THE RADIUS OF CONVEXITY OF A LINEAR COMBINATION OF FUNCTIONS IN \Re , $CV_k(\beta)$, \mathfrak{S} OR \mathfrak{U}_{α}

DOUGLAS MICHAEL CAMPBELL

Labelle and Rahman [4] showed that if $f, g \in \Re$, the normalized convex functions in the unit disc D, then $\frac{1}{2}(f(z) + g(z))$ has a radius of convexity at least as large as the smallest root of $1 - 3r + 2r^2 - 2r^3 = 0$. Their method requires neither the properties of the arithmetic mean nor the strong geometric properties of \Re ; indeed, the procedure works for a linear combination of functions from any linear invariant family of finite order.

We examine three general classes of linear invariant families with varying degrees of control on $|\arg f'(z)|$. All families considered are subsets of $\mathfrak{L} \cdot \mathfrak{S}$, the normalized locally univalent analytic functions in D. A survey of relevant properties of linear invariant families can be found in [1] or [5].

THEOREM. Let \mathfrak{M} be a linear invariant family of finite order α . Let

$$H = \{h(z) : h(z) = tf(z) + (1 - t)g(z), f, g \in \mathfrak{M}, t \in \mathbf{R}\}.$$

Let arg $(g'(z)/f'(z)) = \gamma(r, \theta)$, $z = re^{i\theta} \in D$, where $\gamma(0, 0) = 0$. Then for any $h(z) \in H$ and any $z \in D$ such that $-\pi < \gamma(r, \theta) < \pi$, we have

$$\operatorname{Re}\{1 + zh''/h'(z)\} \ge \frac{(1+r^2)\cos(\gamma/2) - 2\alpha r}{(1-r^2)\cos(\gamma/2)}$$

Proof. We have h(z) = tf(z) + (1 - t)g(z). Since either t or 1 - t is not zero, we assume that $t \neq 0$. Then

$$z \frac{h''(z)}{h'(z)} = z \cdot \frac{tf''(z) + (1-t)g''(z)}{tf'(z) + (1-t)g'(z)}$$
$$= z \frac{f''(z)}{f'(z)} \cdot \frac{1}{1+Ae^{i\gamma}} + z \frac{g''(z)}{g'(z)} \cdot \frac{1}{1+A^{-1}e^{-i\gamma}},$$

where $Ae^{i\gamma} = ((1-t)/t)|g'(z)/f'(z)|\arg\{g'(z)/f'(z)\}$. It is clear, as in [4], that if $|w-a| \leq d$, $a \geq 0$, and w_0 is an arbitrary complex number, then $|ww_0 - a|w_0|e^{i\arg w_0}| \leq d|w_0|$; that is,

Re $\{ww_0\} \ge |w_0| \{a \cos (\arg w_0) - d\}.$

Received May 25, 1972.

Therefore, for |z| = r < 1 satisfying $-\pi < \gamma(r, \theta) < \pi$, we have

$$\operatorname{Re}\left\{z\frac{f''(z)}{f'(z)} \cdot \frac{1}{1+Ae^{i\gamma}}\right\} \ge \frac{1}{(1+A^2+2A\cos\gamma)^{\frac{1}{2}}} \times \left\{\frac{2r^2}{(1-r^2)} \cdot \frac{1+A\cos\gamma}{(1+A^2+2A\cos\gamma)^{\frac{1}{2}}} - \frac{2\alpha r}{1-r^2}\right\},$$
$$\operatorname{Re}\left\{z\frac{g''(z)}{g'(z)} \cdot \frac{1}{1+A^{-1}e^{-i\gamma}}\right\} \ge \frac{A}{(1+A^2+2A\cos\gamma)^{\frac{1}{2}}} \times \left\{\frac{2r^2}{(1-r^2)} \cdot \frac{A+\cos\gamma}{(1+A^2+2A\cos\gamma)^{\frac{1}{2}}} - \frac{2\alpha r}{1-r^2}\right\},$$

since for any linear invariant family of order α we have [5, p. 115]

$$\left| z \frac{f''(z)}{f'(z)} - \frac{2r^2}{1 - r^2} \right| \le \frac{2\alpha r}{1 - r^2}$$

