Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T12:56:55.144Z Has data issue: false hasContentIssue false

5 - X-ray binary populations in galaxies

Published online by Cambridge University Press:  05 January 2014

Giuseppina Fabbiano
Affiliation:
Harvard-Smithsonian Center for Astrophysics, USA
Ignacio González Martínez-País
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Tariq Shahbaz
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Jorge Casares Velázquez
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Get access

Summary

Abstract

X-ray binaries are responsible for the bulk of the X-ray emission of our own galaxy. A lot has been learned about these bright X-ray sources since the beginning of X-ray astronomy, but significant questions are still open. These questions are related to the origin and evolution of these sources, and to how their properties depend on those of the parent stellar population. The discovery of several populations of X-ray binaries in external galaxies with Chandra, and to a lesser extent with XMM-Newton, gives us tools to look at these sources in a new way. Not only can we reconsider long-standing questions of galactic studies, such as the origin of low-mass X-ray binaries, but also we can look at the entire gamut of X-ray binary properties in a range of environments, from actively star-forming galaxies to older stellar systems. These observations have led to the discovery of several ultraluminous X-ray sources, thereby introducing new interesting possibilities for our understanding of X-ray binaries and possibly opening new paths to the discovery of the elusive intermediate-mass black holes.

5.1 Introduction and chapter outline

X-ray astronomy began with the unexpected discovery of a very luminous source, Sco X-1 (Giacconi et al., 1962), the first galactic X-ray binary (XRB) ever to be observed. XRBs, the most common luminous X-ray sources in the Milky Way, are binary systems composed of an evolved stellar remnant (neutron star [NS], black hole [BH], or white dwarf [WD]), and a stellar companion (for reviews on XRBs, see Lewin et al., 1995; Lewin and van der Klis, 2006).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antoniou, V., Zezas, A., and Hatzidimitriou, D. 2009 (Mar.). A comprehensive study of the link between star-formation history and X-ray source populations in the SMC. Pages 355–360 of: J. T., van Loon and J. M., Oliveira (eds.), IAU Symposium. IAU Symposium, vol. 256.
Begelman, M. C. 2002. Super-Eddington fluxes from thin accretion disks?ApJ, 568(Apr.), L97–L100.Google Scholar
Begelman, M. C., King, A. R., and Pringle, J. E. 2006. The nature of SS433 and the ultralumi-nous X-ray sources. MNRAS, 370(July), 399–404.Google Scholar
Belczynski, K., Bulik, T., and KluZniak, W. 2002. Population synthesis of neutron stars, strange (quark) stars, and black holes. ApJ, 567(Mar.), L63–L66.Google Scholar
Belczynski, K., Kalogera, V., Zezas, A., and Fabbiano, G. 2004. X-ray binary populations: the luminosity function of NGC 1569. ApJ, 601(Feb.), L147–L150.Google Scholar
Bildsten, L., and Deloye, C. J. 2004. Ultracompact binaries as bright X-ray sources in elliptical galaxies. ApJ, 607(June), L119–L122.Google Scholar
Brassington, N. J., Fabbiano, G., Blake, S., Zezas, A., Angelini, L., Davies, R. L., Gallagher, J., Kalogera, V., Kim, D.-W., King, A. R., Kundu, A., Trinchieri, G., and Zepf, S. 2010. The X-ray spectra of the luminous LMXBs in NGC 3379: field and globular cluster sources. ApJ, 725(Dec.), 1805–1823.Google Scholar
Brassington, N. J., Fabbiano, G., Kim, D.-W., Zezas, A., Zepf, S., Kundu, A., Angelini, L., Davies, R. L., Gallagher, J., Kalogera, V., Fragos, T., King, A. R., Pellegrini, S., and Trinchieri, G. 2008. Deep Chandra monitoring observations of NGC 3379: catalog of source properties. ApJS, 179(Nov.), 142–165.Google Scholar
