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REPRESENT ABLE COPRODUCTS OF DISTRIBUTIVE
LATTICES

by FAWZI M. YAQUB

(Received 22nd December 1980)

There are a number of classes of distributive lattices whose members can be
characterised as the coproduct A * L of suitable distributive lattices A and L. For
example, Post algebras [1], pseudo-Post algebras [4], Post I^algebras ([6], [8], [9]) and
the lattices [£>]„ of [4]. Moreover, the a-completeness and a-representability of some
(though not all) of these algebras have been investigated in [7], [2], [6], and [10].

In this note we investigate the a-representability of the coproduct A * L of two
distributive lattices. In Section 2 we show (Theorem 2.3) that if L is finite, then A * L is
a-complete if and only if A is a-complete, and (Theorem 2.6) if L is arbitrary and B is a
Boolean algebra, then B * L is a-complete if and only if both B and L are a-complete
and at least one of them is finite. The a-representability of A * L, where L is finite, is
discussed in Section 3 where we show (Theorem 3.2) that A * L is an a-homomorphic
image of an a-ring of sets if and only if A has the same property, and (Theorem 3.5)
A * L is isomorphic to an a-ring of sets modulo an a-ideal if and only if A has the same
property. The specialisation of these results to Post algebras and their generalisations
yields the known, as well as some new, results concerning the a-representability of these
algebras, (see Corollary 3.4 and Remark 3.6.)

1. Notation

All lattices considered below will be distributive lattices with 0 and 1 and all lattice
homomorphisms will preserve 0 and 1. The least upper bound and greatest lower bound
of two elements x and y will be denoted by x + y and xy respectively. If L' is a sublattice
of L and SsL', then the least upper bounds of S in L and L will be denoted (whenever
they exist) by ££e Sx and ££ e s x respectively. Similar notations will be used for the
greatest lower bounds of S in L and L.

Let Llt L2 and L be distributive lattices and let il:Ll-^L and i2:L2-^L be lattice
monomorphisms. The pair (L,{iui2}) will be called the coproduct ( = free product) of Ll

and L2 if for every distributive lattice D and every pair of lattice homomorphisms
hl:Ll-*D and h2.L2-*D, there is a unique lattice homomorphism h:L->D such that hiy

= ht and hi2 = h2. The coproduct of Ll and L2 will be denoted by Lt*L2. We shall
often identify Lt and L2 with their isomorphic images in Li * L2 and thus consider them
as sublattices of LX*L2. With this convention, Lt*L2 can be characterised as follows
(cf. [1], Theorem VII. 1.):
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Lemma 1.1. Let L be a distributive lattice generated by the union Lt u L2 of two
sublattices Ly and L2. Then L is the coproduct of Lt and L2 if and only if for every
al,b1eL1 and a2,b2eL2, ala2^bl + b2 implies alf^b1 or a2^Lb2.

Let A and L be distributive lattices. We shall make use of the following specific
representation of 4 * L by a ring of sets (cf. [5]): Let the mapping a->Xa be an
isomorphism of A onto a lattice of subsets of a set X and 1-* Y, be an isomorphism of L
onto a lattice of subsets of a set Y. For every S s X and TsY, let S* = SxY and T*
= XxT. Then the lattice (of subsets of XxY) generated by {X*:aeA} u [ y f : / e l } is
the coproduct A * L. We note that every element E of A * L can be expressed as

E=\J(X.txY,)=(j(X*nYQ, (1)
i - 1 i = 1

where n depends on E and each ateA and lteL. Using the distributive law, the
expression (1) can also be written as

E=f](X*uYZ), (2)
i= 1

where each b(eA and m^L.

2. a-complete lattices

In this section we shall investigate when the coproduct of two distributive lattices is
a-complete. Henceforth, A and L will always denote distributive lattices and a an infinite
cardinal. We begin with the following:

Lemma 2.1. If P = A*L is a-complete, then both A and L are a-complete.

Proof. Let SzA such that |S| = a and let YJxesx = aih + aih + •••+aJm where ateA,
li^L, /,-=/=(), l _ i _ ^ . Then a^^^^ai is an upper bound of S. If ueA is another upper
bound of S, then u^Y^=iaih- Hence for every i, l _ i_n , a;/,_u + 0 and by Lemma 1.1,
at ̂  u. Hence a is the least upper bound of S. Similarly we show that the greatest lower
bound of S is in A and hence A is an a-complete lattice. Similarly, L is a-complete.

