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THE RADIUS OF CONVEXITY OF A LINEAR 
COMBINATION OF FUNCTIONS IN «, CV*(p), © OR u« 

DOUGLAS MICHAEL CAMPBELL 

Labelle and Rahman [4] showed that if / , g £ $ , the normalized convex 
functions in the unit disc D, then %(f(z) + g(z)) has a radius of convexity at 
least as large as the smallest root of 1 — 3r + 2r2 — 2r3 = 0. Their method 
requires neither the properties of the arithmetic mean nor the strong geometric 
properties of $ ; indeed, the procedure works for a linear combination of func
tions from any linear invariant family of finite order. 

We examine three general classes of linear invariant families with varying 
degrees of control on |arg/ ' (z) | . All families considered are subsets of 2 . @., 
the normalized locally univalent analytic functions in D. A survey of relevant 
properties of linear invariant families can be found in [1] or [5]. 

THEOREM. Let 93? be a linear invariant family of finite order a. Let 

H = {ft (s) : h(z) = tf(z) + (1 - t)g(z),f, ^ l . i e R ) . 

Let arg (gr (z)/f(z)) = y(r, 0), z = reie Ç D, where 7(0, 0) = 0. Then for any 
h(z) Ç H and any z Ç D such that — 7r < 7(7% 0) < 7r, we have 

(1 + r2) cos ( T / 2 ) - 2ar 
Re{l + zh"/h'(z)\ ^ - - T T - ^ ^ - T ^ 

(1 — r ) cos(7/2) 

Proof. We have h{z) = tf(z) + (1 — t)g(z). Since either t or 1 — t is not 
zero, we assume that t 5̂  0. Then 

7h"(z) tf"{z) + (l-t)g"(z) 
h'{z) *' tf'(z) + (l-t)g\z) 

f'(z) ' 1 +Aeiy ^ g(z) ' 1 +A~1e-iy ' 

where Ae* = ((1 - t)/t)\gr (z)/ff (z)\cirg{gf (z)/f (z)). It is clear, as in [4], that 
if \w — a\ ^ d, a ^ 0, and wQ is an arbitrary complex number, then 
\ww0 — a\w0\e

ia,Tgwo\ ^ d\w0\; t h a t is, 

Re \WWQ} ^ |wo|{a cos (arg w0) — d}. 
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Therefore, for \z\ = r < 1 satisfying — -K < y(r, 6) < 7r, we have 

rJj"<?) i _ l > i 
\ f'(z) 1+Aeiyj = (l+A2 + 2Acosy)i 

X 
2 

2r 1 + A cos 7 2ar 
1 - V (1 + A2 + 2A cos y)h 1 r 

g"(*) 1 ( > A 
g'(z) ' 1 + A~xe-iyj = (1 + A2 + 2A cos 7)* 

2r A + cos 7 2ar 
X 

l l - r ( 1 + ^ ' + 24 cos 7)' 1-r 
since for any linear invariant family of order a we have [5, p. 115] 

r / " ( * ) 2r2 
< 2<xr 

1 
Consequently, 

Re{i + zh"{z)/h'(z)\ ^ 1 + —r? - ~zy2 (1 + JYTI?
 (coS7 - 1 } ) " 

^ Y^rp - r=~7 f(1 + cos 7)/2] 

> (1 + r) cos (7/2) - 2ar 
2\ 

(1 - r ) cos(7/2) 

The second line in the chain of inequalities follows since the minimum occurs 
when A is 1. This concludes the proof of the theorem. 

COROLLARY 1. Let F(z) = \{f(z) + g(z)) and Rc denote the radius of con
vexity of F(z). 

(a) If / , g £ @, the normalized univalent analytic functions, then Rc is no less 
than the smallest positive root of 1 — 4r — 7r2 + 8r6 = 0, that is Rc ^ .185. 

(b) / / / , g £ CVk(P), the normalized i3-close-to-Vk functions, then Rc is no less 
than the smallest positive root of (1 + r2) cos ((& + 20) sin_1r) — (k + 2fi)r = 0 

(c) If fi £ £ Ua, the normalized universal linear invariant family of order a, 
then Rc is no less than the smallest positive root of 

(1 + r2) cosU J ^ ~ XJ2 dx\ - 2ar = 0. 

