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CARDINAL INTERPOLATION AND GENERALIZED 
EXPONENTIAL EULER SPLINES 

A. SHARMA AND J. TZIMBALARIO 

1. I n t r o d u c t i o n . L e t j ^ w denote the class of cardinal splines S(x) of degree 
n (n ^ 1) having their knots a t the integer points of the real axis. We assume 
tha t the knots are simple so tha t S(x) Ç Cn~1( — oo , oo ). Recently Schoenberg 
[3] has studied cardinal splines S(x) Ç 5f n such tha t S(x) interpolates the 
exponential function tx a t the integers and 

(1.1) S(x + 1) = tS(x) 

for some fixed t and for all real x. Schoenberg has shown tha t if t ^ 0 or 1 and 
if t is not a zero of the Euler-Frobenius polynomial Un(x)t then the exponential 
Euler spline always exists and is unique. Besides giving a simple method for 
obtaining the explicit form of S(x), he also shows that as n —» co , S(x) con
verges to tx if t is not negative. He shows by an example that if t = —e, then 
S(x) does not converge to tx. These results have been extended by Greville, 
Schoenberg and Sharma (G.S.S.) [2] who replace (1.1) by the functional 
equation 

k 

(1.2) T, ajS(x+j) =0, a0-ak^0 
3=0 

where S(x) interpolates a t the integers a given funct ion/(x) which is a solution 
of the functional equation 

(1.3) E aj(x+j) =0. 
2=0 

The purpose of this note is to generalize the exponential Euler splines of 
Schoenberg in a different direction. We shall consider the functional equation 

(1.4) S(x + 1) - tS(x) = S*(x) 

where S*(x) G Sn is a given cardinal spline. By a suitable choice of S*(x) in 
(1.4), we are led to rediscover some of the results of G.S.S. [2]. 

In § 2 we obtain a solution of (1.4) in terms of ^-splines. This representation 
however is not enough for a s tudy of the convergence problem. In § 3 we 
define generalized exponential Euler polynomials and give a generating func
tion for the polynomial component of the spline S(x) in (0, 1) when the cor
responding polynomial restriction of S*(x) on [0, 1] is given by a generating 
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292 A. SHARMA AND J. TZIMBALARIO 

function. § 4 generalizes the extremum property of the polynomials introduced 
in § 3. Lastly in § 5 we come to the study of the convergence problem. 

2. B-splines. We shall need the forward ^-spline which is denoted by 

(2.i) Q(X) = ^ {x; - ( M + x ) (x - m + . . . + c-iy+1(x - » - m } 
where x+ = max (0, x). It is known that Q(x) = Q(n + 1 — x), Q(pc) > 0 for 
0 < x < n + 1 and that Q(x) = 0 elsewhere. Schoenberg has shown [3] that 
the Euler-Frobenius polynomial 

(2.2) 11,(0 = E Q O ' + i y 

is a reciprocal polynomial and that it has only simple negative roots. We shall 
denote these roots by Ai, . . . , Xn_i with 

(2.3) Xw_i < Xn_2 < . . . < X2 < Xi < 0. 

We shall need a property of the jB-splines which we state as 

LEMMA 1. [3; 4]. Every S(x) G £/n has a unique representation of the form 

(2.4) S{x) = £ c,Q(x - j) 
—oo 

with constant coefficients Cj. Conversely for every sequence {CJ}, (2.4) defines an 
element of S^n. 

Problem. Given a spline S*(x) G 5^\, find a spline S(x) G $f n such that 

(2.5) S(x + 1) - tS(x) = S*(x), t ?± 0, 1 

(2.5a) 5(0) = B (a given constant). 

If S* (x) = 0 and B = 1, the problem has been completely solved by Schoenberg 
[3; 4]. We shall show later that by a suitable choice of 5*(x), one can bring 
the generalization of Schoenberg's result as discussed in [2] within the scope of 
the above problem. 