Brassington, N. J., Fabbiano, G., Kim, D.-W., Zezas, A., Zepf, S., Kundu, A., Angelini, L., Davies, R. L., Gallagher, J., Kalogera, V., Fragos, T., King, A. R., Pellegrini, S., and Trinchieri, G. 2009. Deep Chandra monitoring observations of NGC 4278: catalog of source properties. ApJS, 181(Apr.), 605–626.Google Scholar
Bregman, J. N., Irwin, J. A., Seitzer, P., and Flores, M. 2006. Galactic globular clusters with luminous X-ray binaries. ApJ, 640(Mar.), 282–287.Google Scholar
Clark, G. W. 1975. X-ray binaries in globular clusters. ApJ, 199(Aug.), L143–L145.Google Scholar
Dewangan, G. C., Griffiths, R. E., and Rao, A. R. 2006b. Quasi-periodic oscillations and strongly Comptonized X-ray emission from Holmberg IX X-1. ApJ, 641 (Apr.), L125–L128.Google Scholar
Dewangan, G. C., Titarchuk, L., and Griffiths, R. E. 2006a. Black hole mass of the ultraluminous X-ray source M82 X-1. ApJ, 637(Jan.), L21–L24.Google Scholar
Done, C., and Kubota, A. 2006. Disc-corona energetics in the very high state of galactic black holes. MNRAS, 371 (Sept.), 1216–1230.Google Scholar
Ebisawa, K., Zycki, P., Kubota, A., Mizuno, T., and Watarai, K.-Y. 2003. Accretion disk spectra of ultraluminous X-ray sources in nearby spiral galaxies and galactic superluminal jet sources. ApJ, 597(Nov.), 780–797.Google Scholar
Fabbiano, G. 1988. The X-ray emission of M81 and its nucleus. ApJ, 325(Feb.), 544–562.Google Scholar
Fabbiano, G. 1989. X rays from normal galaxies. ARA&A, 27, 87–138.Google Scholar
Fabbiano, G. 2006. Populations of X-ray sources in galaxies. ARA&A, 44(Sept.), 323–366.Google Scholar
Fabbiano, G., and Shapley, A. 2002. A multivariate statistical analysis of spiral galaxy luminosities. II. Morphology-dependent multiwavelength emission properties. ApJ, 565(Feb.), 908–920.Google Scholar
Fabbiano, G., and Trinchieri, G. 1985. A statistical analysis of the Einstein normal galaxy sample. I – Spiral and irregular galaxies. ApJ, 296(Sept.), 430–457.Google Scholar
Fabbiano, G., and Trinchieri, G. 1987. X-ray observations of spiral galaxies. II – Images and spectral parameters of 13 galaxies. ApJ, 315(April), 46–67.Google Scholar
Fabbiano, G., Baldi, A., King, A. R., Ponman, T. J., Raymond, J., Read, A., Rots, A., Schweizer, F., and Zezas, A. 2004. X-raying chemical evolution and galaxy formation in the Antennae. ApJ, 605(Apr.), L21–L24.Google Scholar
Fabbiano, G., Brassington, N. J., Lentati, L., Angelini, L., Davies, R. L., Gallagher, J., Kalogera, V., Kim, D.-W., King, A. R., Kundu, A., Pellegrini, S., Richings, A. J., Trinchieri, G., Zezas, A., and Zepf, S. 2010. Field and globular cluster low-mass X-ray binaries in NGC 4278. ApJ, 725(Dec.), 1824–1847.Google Scholar
Fabbiano, G., Feigelson, E., and Zamorani, G. 1982. X-ray observations of peculiar galaxies with the Einstein Observatory. ApJ, 256(May), 397–409.Google Scholar
Fabbiano, G., Gioia, I. M., and Trinchieri, G. 1988. A five-band study of spiral galaxies – X-ray, optical, near- and far-infrared, and radio continuum correlations. ApJ, 324(Jan.), 749–766.Google Scholar
Fabbiano, G., Kim, D.-W., and Trinchieri, G. 1992. An X-ray catalog and atlas of galaxies. ApJS, 80(June), 531–644.Google Scholar
Fabbiano, G., Kim, D.-W., Fragos, T., Kalogera, V., King, A. R., Angelini, L., Davies, R. L., Gallagher, J. S., Pellegrini, S., Trinchieri, G., Zepf, S. E., and Zezas, A. 2006. The modulated emission of the ultraluminous X-ray source in NGC 3379. ApJ, 650(Oct.), 879–884.Google Scholar
Fabbiano, G., King, A. R., Zezas, A., Ponman, T. J., Rots, A., and Schweizer, F. 2003a. A variable ultraluminous supersoft X-ray source in “the Antennae”: stellar-mass black hole or white dwarf?ApJ, 591 (July), 843–849.Google Scholar
Fabbiano, G., Trinchieri, G., and MacDonald, A. 1984. X-ray observations of spiral galaxies. I – Integrated properties. ApJ, 284(Sept.), 65–74.Google Scholar
Fabbiano, G., Trinchieri, G., and van Speybroeck, L. S. 1987. The X-ray spectral properties of the bulge of M31. ApJ, 316(May), 127–131.Google Scholar
Fabbiano, G., Zezas, A., King, A. R., Ponman, T. J., Rots, A., and Schweizer, F. 2003b. The time-variable ultraluminous X-ray sources of “the Antennae.” ApJ, 584(Feb.), L5–L8.