Proof. These conclusions are immediate from Theorem 1 and the definition 
of Rc upon noting that: 

(a) If/ e ©, larg/ 'WI ^ 4 sin"1 \z\, for \z\ < 1/V2 [3, p. 115]. 
(b) life CVtiP), |arg/ ' (*) | ^ (k + 2/3) sin"1 \z\, for z £ D [2, Corollary 

4.6]. 
( c ) i f / e ua, 

|arg/'(s)| S 2 F {a\-X)2 dx, 
\J 0 J- — X 

for |z| = r, 0 < r < 1 [5, Theorem 2.1]. 
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COROLLARY 2. With the notation of Corollary 1: 
(a) If / , g Ç $, f̂ee normalized convex univalent fnuctions, then Rc is no less 

than the smallest positive root of 1 — 3r + 2r2 — 2r3 = 0, that is Rc ^ .395. 
(b) / / / , g are close-to-convex, then Rc is no less than the smallest positive root of 

1 - 4r - 7r2 + 8r6 = 0, J&aJ w i?c è .185. 
(c) If f, g G F*, the functions whose bounded boundary rotation is ^ &7r, £/&en 

i?c w wo /ess /fean the smallest positive root of (1 + r2) cos (fe sin_1r) — kr = 0. 

Proof. This is immediate from Corollary 1(b), since CT2(0) = $ , CF2(1) = 
close-to-convex functions, CFfc(0) = Vk as proved in [2]. Note that the lower 
bound for Rc for the class © and the class of close-to-convex functions is given 
by the same expression which is obtained by two different types of arguments. 
Finally, we see that Labelle's and Rahman's result is a special case of Corollary 
2(c), k = 2. 

The results of Corollaries 1 and 2 are 'nearly' best possible. If one lets 
F(z) = (2a)"1[((l + z)/(l - z))a - 1], a ^ 1, then, as is well-known, 
F(z) 6 F2«. Furthermore, G{z) = -F(-z) Ç F2«. Letting if (z) = \{F(z) + 
G(z)) yields for z = reie that 

Re{ 1 + sff (z)/H (z)} - 1 + ( 1 + f4 _ ^ œ s 2e)h c o s ^ 

where Bx = 6 + arg (a + re™) + (a - 2) arg (1 + reie) + (a + 2) arg (1 -
re~ie), 62 = (a — 1) arg (1 + re™) + (a + 1) arg (1 — re~ie). Using an 

Radians of convexity of a linear combination of functions in Vk. 

a(k = 2a) ^Rc^ r e Re {1 + zH"(z)/H\z)}, z = reif> 

- .0003 
-.00026 
- . 0 0 5 
- .0001 
- . 006 
- . 001 
- . 0 0 1 
- . 0 0 4 
- . 004 
- . 006 
- . 0 0 1 
- . 0 0 4 
- .0008 
- . 0 0 1 
- . 0 0 3 
- . 0 1 
- . 0 0 5 
- . 007 
- . 0 0 8 
- . 0 1 

1.0 .395 ^Rc^ .405 .405 1.2252 
1.1 .355 ^RcS .375 .375 1.3823 
1.2 .320 ^Rc £ .350 .350 1.3823 
1.3 .295 SRc ^ .325 .325 1.4451 
1.4 .270 ^Rc^ .305 .305 1.4451 
1.5 .250 ^Rc ^ .285 .285 1.4765 
1.6 .235 ^Rc^ .265 .265 1.6022 
1.7 .220 ^Rc S .250 .250 1.6022 
1.8 .205 SRc^ .235 .235 1.6650 
1.9 . 195 SRcS .225 .225 1.5707 
2.0 . 185 ^ Rc ^ .210 .210 1.7278 
2.1 . 175 ^Rc^ .200 .200 1.7278 
2.2 . 170 ^RcS .190 .190 1.7592 
2.3 .160 ^RcS .185 .185 1.6022 
2.4 .155 ^Rc^ .175 .175 1.6964 
2.5 .145 ^ i ? c ^ .170 .170 1.6336 
2.6 . 140 ^ i ? c ^ .160 .160 1.7907 
2.7 . 135 ^Rc^ .155 .155 1.7278 
2.8 .130 =gi?c ^ .150 .150 1.6964 
2.9 . 125 <RC < .145 .145 1.6964 

https://doi.org/10.4153/CJM-1973-104-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1973-104-5


RADIUS OF CONVEXITY 985 

elementary Fortran program Mr. Russell Anderson was able to find where 
Re{l + zH" (z) / Hf (z)} was negative. The results are summarized in the table 
above (0 is in radians). 

This table can also be used for functions in CVk(fi) (k + 2j3 ̂  5.8), © or 
the close-to-convex functions (a = 2) to show that Rc is determined to within 
.035. A similar analysis is possible for Ua-
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