We shall first solve this problem in a generic way and later approach it from 
a different angle. We prove 

THEOREM 1. Suppose S*(x) is given by 

oo 

(2.6) S*(x) = £ ajQix-j). 
—oo 

Then the general solution S(x) G Sf\ °f the functional equation (2.5) is given by 

(2.7) S(x) = a0 E tjQ(x - j) + A(x), t * 0 
—oo 
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where a0 is an arbitrary constant and 

(2.8) A(X) = E t'Q(x - j) ( Z a^r-1)- z tsQ{x -j)(jr avr-1). 
;=1 \ v=0 I j=-œ \v=—1 / 

Moreover, if t 9^ 0, 1, Xi, . . . , Xw_i then there is a unique constant a0 such that 
S(x) satisfies (2.5a). 

Proof. If S(x) = J2-œ CjQ(x — j), then from (2.5), we have 

CO CO CO 

X) Cj+iQix - j) - t^L CjQ{x - j) = X) OLJQ(X - j) 
—00 —00 —00 

so that from Lemma 1, we have 

(2.9) cj+i - tCj = a j , j = 0, 1, 2, 

In order to solve (2.9), we set Cj = ajtj so that from (2.9) we have 

aj+i — a,] = aft 

whence 
3-1 

a,j = a0 + X oivt~
v~, j > 1 

3 

a-j = a0 — X <2-^~ , j > 1. 

This leads immediately to the formulae (2.7) and (2.8). 

Since X-œ^QO') = ^nw(/), where nw(J) is the Euler-Frobenius polynomial 
of (2.2), it is possible to determine a0 uniquely in (2.7) so that (2.5a) is 
satisfied if and only if t is not a zero of Iin{x). 

3. Generalized exponential Euler polynomials. In order to study the 
spline S(x) satisfying (2.5), the solution given by (2.7) and (2.8) is not 
enough. For later use we shall study the restriction of S(x) to the interval 
[0, 1] and thereby obtain an explicit expression which will be used for the 
study of the convergence problem as n grows larger. 

Denote by Pn(x) the restriction of S*(x) to [0, 1], where 

(3.1) Pn(x) = Pox71 + \l)p&n~1 + . . . + / > » • 

LEMMA 2. If t ^ 1, there is a unique monic polynomial Bn(x; i) of degree n 
such that 

(3.2) J3n<'>(1;0 -tBn"(0;t) = P»<'>(0), v = 0, 1, . . . , n - 1. 

Proof. Set 

Bn(x,t) = xn + \^jb1x
n-1+... + bn. 
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Then the condition (3.2) leads to the following system of linear equat ions 

(3.3) 1 + ( j ) & i + • • • + &* = ib, + p„ ^ = 1 n. 

Here we have n equations in the n unknowns &i, . . . , bn with a non-singular 
de te rminant since t ^ 1. Hence they have a unique solution which completes 
the proof of the lemma. 

If Pn(x) = 0 in the above lemma, we get the polynomials An(x\ t) = xn + 

Mai(t)xn-1 + . . . + a»(/), where 

These polynomials have been studied by Schoenberg [4] and are called exponen
tial Euler polynomials. We can now give another solution to the problem 
(2.5), (2.5a) different from Theorem 1. If Pnix) denotes the restriction to 
[0, 1] of the given spline S*(x) in (2.5), we have 

T H E O R E M 2. If t 9^ 1, Xi, . . . , \n-\ where Xi, . . . , Xn_i are the zeros of Un(x), 
then the spline Sn(x; t) which satisfies (2.5) and (2.5a) may be defined on [0, 1] by 

(3.5) Sn(x; t) = Bn(x; t) + jjffi \B - B»(0, /)} 

where Bn(x; i) is a monic polynomial determined by (3.2). 

The extension of Sn(x\ t) to the whole real line can be accomplished by means 
of the functional equation 

(3.6) Sn(x + 1; /) - tSn(x\ t) = S*(x). 