Lemma 2.2. Let P = A*L, {a,-: i e /} £ A, and I e L. Then

(0 ifEielai exiStS> theTl YJelail existS and lYfeIai = YJeIail>

Proof, (i) Let a = Y,uiai- Then la is an upper bound of ^ = {a,/:ie/} in P.
Moreover, if «= n*= I (^ + mi) 1S another upper bound of Sf in P then for all iel and
all jeK = {l,2,...,k], a{l = bi, + m} and hence a^bj or /^m;. Let J = {jeK:l^mj} and J'

{X' }
/« _ /«, _ /?; + my, when j e J,

and

/a _ 6j ̂  bj- + mp when _/ e J'.
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Therefore la^bj + mj, for all jeJ u J'= K, so that la^w. Thus la is the least upper
bound of Sf in P.

(ii) Dualise the proof of (i).

Theorem 2.3. Let P = A*L be the coproduct of a distributive lattice A and a finite
distributive lattice L. Then P is a-complete if and only if A is a-complete.

Proof. Let L={11,12, ••-,'„}• Suppose first that A is a-complete and let {x;:i 'e/}£P,
where | / | ^ a . For every iel, let x, = Yj= 1 aijlj, where each a^eA and / ,eL. We shall
show that

(3)

For every j , 1 ^j^n, let u} = (^ela^l-, then by Lemma 2.2(i), Uj = Xfe/a.j 'j- B u t E"=i "J
= Zre / ; c r Hence (3) holds. To show that flfe/X, exists, we express each x, as x,
= Y\"j=iQ)ij+mj)> where each bi.eA and Wj-eL. Then by using Lemma 2.2(ii) and
dualising the above argument, we conclude that

The converse follows from Lemma 2.1.

We recall that a lattice L is said to satisfy the ascending chain condition if every
increasing chain of L terminates; that is, if for every chain x 1 ^ x 2 ^ x 3 ^ . . . ^ x l l ^ . . . of
elements of L, there is an m such that xf = xm for all i^m. A lattice with the descending
chain condition is defined similarly.

The converse of the last theorem is false; that is, if A * L is a-complete, then neither A
nor L need be finite. (For example, the coproduct of two infinite, cr-complete, increasing
chains is cr-complete). However, the next lemma will show that the a-completeness of
A * L implies that A or L must satisfy one of the chain conditions.

Lemma 2.4. If P = A*L is a-complete for any infinite cardinal a, then A satisfies the
descending chain condition or L satisfies the ascending chain condition.

Proof. We identify P with a lattice of subsets of X x Y (cf. Section 1). Then it suffices
to show that if A has a non-terminating decreasing chain a, ^ a 2 ^ . . . ^ a n ^ . . . and L
has a non-terminating increasing chain /, ^ / 2 = ••• = '/! = •••> t n e n the set Sf = {xai>xY,:n
= 1,2,3,...} has no least upper bound in P. Suppose on the contrary that Sf has a least
upper bound Us P. Then U = y* = t (Xb. x ym.), where bteA, m^L, l _ j^ /c . Since X*t

= XaixY is an upper bound of Sf, l / £ l * and it follows that each Xb.^Xai

= {J?=i{Xa -Xa+j. Hence for every i, l k i ^ / c , there is an n(i) such' that
^ O ^ W e s h a 1 1 s h o w t h a t Y»-<-\o> l^l^k- Suppose this is
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not the case for some i, and let (x,y)e(Xb.n(Xaii(;)-Xarm+i)x(Ym.-Yliiii)). Let V
=(Ur\X*n(i)+i)<j(\Jfi\(Xa. x Ytj). Then V is an upper bound of if, and V is properly
contained in U since (x,y)eU— V. This contradiction shows that Ym[^Y, , l^i^k.
Now, let m = max{n,:l^i^fc}. Then YmcY,m, for all ie{l,2,..,fc}, so that t/^y,*.
Hence U cannot be an upper bound of if; otherwise the ascending chain
/t ^ 12 ^ . . . ^ /„ ̂  • • • would terminate at lm.