Feng, H., and Kaaret, P. 2007. Origin of the X-ray quasi-periodic oscillations and identification of a transient ultraluminous X-ray source in M82. ApJ, 669(Nov.), 106–108.Google Scholar
Fiorito, R., and Titarchuk, L. 2004. Is M82 X-1 really an intermediate-mass black hole? X-ray spectral and timing evidence. ApJ, 614(Oct.), L113–L116.Google Scholar
Forman, W., Schwarz, J., Jones, C., Liller, W., and Fabian, A. C. 1979. X-ray observations of galaxies in the Virgo cluster. ApJ, 234(Nov.), L27–L31.Google Scholar
Fragos, T., Kalogera, V., Belczynski, K., Fabbiano, G., Kim, D.-W., Brassington, N. J., Angelini, L., Davies, R. L., Gallagher, J. S., King, A. R., Pellegrini, S., Trinchieri, G., Zepf, S. E., Kundu, A., and Zezas, A. 2008. Models for low-mass X-ray binaries in the elliptical galaxies NGC 3379 and NGC 4278: comparison with observations. ApJ, 683(Aug.), 346–356.Google Scholar
Fragos, T., Kalogera, V., Willems, B., Belczynski, K., Fabbiano, G., Brassington, N. J., Kim, D.-W., Angelini, L., Davies, R. L., Gallagher, J. S., King, A. R., Pellegrini, S., Trinchieri, G., Zepf, S. E., and Zezas, A. 2009. Transient low-mass X-ray binary populations in elliptical galaxies NGC 3379 and NGC 4278. ApJ, 702(Sept.), L143–L147.Google Scholar
Gao, Y., Wang, Q. D., Appleton, P. N., and Lucas, R. A. 2003. Nonnuclear hyper/ultraluminous X-ray Sources in the starbursting Cartwheel ring galaxy. ApJ, 596(Oct.), L171–L174.Google Scholar
Giacconi, R., Gursky, H., Paolini, F. R., and Rossi, B. B. 1962. Evidence for X-rays from sources outside the solar system. Physical Review Letters, 9(Dec.), 439–443.Google Scholar
Gilfanov, M. 2004. Low-mass X-ray binaries as a stellar mass indicator for the host galaxy. MNRAS, 349(Mar.), 146–168.Google Scholar
Gilfanov, M., Grimm, H.-J., and Sunyaev, R. 2004. Statistical properties of the combined emission of a population of discrete sources: astrophysical implications. MNRAS, 351 (July), 1365–1378.Google Scholar
Gonçalves, A. C., and Soria, R. 2006. On the weakness of disc models in bright ULXs. MNRAS, 371 (Sept.), 673–683.Google Scholar
Grimm, H.-J., Gilfanov, M., and Sunyaev, R. 2002. The Milky Way in X-rays for an outside observer. Log(N)–Log(S) and luminosity function of X-ray binaries from RXTE/ASM data. A&A, 391 (Sept.), 923–944.Google Scholar
Grimm, H.-J., Gilfanov, M., and Sunyaev, R. 2003. High-mass X-ray binaries as a star formation rate indicator in distant galaxies. MNRAS, 339(Mar.), 793–809.Google Scholar
Grimm, H.-J., McDowell, J., Fabbiano, G., and Elvis, M. 2009. An X-ray photometry system. I. Chandra ACIS. ApJ, 690(Jan.), 128–142.Google Scholar
Grimm, H.-J., McDowell, J., Zezas, A., Kim, D.-W., and Fabbiano, G. 2005. The X-ray binary population in M33. I. Source list and luminosity function. ApJS, 161(Dec.), 271–303.Google Scholar
Grimm, H.-J., McDowell, J., Zezas, A., Kim, D.-W., and Fabbiano, G. 2007. The X-ray binary population in M33. II. X-ray spectra and variability. ApJS, 173(Nov.), 70–84.Google Scholar
Grindlay, J. E. 1984. Globular cluster origin of X-ray bursters. Advances in Space Research, 3, 19–27.Google Scholar
Grindlay, J. E., Heinke, C., Edmonds, P. D., and Murray, S. S. 2001. High-resolution X-ray imaging of a globular cluster core: compact binaries in 47Tuc. Science, 292(June), 2290–2295.Google Scholar
Irwin, J. A. 2005. The birthplace of low-mass X-ray binaries: field versus globular cluster populations. ApJ, 631(Sept.), 511–517.Google Scholar
Irwin, J. A., Athey, A. E., and Bregman, J. N. 2003. X-ray spectral properties of low-mass X-ray binaries in nearby galaxies. ApJ, 587(Apr.), 356–366.Google Scholar
Irwin, J. A., Bregman, J. N., and Athey, A. E. 2004. The lack of very ultraluminous X-ray sources in early-type galaxies. ApJ, 601(Feb.), L143–L146.Google Scholar