Proof. The solution of (2.5) and (2.5a) is obviously the sum of a part icular 
solution of this system and a solution of the homogeneous equation S(x + 1) — 
tS(x) = 0. By Lemma 2, Bn(x; t) is clearly the restriction of a part icular solu
tion of (2.5). The right side in (3.5) obviously satisfies (2.5a). Since An{0\ t) — 
(t — l ) - n n n ( / ) (see [3, p. 392]) occurs in the denominator , / cannot be equal 
to a zero of Un(t), i.e. t ^ Xi, . . . , \n-i- This completes the proof of Theorem 2. 

We now make a special choice of the polynomials Pn(x). Let {Pn(x, t)} be 
a sequence of Appell polynomials given by the generating function 

oo n 

(3.7) G(zj)ezx= Z Pn(x,t)-.. 
n=o n\ 

If we form the monic polynomials Bn(x; t) of Lemma 2 with respect to Pn(x, t) 
we can give their generating function. More precisely we have 

LEMMA 3. / / {Pw(x; t)}™ is determined by (3.7), then the sequence of monic 
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polynomials Bn(x; t) of Lemma 2 is given by the generating function 

(3.8) l^Lzp±G&&e*> = £ B { t ) * . 
e — t n=o n\ 

Proof. It follows from (3.2) that 

Bn(x + 1; 0 - tBn(x, t) = Pn(x; t) + (1 - / - p0)x\ 

Multiplying both sides by zn/n\ and summing on n, we have 

(3.9) F(x + 1, /, z) - tF(x, t, z) = G(z, t)exz + (1 - t - p0)e
xz 

where 

F(x,t,z) = £ S»(*,0" ».f * 

In the equations (3.3), if po, pi, . . . , pn form a section of an infinite sequence, 
then 6i, b2, . . . , bn also form a section of an infinite sequence so that the 
polynomials {Bn(x, t)} also form an Appell sequence. Hence F(x, t, z) = 
exzf(z, t). Then from (3.6), we have 

(3.10) f(Zlt)=l^-t-et
,°_+Ç&Û. 

which proves (3.8). 

Example 1. Suppose S*(x) denotes the exponential Euler spline of order r 
whose restriction to [0, 1] is a monic polynomial An>r(x\ t). Then we know 
[2] that 

/•j ,\r oo n 

(3-11) / z Tyf e — 2-J An,T\X', t) -—. . 
[e — t) n=o n\ 

Then in Lemma 3, we have Pn(x) = An,r{x\ t), p0 = (1 — t)} G(z, t) — 
(1 - t)r/(ez - t)r, so that from (3.8) we have 

a , \ r + l oo n 

(e — 0 " «! 

whence -Bw(x; 0 = An>r+i{x', t) is a monic polynomial which is the restriction 
of a spline Sn(x: t) satisfying 

Sn(x + 1 ; 0 - tSn(x; t) = (1 - /)5*(x). 

Example 2. Suppose 5*(x) is a spline of degree w and order r which inter

polates the data < I \tv> at the integers, and if Sn(x; t) satisfies 

Sn(x + 1 : 0 - tSn(x\ 0 = S*(x) 

with Sn(0; 0 = 0> then Sn(x; t) coincides with SntT+i*(x; 0 m the notation of 
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G.S.S. [2] and interpolates the data < I r " i a t ^ e integers. That its 

restriction to [0, 1] is the polynomial 

^4n,r+i(x; t) - ._ . An(x\t) 

follows from Example 1. 

4. An extremal property of Bn(x\ t), (t > 1). By Lemma 2, Bn(x; t) is the 
unique monic polynomial satisfying (3.2) where Pn{%) is a given polynomial. 
We consider the class of functions f(x) such that (i) f(x) Ç Cw-1[0, 1], (ii) 
/ (w_1) satisfies a Lipschitz condition and 

, , n / / ( l ) - / ( 0 ) è 5 „ ( l ; 0 - 5 , ( 0 ; 0 
k ' V ( V )(D -*/<'> (0) è 3 . < ' > ( l ; 0 - /S„<'>(0;0, ^ = 0,1 n - 1. 