Consequently,

$$\operatorname{Re}\{1 + zh''(z)/h'(z)\} \ge 1 + \frac{2r^2}{1 - r^2} - \frac{2\alpha r}{1 - r^2} \left(1 + \frac{2A}{(1 + A)^2} \left(\cos \gamma - 1\right)\right)^{-\frac{1}{2}}$$
$$\ge \frac{1 + r^2}{1 - r^2} - \frac{2\alpha r}{1 - r^2} \left[(1 + \cos \gamma)/2\right]^{-\frac{1}{2}}$$
$$\ge \frac{(1 + r^2)\cos(\gamma/2) - 2\alpha r}{(1 - r^2)\cos(\gamma/2)}.$$

The second line in the chain of inequalities follows since the minimum occurs when A is 1. This concludes the proof of the theorem.

COROLLARY 1. Let $F(z) = \frac{1}{2}(f(z) + g(z))$ and R_c denote the radius of convexity of F(z).

(a) If $f, g \in \mathfrak{S}$, the normalized univalent analytic functions, then R_c is no less than the smallest positive root of $1 - 4r - 7r^2 + 8r^6 = 0$, that is $R_c \geq .185$.

(b) If $f, g \in CV_k(\beta)$, the normalized β -close-to- V_k functions, then R_c is no less than the smallest positive root of $(1 + r^2) \cos((k + 2\beta) \sin^{-1}r) - (k + 2\beta)r = 0$

(c) If f, $g \in U_{\alpha}$, the normalized universal linear invariant family of order α , then R_c is no less than the smallest positive root of

$$(1+r^2)\cos\left[2\int_0^r \frac{(\alpha^2-x^2)^{\frac{1}{2}}}{1-x^2}dx\right] - 2\alpha r = 0.$$

Proof. These conclusions are immediate from Theorem 1 and the definition of R_c upon noting that:

(a) If $f \in \mathfrak{S}$, $|\arg f'(z)| \leq 4 \sin^{-1} |z|$, for $|z| < 1/\sqrt{2}$ [3, p. 115].

(b) If $f \in CV_k(\beta)$, $|\arg f'(z)| \leq (k + 2\beta) \sin^{-1} |z|$, for $z \in D$ [2, Corollary 4.6].

(c) If $f \in U_{\alpha}$,

$$|\arg f'(z)| \leq 2 \int_0^r \frac{(\alpha^2 - x^2)^{\frac{1}{2}}}{1 - x^2} dx,$$

for |z| = r, 0 < r < 1 [5, Theorem 2.1].

COROLLARY 2. With the notation of Corollary 1:

(a) If f, $g \in \Re$, the normalized convex univalent functions, then R_c is no less than the smallest positive root of $1 - 3r + 2r^2 - 2r^3 = 0$, that is $R_c \ge .395$.

(b) If f, g are close-to-convex, then R_c is no less than the smallest positive root of $1 - 4r - 7r^2 + 8r^6 = 0$, that is $R_c \ge .185$.

(c) If f, $g \in V_k$, the functions whose bounded boundary rotation is $\leq k\pi$, then R_c is no less than the smallest positive root of $(1 + r^2) \cos(k \sin^{-1}r) - kr = 0$.

Proof. This is immediate from Corollary 1(b), since $CV_2(0) = \Re$, $CV_2(1) =$ close-to-convex functions, $CV_k(0) = V_k$ as proved in [2]. Note that the lower bound for R_c for the class \mathfrak{S} and the class of close-to-convex functions is given by the same expression which is obtained by two different types of arguments. Finally, we see that Labelle's and Rahman's result is a special case of Corollary 2(c), k = 2.