Ivanova, N. 2006. Low-mass X-ray binaries and metallicity dependence: story of failures. ApJ, 636(Jan.), 979–984.Google Scholar
Ivanova, N., and Kalogera, V. 2006. The brightest point X-ray sources in elliptical galaxies and the mass spectrum of accreting black holes. ApJ, 636(Jan.), 985–994.Google Scholar
Ivanova, N., Heinke, C. O., Rasio, F. A., Belczynski, K., and Fregeau, J. M. 2008. Formation and evolution of compact binaries in globular clusters – II. Binaries with neutron stars. MNRAS, 386(May), 553–576.Google Scholar
Jeltema, T. E., Canizares, C. R., Buote, D. A., and Garmire, G. P. 2003. X-ray source population in the elliptical galaxy NGC 720 with Chandra. ApJ, 585(Mar.), 756–766.Google Scholar
Juett, A. M. 2005. On the nature of X-ray sources in early-type galaxies. ApJ, 621(Mar.), L25–L28.Google Scholar
Kaaret, P. 2002. A Chandra high resolution camera observation of X-ray point sources in M31. ApJ, 578(Oct.), 114–125.Google Scholar
Kaaret, P., Simet, M. G., and Lang, C. C. 2006. A 62 day X-ray periodicity and an X-ray flare from the ultraluminous X-ray source in M82. ApJ, 646(July), 174–183.Google Scholar
Kajava, J. J. E., and Poutanen, J. 2009. Spectral variability of ultraluminous X-ray sources. MNRAS, 398(Sept.), 1450–1460.Google Scholar
Kilgard, R. E., Cowan, J. J., Garcia, M. R., Kaaret, P., Krauss, M. I., McDowell, J. C., Prestwich, A. H., Primini, F. A., Stockdale, C. J., Trinchieri, G., Ward, M. J., and Zezas, A. 2006. Erratum: “A Chandra survey of nearby spiral galaxies. I. Point source catalogs”ApJS, 159, 214 (2005); ApJS, 163(Apr.), 424–425.Google Scholar
Kilgard, R. E., Kaaret, P., Krauss, M. I., Prestwich, A. H., Raley, M. T., and Zezas, A. 2002. A minisurvey of X-ray point sources in starburst and nonstarburst galaxies. ApJ, 573(July), 138–143.Google Scholar
Kim, D.-W., and Fabbiano, G. 2003. Chandra X-ray observations of NGC 1316 (Fornax A). ApJ, 586(Apr.), 826–849.Google Scholar
Kim, D.-W., and Fabbiano, G. 2004. X-ray luminosity function and total luminosity of low-mass X-ray binaries in early-type galaxies. ApJ, 611(Aug.), 846–857.Google Scholar
Kim, D.-W., and Fabbiano, G. 2010. X-ray properties of young early-type galaxies. I. X-ray luminosity function of low-mass X-ray binaries. ApJ, 721(Oct.), 1523–1530.Google Scholar
Kim, D.-W., Fabbiano, G., and Trinchieri, G. 1992a. The X-ray spectra of galaxies. I – Spectral FITS of individual galaxies and X-ray colors. ApJS, 80(June), 645–681.Google Scholar
Kim, D.-W., Fabbiano, G., and Trinchieri, G. 1992b. The X-ray spectra of galaxies. II – Average spectral properties and emission mechanisms. ApJ, 393(July), 134–148.Google Scholar
Kim, D.-W., Fabbiano, G., Brassington, N. J., Fragos, T., Kalogera, V., Zezas, A., Jordan, A., Sivakoff, G. R., Kundu, A., Zepf, S. E., Angelini, L., Davies, R. L., Gallagher, J. S., Juett, A. M., King, A. R., Pellegrini, S., Sarazin, C. L., and Trinchieri, G. 2009. Comparing GC and field LMXBs in elliptical galaxies with Deep Chandra and Hubble data. ApJ, 703(Sept.), 829–844.Google Scholar
Kim, D.-W., Fabbiano, G., Kalogera, V., King, A. R., Pellegrini, S., Trinchieri, G., Zepf, S. E., Zezas, A., Angelini, L., Davies, R. L., and Gallagher, J. S. 2006a. Probing the low-luminosity X-ray luminosity function in normal elliptical galaxies. ApJ, 652(Dec.), 1090–1096.Google Scholar
Kim, E., Kim, D.-W., Fabbiano, G., Lee, M. G., Park, H. S., Geisler, D., and Dirsch, B. 2006b. Low-mass X-ray binaries in six elliptical galaxies: connection to globular clusters. ApJ, 647(Aug.), 276–292.Google Scholar
King, A. R. 2002. The brightest black holes. MNRAS, 335(Sept.), L13–L16.Google Scholar
King, A. R., and Pounds, K. A. 2003. Black hole winds. MNRAS, 345(Oct.), 657–659.Google Scholar
King, A. R., Davies, M. B., Ward, M. J., Fabbiano, G., and Elvis, M. 2001. Ultraluminous X-ray sources in external galaxies. ApJ, 552(May), L109–L112.Google Scholar
