in C7 to the problem

+ 022) ^ 0 in CV,

on dC.

If V is an {Ln, V^-good solution, then we have LnVn > 0 in C?, Vn = V on dC and
the sequence {V ,̂} converges uniformly to V in C. This implies Vn{Po) < maxa^Ki and
going to the limit we get a contradiction. Then h = v-u = 0'mC.

Now, let us consider / G L3(C). Then there exists a sequence {/̂ m^} where

v=-km
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with fim) 6 Co°°(£>) and supp/<m> C C \ r such tha t {/<m>} converges to / in L3(C).

From the previous result, each problem Lu = /("*' in C, with u = 0 on dC, has a unique

good solution um. Let us suppose that our problem has two different good solutions v

and w. Then, by Lemma 2.5 we have that also um — v and um - w are good solutions to

the Dirichlet problem

Lu = fm - / in C, u = 0 on dC .

Then applying the estimate (2.1) we have

\um - v\Loo(C), \um - w\Loc{c) < N\fm - f\Li(c) •

This means that um tends both to v and w uniformly in C and hence v = w. D

Now, we are able to prove Theorem 1.2.

P R O O F OF THEOREM 1.2: Since an operator L e C has smooth coefficients in R3

except on r, uniqueness holds for L in any ball B c ft such that B D T = 0. Moreover,

by Theorem 3.5 and Proposition 2.1 it follows that uniqueness holds for L also in any

ball B e n which intersect r . Using again Proposition 2.1, we conclude that uniqueness

holds for L in Q. D

As a consequence we have uniqueness also for any operator L whose coefficients are

discontinuos on a countable set of parallel line accumulating to the i3-axis.

COROLLARY 3 . 6 . Let L e C be an elliptic operator satisfying (1.2), with coeffi-

cients independent ofx3 and continuous at all points of R2 except possibly at a countable

set of points with at most one cluster point XQ € R2. Tien, uniqueness holds for L in

any smooth, bounded domain fi C R3.

PROOF: Assume xo = 0- As before, it is enough to prove uniqueness for the problem

(3.8) Lu = f in C, u = 0 on dC ,

where / is of the form (3.2) and it is supported in C \ r . Then Theorem 3.1 and Lemma

3.3 still hold and the problem (3.8) has a good solution u G W%2(C) n C°(C) D Cl<a(C).

Suppose that there is a good solution v ^ u. Then, by Theorem 1.1 and Proposition 2.1,

we have that h = v - u is a good solution to Lh = 0 in C \ r. Again, by Lemma 2.4, it

follows that h must take a positive maximum or a negative minimum on r and without

loss of generality we may assume that h has a positive maximum M at the point Po e T.

Then, we still have Lemma 3.4 and we can conclude as in the proof of Theorem 3.5. D
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