Lemma 2.5. / / A has an infinite disjoint subset and L is infinite, then A*L is not in-
complete for any a.

Proof. Since A has an infinite disjoint subset, A does not satisfy the ascending chain
condition. Hence by Lemma 2.4, if L does not satisfy the descending chain condition,
then A * L is not a-complete for any a. On the other hand, if L satisfies the descending
chain condition, then (cf. Theorem III.2.2 of [1]) L has an infinite ascending chain
/ j ^ / z ^ . . . ^ / , , ^ . . . . Let {an:n= 1,2,3,...} be an infinite disjoint subset of A and let S
= {ajn:n= 1,2,3,...}. Then it follows by an argument similar to the one used in the
proof of Lemma 2.4 that S does not have a least upper bound in A*L. Hence A * L is
not a-complete for any a in this case also.

We can now show that the converse of Theorem 2.3 holds when A is a Boolean
algebra.

Theorem 2.6. Let B be a Boolean algebra, L a distributive lattice, and a an infinite
cardinal. Then B* L is a-complete if and only if both B and L are a-complete and at least
one of them is finite.

Proof. The sufficiency follows from Theorem 2.3. For the necessity, suppose B*L is
a-complete. Then by Lemma 2.1, B and L are both a-complete. If B is infinite, then (cf.
[3]) B has an infinite disjoint subset; hence by Lemma 2.5, L is finite.

Since a Post Z^algebra (6, L) is isomorphic to the coproduct of a Boolean algebra B
and a distributive lattice L, the last theorem yields the following result which is a
generalisation of Theorem 6.1 of [6]:

Corollary 2.7. A Post L-algebra (B, L) is a-complete if and only if both B and L are in-
complete and at least one of them is finite.

3. a-representable lattices

Following [1], we define a distributive lattice L to be a-representable if there exists an
a-ring of sets R and an a-homomorphism of R onto L. This is a weaker condition than
requiring L to be isomorphic to an a-ring of set modulo an a-ideal (i.e. L = R/I, where R
is an a-ring of sets and / an a-ideal of R). We shall investigate in this section when
A * L, where L is finite, is a-representable and when it is isomorphic to an a-ring of sets
module an a-ideal.
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Lemma 3.1. Let R be an a-ring of sets and let L={/1,Z2, ...,/„} be a finite distributive
lattice. Then P = R*L is isomorphic to an oc-ring of sets.

Proof. Let R be an a-ring of subsets of a set X and represent P by a ring of subsets
of XxY (cf. Section 1). Let {£ , : /£ /}sP, | / | ^a , and for every iel, let £,
= \J"= x(XA.. x Y,), where each Ai}eR. Then it follows from (3) and the fact that R is
an a-ring of sets that

- 0
Similarly we show that nfe/£ ' =

Theorem 3.2. Let ,4 and L be distributive lattices where L={lul2,...,/„} is finite. Then
P = A*L is cc-representable if and only if A is a-representable.

Proof. Suppose first that A is a-representable and let h\ be an a-homomorphism of
an a-ring of sets R onto A. Let P' = R*L. Then by Lemma 3.1, P' is isomorphic to an oc-
ring of sets, and we shall exhibit an a-homomorphism of P' onto P. By the definition of
the coproduct there are imbedding monomorphisms i1:A-^P, i2:L->P, i\:R->P', and
i'2:L-+P'. Let A = i1(A), L=i2(L), / ^ ^ ( K ) , and L = i'2(L). Then the a-homomorphism h\
of R onto A induces an a-homomorphism ht of R' onto A, and the identity
automorphism of L induces an isomorphism h2 of L' onto L. Moreover, ht and fi2 can
be extended to a homomorphism h of P' onto P. We shall show that h is an a-
homomorphism. Let {xi:ieI}sPr, |/|^ex, and for every iel, let *,• = £"=!«;/,•, where
each ai} e R'. Then

„ f /R' \ \ „ //A \ \

(since «i is an a-homomorphism)

j=l\\ie/ / / i6/\j=l

(by (3))

y h(aiMl)
= 1 /

Thus h preserves a-sums. To show that h preserves a-products, we express each x, by xt

= Y\j=i(aij+ty an(^ dualise the above argument using (4) instead of (3).
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Conversely, suppose that P = A * L is a-representable. Then there is an a-ring of sets T
and an oc-homomorphism g of T onto P. Let T' = {EeT:g(E)eA}. Since a-sums and a-
products in A agree with those in P, 7" is an a-subring of T. Moreover, the restriction of
g to T is an a-homomorphism. Therefore A, and hence A, is a-representable. This
completes the proof of the theorem.