Kong, A. K. H., DiStefano, R., Garcia, M. R., and Greiner, J. 2003. Chandra studies of the X-ray point source luminosity functions of M31. ApJ, 585(Mar.), 298–304.Google Scholar
Kong, A. K. H., Di Stefano, R., and Yuan, F. 2004. Evidence of an intermediate-mass black hole: Chandra and XMM-Newton observations of the ultraluminous supersoft X-ray source in M101 during its 2004 outburst. ApJ, 617(Dec.), L49–L52.Google Scholar
Körding, E., Falcke, H., and Markoff, S. 2002. Population X: are the super-Eddington X-ray sources beamed jets in microblazars or intermediate mass black holes?A&A, 382(Jan.), L13–L16.Google Scholar
Kraft, R. P., Kregenow, J. M., Forman, W. R., Jones, C., and Murray, S. S. 2001. Chandra observations of the X-ray point source population in Centaurus A. ApJ, 560(Oct.), 675–688.Google Scholar
Kubota, A., and Done, C. 2004. The very high state accretion disc structure from the galactic black hole transient XTE J1550-564. MNRAS, 353(Sept.), 980–990.Google Scholar
Kubota, A., Mizuno, T., Makishima, K., Fukazawa, Y., Kotoku, J., Ohnishi, T., and Tashiro, M. 2001. Discovery of spectral transitions from two ultraluminous compact X-ray sources in IC 342. ApJ, 547(Feb.), L119–L122.Google Scholar
Kundu, A., Maccarone, T. J., and Zepf, S. E. 2002. The low-mass X-ray binary-globular cluster connection in NGC 4472. ApJ, 574(July), L5–L9.Google Scholar
Kundu, A., Maccarone, T. J., and Zepf, S. E. 2007. Probing the formation of low-mass X-ray binaries in globular clusters and the field. ApJ, 662(June), 525–543.Google Scholar
Lehmer, B. D., Brandt, W. N., Alexander, D. M., Bauer, F. E., Conselice, C. J., Dickinson, M. E., Giavalisco, M., Grogin, N. A., Koekemoer, A. M., Lee, K.-S., Moustakas, L. A., and Schneider, D. P. 2005. X-ray properties of Lyman break galaxies in the Great Observatories Origins Deep Survey. AJ, 129(Jan.), 1–8.Google Scholar
Lewin, W. H. G., and van der Klis, M. (eds.) 2006. Compact Stellar X-Ray Sources. Cambridge Astrophysics Series No. 39, Cambridge University Press.
Lewin, W. H. G., van Paradijs, J., and van den Heuvel, E. P. J. (eds.). 1995. X-Ray Binaries. Cambridge Astrophysics Series No. 26, Cambridge University Press.
Liu, J.-F., Bregman, J. N., and Irwin, J. 2006. Ultraluminous X-ray sources in nearby galaxies from ROSAT HRI observations. II. Statistical properties. ApJ, 642(May), 171–187.Google Scholar
Maccarone, T. J., Kundu, A., and Zepf, S. E. 2003. The low-mass X-ray binary-globular cluster connection. II. NGC 4472 X-ray source properties and source catalogs. ApJ, 586(Apr.), 814–825.Google Scholar
Maccarone, T. J., Kundu, A., and Zepf, S. E. 2004. An explanation for metallicity effects on X-ray binary properties. ApJ, 606(May), 430–435.Google Scholar
Madau, P., and Rees, M. J. 2001. Massive black holes as Population III remnants. ApJ, 551(Apr.), L27–L30.Google Scholar
Makishima, K., Kubota, A., Mizuno, T., Ohnishi, T., Tashiro, M., Aruga, Y., Asai, K., Dotani, T., Mitsuda, K., Ueda, Y., Uno, S., Yamaoka, K., Ebisawa, K., Kohmura, Y., and Okada, K. 2000. The nature of ultraluminous compact X-ray sources in nearby spiral galaxies. ApJ, 535(June), 632–643.Google Scholar
Matsushita, K., Makishima, K., Awaki, H., Canizares, C. R., Fabian, A. C., Fukazawa, Y., Loewenstein, M., Matsumoto, H., Mihara, T., Mushotzky, R. F., Ohashi, T., Ricker, G. R., Serlemitsos, P. J., Tsuru, T., Tsusaka, Y., and Yamazaki, T. 1994. Detections of hard X-ray emissions from bright early-type galaxies with ASCA. ApJ, 436(Nov.), L41–L45.Google Scholar
Miller, J. M., Fabbiano, G., Miller, M. C., and Fabian, A. C. 2003. X-ray spectroscopic evidence for intermediate-mass black holes: cool accretion disks in two ultraluminous X-ray sources. ApJ, 585(Mar.), L37–L40.Google Scholar