The results of Corollaries 1 and 2 are 'nearly' best possible. If one lets $F(z) = (2\alpha)^{-1}[((1 + z)/(1 - z))^{\alpha} - 1], \alpha \ge 1$, then, as is well-known, $F(z) \in V_{2\alpha}$. Furthermore, $G(z) = -F(-z) \in V_{2\alpha}$. Letting $H(z) = \frac{1}{2}(F(z) + G(z))$ yields for $z = re^{i\theta}$ that

$$\operatorname{Re}\{1 + zH''(z)/H'(z)\} = 1 + \frac{2r(\alpha^2 + r^2 + 2\alpha r \cos\theta)^{\frac{5}{2}} \cos\theta_1}{(1 + r^4 - 2r^2 \cos 2\theta)^{\frac{1}{2}} \cos\theta_2}$$

where $\theta_1 = \theta + \arg(\alpha + re^{i\theta}) + (\alpha - 2) \arg(1 + re^{i\theta}) + (\alpha + 2) \arg(1 - re^{-i\theta})$, $\theta_2 = (\alpha - 1) \arg(1 + re^{i\theta}) + (\alpha + 1) \arg(1 - re^{-i\theta})$. Using an

$\alpha(k=2\alpha)$	$\leq R_c \leq$	r	θ	Re $\{1 + zH''(z)/H'(z)\}, z = re^{i\theta}$
1.0	$.395 \leq R_c \leq .405$. 405	1.2252	0003
1.1	$.355 \leq R_c \leq .375$.375	1.3823	00026
1.2	$.320 \leq R_c \leq .350$.350	1.3823	005
1.3	$.295 \leq R_c \leq .325$.325	1.4451	0001
1.4	$.270 \leq R_c \leq .305$.305	1.4451	006
1.5	$.250 \leq R_c \leq .285$.285	1.4765	001
1.6	$.235 \leq R_c \leq .265$.265	1.6022	001
1.7	$.220 \leq R_c \leq .250$.250	1.6022	004
1.8	$.205 \leq R_{c} \leq .235$.235	1.6650	004
1.9	$.195 \leq R_c \leq .225$.225	1.5707	006
2.0	$.185 \leq R_c \leq .210$.210	1.7278	001
2.1	$.175 \leq R_{e} \leq .200$.200	1.7278	004
2.2	$.170 \leq R_c \leq .190$. 190	1.7592	0008
2.3	$.160 \leq R_c \leq .185$.185	1.6022	001
2.4	$.155 \leq R_c \leq .175$.175	1.6964	003
2.5	$.145 \leq R_c \leq .170$.170	1.6336	01
2.6	$.140 \leq R_c \leq .160$.160	1.7907	005
2.7	$.135 \leq R_c \leq .155$.155	1.7278	007
2.8	$.130 \leq R_c \leq .150$.150	1.6964	008
2.9	$.125 \leq R_c \leq .145$.145	1.6964	01

Radians of convexity of a linear combination of functions in V_k .

elementary Fortran program Mr. Russell Anderson was able to find where $Re\{1 + zH''(z)/H'(z)\}$ was negative. The results are summarized in the table above (θ is in radians).

This table can also be used for functions in $CV_k(\beta)$ $(k + 2\beta \leq 5.8)$, \mathfrak{S} or the close-to-convex functions $(\alpha = 2)$ to show that R_c is determined to within .035. A similar analysis is possible for U_{α} .

References

- D. M. Campbell, Locally univalent functions with locally univalent derivatives, Trans. Amer. Math. Soc. 162 (1971), 395–409.
- **2.** β -close-to-bounded boundary rotation functions I. (to appear).
- **3.** G. M. Goluzin, *Geometric theory of functions of a complex variable*, Amer. Math. Soc. Vol. 26 (Providence, R. I., 1969).
- 4. G. Labelle and Q. I. Rahman, Remarque sur la moyenne arithmétique de fonctions univalentes convexes, Can. J. Math. 21 (1969), 977-981.
- 5. C. Pommerenke, Linear-invariante Familien Analytischer Funktionen. I, Math. Ann. 155 (1964), 108-154.

Brigham Young University, Provo, Utah