The last condition in (4.1) can also be rewritten as 

/ W ( 1 ) _ / / W ( 0 ) £ P„(.)(0), , = 0, 1 n - 1. 

We shall denote this class of functions byJf(Pn). We then formulate 

THEOREM 3. If t > I, the polynomial Bn(x; t) is the unique element G ^(Pn) 
which minimizes the norm 

H / (n) I I 1 r(.n) ( \ i 

/ | | = ess sup | / (x)|, 
giving it its least norm 

||Bn(B)|| = »! 

Remark. If PTO(x) = 0, the monic polynomial i^(x; /) reduces to An(x; t) 
which has been studied by Schoenberg [3]. In this case the conditions (4.1) 
become 

^ ; | p ) ( l ) _ / /o (0) ^ 0, ? = 0, 1, . . . , n - 1. 

These conditions define a class of functions which is slightly larger than the 
class Fn of Schoenberg except for a change of scale. 

Example. If Pn(x) = AntT-.\(x\ t) (r ^ 1), the exponential Euler polynomial 
of higher order, then the monic polynomials Bn(x\ t) reduce to AnjT(x; t) which 
are given by the generating function (3.11). We also have 

5„<">(1;0 - *5„<">(0;0 = (l-t)An,r^(0;t), v = 0 ,1 , . . . ,n - 1. 

The class of functions/(x) in the above theorem is then denoted by Jr(^4n,7._i) 
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and satisfy 

(/(l) - / ( 0 ) >{t- l){An,r(0;t) - An,r^(0;t)\ 

( 4 1 è ) } / w ( l ) - ^ ( 0 ) è f ^ A ^ ^ i O ; t), v = 0, 1 n - 1. 

Thus the theorem asserts that the exponential Euler polynomials of order r 
minimize ||/(w)|| over all functions/ G <^(AntT-i). 

Proof. The proof follows the same lines as that of Schoenberg [3] with 
minor modifications. 

5. Convergence problem. Suppose {Sn*(x)} is a sequence of cardinal splines 
where Sn*(x) £ S^n (n = 1, 2, 3, . . .). Then the sequence of functional equa
tions 

(5.1) Sn(x + 1;/) -tSn(x;t) = Sn*(x), Sn(0; t) = B 

with Sn(x; t) G £fn, gives rise to the sequence of cardinal splines Sn(x; t). 
Assuming that Sn*(x) interpolates a given function f(x) at the integers and 
also converges to the function/(x) as n —» co , we seek to investigate the con
vergence of Sn(x; t) as n—> co. In particular, if Sn*(x) = 0, and B = 1, we 
come back to the case treated by Schoenberg who showed that the cardinal 
spline Sn!o(x) t) satisfying 

(5.2) Sn>0(x + 1;0 - tSn>Q(x)t) = 0, Sn,0(0;t)=0 

interpolates the function tx and converges to tx as n —» oo when t is non-
negative and ^ 1. 

In order to study the general case, we shall need some lemmas. 

LEMMA 4. [2]. Suppose SnjV*(x; t), t > 0(?^ 1) is the exponential Euler spline 

of order v which interpolates the function I \ tx at the integers. Then for v = 

0, 1, 2, . . . , the following inequality is valid: 

^ Mv(x)f{n + 1 )V (5.3) <^n, v \pC j * ) - ( : ) ' -

where 

1 f = max I to 
h > 

Jo_| \~ I , ** = log* + 2&7rt, 

awd M„(x) is gwew by the recursion formula: 

(5.4) M,(*) = ^ M,_!(x - 1) + - E ( T 7 - 4 T T + Î + 2) Mv.1.l(x - 1) 

and Mo = M is a constant independent of n. 