Miller, J. M., Fabian, A. C., and Miller, M. C. 2004. A comparison of intermediate-mass black hole candidate ultraluminous X-ray sources and stellar-mass black holes. ApJ, 614(Oct.), L117–L120.Google Scholar
Mirabel, I. F., and Rodriguez, L. F. 1999. Sources of relativistic jets in the galaxy. ARA&A, 37, 409–443.Google Scholar
Mukai, K., Pence, W. D., Snowden, S. L., and Kuntz, K. D. 2003. Chandra observation of luminous and ultraluminous X-ray binaries in M101. ApJ, 582(Jan.), 184–189.Google Scholar
Mukai, K., Still, M., Corbet, R. H. D., Kuntz, K. D., and Barnard, R. 2005. The X-ray properties of M101 ULX-1 = CXOKM101 J140332.74+542102. ApJ, 634(Dec.), 1085–1092.Google Scholar
Palumbo, G. G. C., Fabbiano, G., Trinchieri, G., and Fransson, C. 1985. An X-ray study of M51 (NGC 5194) and its companion (NGC 5195). ApJ, 298(Nov.), 259–267.Google Scholar
Piro, A. L., and Bildsten, L. 2002. Transient X-ray binaries in elliptical galaxies. ApJ, 571(June), L103–L106.Google Scholar
Pooley, D., Lewin, W. H. G., Anderson, S. F., Baumgardt, H., Filippenko, A. V., Gaensler, B. M., Homer, L., Hut, P., Kaspi, V. M., Makino, J., Margon, B., McMillan, S., Portegies Zwart, S., van der Klis, M., and Verbunt, F. 2003. Dynamical formation of close binary systems in globular clusters. ApJ, 591 (July), L131–L134.Google Scholar
Portegies Zwart, S. F., and McMillan, S. L. W. 2002. The runaway growth of intermediate-mass black holes in dense star clusters. ApJ, 576(Sept.), 899–907.Google Scholar
Portegies Zwart, S. F., Makino, J., McMillan, S. L. W., and Hut, P. 1999. Star cluster ecology. III. Runaway collisions in young compact star clusters. A&A, 348(Aug.), 117–126.Google Scholar
Postnov, K. A., and Kuranov, A. G. 2005. The luminosity function of low-mass X-ray binaries in galaxies. Astronomy Letters, 31(Jan.), 7–14.Google Scholar
Prestwich, A. H., Irwin, J. A., Kilgard, R. E., Krauss, M. I., Zezas, A., Primini, F., Kaaret, P., and Boroson, B. 2003. Classifying X-ray sources in external galaxies from X-ray colors. ApJ, 595(Oct.), 719–726.Google Scholar
Prestwich, A. H., Kilgard, R. E., Primini, F., McDowell, J. C., and Zezas, A. 2009. The luminosity function of X-ray sources in spiral galaxies. ApJ, 705(Nov.), 1632–1636.Google Scholar
Ranalli, P., Comastri, A., and Setti, G. 2005. The X-ray luminosity function and number counts of spiral galaxies. A&A, 440(Sept.), 23–37.Google Scholar
Rappaport, S. A., Podsiadlowski, P., and Pfahl, E. 2005. Stellar-mass black hole binaries as ultraluminous X-ray sources. MNRAS, 356(Jan.), 401–414.Google Scholar
Remillard, R. A., and McClintock, J. E. 2006. X-ray properties of black-hole binaries. ARA&A, 44(Sept.), 49–92.Google Scholar
Revnivtsev, M., Lutovinov, A., Churazov, E., Sazonov, S., Gilfanov, M., Grebenev, S., and Sunyaev, R. 2008. Low-mass X-ray binaries in the bulge of the Milky Way. A&A, 491(Nov.), 209–217.Google Scholar
Sarazin, C. L., Irwin, J. A., and Bregman, J. N. 2000. Resolving the mystery of X-ray-faint elliptical galaxies: Chandra X-ray observations of NGC 4697. ApJ, 544(Dec.), L101–L105.Google Scholar
Schmitt, J. H. M. M., and Maccacaro, T. 1986. Number-counts slope estimation in the presence of Poisson noise. ApJ, 310(Nov.), 334–342.Google Scholar
Schweizer, F., and Seitzer, P. 1992. Correlations between UBV colors and fine structure in E and S0 galaxies – a first attempt at dating ancient merger events. AJ, 104(Sept.), 1039–1067.Google Scholar
Shakura, N. I., and Sunyaev, R. A. 1973. Black holes in binary systems. Observational appearance. A&A, 24, 337–355.Google Scholar
Shapley, A., Fabbiano, G., and Eskridge, P. B. 2001. A multivariate statistical analysis of spiral galaxy luminosities. I. Data and results. ApJS, 137(Nov.), 139–199.Google Scholar
Shaposhnikov, N., and Titarchuk, L. 2009. Determination of black hole masses in galactic black hole binaries using scaling of spectral and variability characteristics. ApJ, 699(July), 453–468.Google Scholar
Shtykovskiy, P., and Gilfanov, M. 2005. High mass X-ray binaries in the LMC: dependence on the stellar population age and the “propeller” effect. A&A, 431 (Feb.), 597–614.Google Scholar
Shtykovskiy, P. E., and Gilfanov, M. R. 2007. High-mass X-ray binaries and the spiral structure of the host galaxy. Astronomy Letters, 33(May), 299–308.Google Scholar
Sivakoff, G. R., Jordán, A., Juett, A. M., Sarazin, C. L., and Irwin, J. A. 2008. Deep Chandra X-ray observations of low mass X-ray binary candidates in the early-type galaxy NGC 4697. ArXiv e-prints, June.
Sivakoff, G. R., Jordan, A., Sarazin, C. L., Blakeslee, J. P., Cote, P., Ferrarese, L., Juett, A. M., Mei, S., and Peng, E. W. 2007. The low-mass X-ray binary and globular cluster connection in Virgo Cluster early-type galaxies: optical properties. ApJ, 660(May), 1246–1263.Google Scholar
Sivakoff, G. R., Sarazin, C. L., and Jordan, A. 2005. Luminous X-ray flares from low-mass X-ray binary candidates in the early-type galaxy NGC 4697. ApJ, 624(May), L17–L20.Google Scholar
Socrates, A., and Davis, S. W. 2006. Ultraluminous X-ray sources powered by radiatively efficient two-phase super-Eddington accretion onto stellar-mass black holes. ApJ, 651 (Nov.), 1049–1058.Google Scholar
Soria, R., and Ghosh, K. K. 2009. Different types of Ultraluminous X-ray sources in NGC 4631. ApJ, 696(May), 287–297.Google Scholar
Soria, R., and Kuncic, Z. 2008. Black hole mass estimates from soft X-ray spectra. Advances in Space Research, 42(Aug.), 517–522.Google Scholar
Soria, R., and Wu, K. 2003. Properties of discrete X-ray sources in the starburst spiral galaxy M 83. A&A, 410(Oct.), 53–74.Google Scholar
Soria, R., Baldi, A., Risaliti, G., Fabbiano, G., King, A., La Parola, V., and Zezas, A. 2007. New flaring of an ultraluminous X-ray source in NGC1365. MNRAS, 379(Aug.), 1313–1324.Google Scholar
Stobbart, A.-M., Roberts, T. P., and Wilms, J. 2006. XMM-Newton observations of the brightest ultraluminous X-ray sources. MNRAS, 368(May), 397–413.Google Scholar
Strohmayer, T. E., and Mushotzky, R. F. 2003. Discovery of X-ray quasi-periodic oscillations from an ultraluminous X-ray source in M82: evidence against beaming. ApJ, 586(Mar.), L61–L64.Google Scholar
Strohmayer, T. E., and Mushotzky, R. F. 2009. Evidence for an intermediate-mass black hole in NGC 5408 X-1. ApJ, 703(Oct.), 1386–1393.Google Scholar
Strohmayer, T. E., Mushotzky, R. F., Winter, L., Soria, R., Uttley, P., and Cropper, M. 2007. Quasi-periodic variability in NGC 5408 X-1. ApJ, 660(May), 580–586.Google Scholar
Svensson, R., and Zdziarski, A. A. 1994. Black hole accretion disks with coronae. ApJ, 436(Dec.), 599–606.Google Scholar
Swartz, D. A., Ghosh, K. K., McCollough, M. L., Pannuti, T. G., Tennant, A. F., and Wu, K. 2003. Chandra X-ray observations of the spiral galaxy M81. ApJS, 144(Feb.), 213–242.Google Scholar
Swartz, D. A., Tennant, A. F., and Soria, R. 2009. Ultraluminous X-ray source correlations with star-forming regions. ApJ, 703(Sept.), 159–168.Google Scholar
Tennant, A. F., Wu, K., Ghosh, K. K., Kolodziejczak, J. J., and Swartz, D. A. 2001. Properties of the Chandra sources in M81. ApJ, 549(Mar.), L43–L46.Google Scholar
Trinchieri, G., and Fabbiano, G. 1985. A statistical analysis of the Einstein Normal Galaxy Sample – part two – Elliptical and S0 galaxies. ApJ, 296(Sept.), 447+.Google Scholar
Tyler, K., Quillen, A. C., LaPage, A., and Rieke, G. H. 2004. Diffuse X-ray emission in spiral galaxies. ApJ, 610(July), 213–225.Google Scholar
van den Bergh, S., Morbey, C., and Pazder, J. 1991. Diameters of Galactic globular clusters. ApJ, 375(July), 594–599.Google Scholar
Verbunt, F., and Lewin, W. H. G. 2006. Globular cluster X-ray sources. Pages 341–379. Cambridge Astrophysics Series No. 39, Cambridge University Press.