For a proof of this lemma we refer to [2]. 
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LEMMA 5. For t > 0, / ^ 1, the functions Mv(x) in (5.4) of the preceding lemma 
satisfy the following inequality: 

(5.5) M,+1(X) gM(Cl(t)y
+in ( | x ; ; t " + ^ - j - ^ - 1 

(5.6) Ci(0 = m a x | l > ^ - 3 - j - r | 

Proof. We shall prove this formula by induction on v. For y = 0, we know 
that MQ(X) = M is a constant [2; 3]. Suppose the formula is true for v = 
0, 1, . . . , r. Consider the case when 

(5.6) 

Then 
U - i s 1. 

tl 1 
I* - l i I + T - / ' < 

so that from (5.4) and the induction hypothesis we have 

^^sMI^H^^^)-
If 

t ~ 1 
> 1, 

then 

Ci(t) = 
U - i l 

and we have from (5.4) again, 

MT+i(x) ^ -I7L Mr(x - 1) + - f - £ 
i Z=0 r + 1 r + ( / - l ) 

1 fo + 1̂  
.)T+T I / , 

x „,_,(,. 1)SM g ( f c ^ + ^ l ^ O ) 

X 
r + 1 

/ 
/ - 1 

r + 1 2(2/ + 1) ^ 
^ (r+l)t h t - 1 

1+1 

t - 1 ' " ) 

^ M(d(o)r+i n (-

This completes the proof of the lemma. 

x - r + k\ 2(1 + 2/) 
& + 1 + / 
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LEMMA 6. Let [av]™ be a sequence of constants such that 

( 5 7 ) \a,\*Mte®f-, , = 0 , 1 , 2 , . . . 

where 

*log-
c2(t) < — T 

4Ci(0(l + 20 

If t > 0, 9e 1, then f(x) = X̂ °=o a„l p z awd 5re*(x; 2) = So5 ^ A ,**(#; /) aw-

verge for all x. Moreover Sn*(x; t) is a spline of degree n which interpolates f(x) 
at the integers and 

lira Sn*(x; t) = f(x) 
W->oo 

for all x. 

Proof. From a well-known theorem [1, p. 137 Theorem 5] about the abscissa 
of convergence of the Newton series, the series for/(x) converges for all finite x. 

In order to prove our assertion for 5n*(x; t), it is enough to show that 

(5.8) An(x) EE g \av\ Sn,*(x;t)- (*) f ' 0 as n —> oo 

for any finite x. For integral x, we know that An(x) is zero because Sn<v*(x; t) 

is the exponential Euler spline of higher order and interpolates I \tx at the 

integers. 
Using Lemma 5, elementary but tedious calculations show that An(x) —» 0 

as n —» oo . 

THEOREM 4. Suppose {av} is a sequence of numbers as required in Lemma 6. 
Let f(x) be the function given by 

(5.9) /(*) = £ aAX) f, (t>0,t*l). 

Let Sn*(x: t) be a sequence of cardinal splines of degree n which interpolate the 
given function f{x) at the integers with the representation 

(5.10) S*(x\t) = E a,Sn.,*(x',t). 

If Sn(x; t) G Sf\ is a sequence of cardinal splines which satisfy the functional 
equation 

(5.11) Sn(x + 1;0 -tSn(x;t) =Sn*(x;t), Sn(0; t) = 0, 
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then Sn(x\ t) interpolates the function F(x) at the integers where 

(5.12) F(X) = f- g ak (k
X

+1). 

Moreover as n —> GO , we have 

(5.13) lim Sn(x;t) = F(x) 

for every finite x. 

Consider the difference equation 

Sn(x + 1) - tSn(x) = Sn>k*(x; t), (t>0,t* 1). 

Then the unique spline Sn(x) G S^n satisfying Sn(0) = 0 is given by 

*(*; t) 

because of Lemma 3. Then because of (5.10), the solution of (5.11) is given by 

œ 

SnipC', t) = XI a^~ 
àn,v-\-l *(X'J) 

which is convergent by Lemmas 4, 5 and 6 and converges to the function F(x) 
given by (5.12). 
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