Verbunt, F., and van den Heuvel, E. P. J. 1995. Formation and evolution of neutron stars and black holes in binaries. Pages 457–494 of: W. H. G., Lewin, J. van, Paradijs, and E. P. J., van den Heuvel (eds.), X-Ray Binaries. Cambridge Astrophysics Series No. 26, Cambridge University Press.
Vierdayanti, K., Mineshige, S., Ebisawa, K., and Kawaguchi, T. 2006. Do ultraluminous X-ray sources really contain intermediate-mass black holes?PASJ, 58(Oct.), 915–923.Google Scholar
Vignarca, F., Migliari, S., Belloni, T., Psaltis, D., and van der Klis, M. 2003. Tracing the power-law component in the energy spectrum of black hole candidates as a function of the QPO frequency. A&A, 397(Jan.), 729–738.Google Scholar
Volonteri, M., Haardt, F., and Madau, P. 2003. The assembly and merging history of supermassive black holes in hierarchical models of galaxy formation. ApJ, 582(Jan.), 559–573.Google Scholar
Voss, R., and Gilfanov, M. 2007. The dynamical formation of LMXBs in dense stellar environments: globular clusters and the inner bulge of M31. MNRAS, 380(Oct.), 1685–1702.Google Scholar
Voss, R., Gilfanov, M., Sivakoff, G. R., Kraft, R. P., Jordan, A., Raychaudhury, S., Birkinshaw, M., Brassington, N. J., Croston, J. H., Evans, D. A., Forman, W. R., Hardcastle, M. J., Harris, W. E., Jones, C., Juett, A. M., Murray, S. S., Sarazin, C. L., Woodley, K. A., and Worrall, D. M. 2009. Luminosity functions of LMXBs in Centaurus a: globular clusters versus the field. ApJ, 701 (Aug.), 471–480.Google Scholar
Weisskopf, M. C., Tananbaum, H. D., van Speybroeck, L. P., and O'Dell, S. L. 2000 (July). Chandra X-ray Observatory (CXO): overview. Pages 2–16 of: J. E., Truemper and B., Aschenbach (eds.), Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 4012.
Winter, L. M., Mushotzky, R. F., and Reynolds, C. S. 2007. Elemental abundances of nearby galaxies through high signal-to-noise ratio XMM-Newton observations of ultraluminous X-ray sources. ApJ, 655(Jan.), 163–178.Google Scholar
Wolter, A., and Trinchieri, G. 2004. A thorough study of the intriguing X-ray emission from the Cartwheel ring. A&A, 426(Nov.), 787–796.Google Scholar
Wu, K. 2001. Populations of X-ray binaries and the dynamical history of their host galaxies. PASA, 18, 443–450.Google Scholar
Zezas, A., and Fabbiano, G. 2002. Chandra observations of “the Antennae” galaxies (NGC 4038/4039). IV. The X-ray source luminosity function and the nature of ultraluminous X-ray sources. ApJ, 577(Oct.), 726–737.Google Scholar
Zezas, A., Fabbiano, G., Baldi, A., Schweizer, F., King, A. R., Rots, A. H., and Ponman, T. J. 2007. Chandra monitoring observations of the Antennae galaxies. II. X-ray luminosity functions. ApJ, 661(May), 135–148.Google Scholar
Zezas, A., Fabbiano, G., Rots, A. H., and Murray, S. S. 2002. Chandra observations of “the Antennae” galaxies (NGC 4038/4039). III. X-ray properties and multiwavelength associations of the X-ray source population. ApJ, 577(Oct.), 710–725.Google Scholar
Zezas, A., Hernquist, L., Fabbiano, G., and Miller, J. 2003. NGC 4261 and NGC 4697: rejuvenated elliptical galaxies. ApJ, 599(Dec.), L73–L77.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×