A Post algebra P={B, C) of order n is called a-representable if there is an a-Post ring
of sets R = (F, C) of order n and an a-Post homomorphism of R onto P (cf. [2]). a-
representable pseudo-Post algebras and a-representable Post L-algebras are defined
similarly (cf. [10]).

It is clear from the proof of Lemma 3.1 that if F is an a-field of sets and L is a finite
distributive lattice, then A * L is isomorphic to an a-Post field of sets. Moreover, the proof
of Theorem 3.2 yields the following:

Corollary 3.3. Let B be a Boolean algebra and L a finite distributive lattice. Then
B*L is a-representable (i.e. the oc-homophorphic image of an a-Post field of sets) if and only
if B is a-representable.

The following follows from the proof of Theorem 3.2.

Corollary 3.4. (i) ([7], [2]) A Post algebra (B, C) is a-representable if and only if B is
a-representable.

(ii) [10] A Post L-algebra (B, L) with finite lattice of constants L is a-representable if
and only if B is a-representable.

(iii) A pseudo-Post algebra (D, L) is a-representable if and only if D is a-representable.

We shall now examine when A * L, where L is finite, is isomorphic to an a-ring of sets
modulo an a-ideal. If / is an ideal of a distributive lattice L, then / determines a
congruence relation of L; namely, the relation 6(I) = {(x,y)eL2:x + u = y + u for some
we/}. We shall denote the quotient lattice L/9(I) by L/I and the elements of L/I by
[x] / ; where xeL.

Theorem 3.5. Let A and L be distributive lattices where L is finite and let P = A*L.
Then P is isomorphic to an a-ring of sets modulo an a-ideal if and only if A is isomorphic
to an a-ring of sets modulo an a-ideal.

Proof. Suppose first that A s R/I, where R is an a-ring of sets and / is an a-ideal of
R. We consider R as a sublattice of Q = R*L and let I* = {xeQ:x^u for some uel}.
Since Q is a-complete (Theorem 2.3), /* is an a-ideal of Q. We shall show that
Q/I*^(R/I)*L. Let R' = {[.x]I.:xeR} and let i^.R/I^Q/I* be defined by i1([x]/) = [x]/,.
Then il is a homomorphism of R/I onto R'. Moreover, if ii(C ĉ]/) = ii([y]/), then x + u*
= y + u* for some u*£/*. But u*^u for some uel. Hence x + u = y + u; thus [x]y = [y]7

and it follows that it is an isomorphism of R/I onto R'. Next let i2:L->Q/7* be defined
by 1*2(0 = [Qj«- Then i2 is a homomorphism of L onto L' = {[x]/#:xeL}. Moreover, if i'2(/)
= i2(m), then l + u = m + u for some uel. Hence l-l^m + u and it follows from Lemma
1.1. and the fact that / is a proper ideal that l^m. Similarly, m^l so l = m and i2 is an
isomorphism of L onto L'. Thus to complete the proof that Q/I* s (R/I) * L, it suffices to
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show that the criterion of Lemma 1.1. is satisfied. Let [x]/.|T|/.^[y] /. + [w],., where
x,yeR and l,meL. Then [xQ/,f£[y + m]/t. Hence xl^y + m + u* for some u*el*, so
x/^(y + u) + m for some we/. Thus applying Lemma 1.1 to Q = R*L, we have x^y + u
or /^m and this implies [xL.^Lv]/. or [/]i.^ !>]/.• Hence Q/I*^(R/I)*L^P = A*L.
But by Lemma 3.1, (2 is isomorphic to an a-ring of sets, hence P is isomorphic to an a-
ring modulo an a-ideal.

Conversely, suppose that P is isomorphic to T/J, where T is an a-ring of sets and J is
an a-ideal of T. Let g: T^T/J be the a-homomorphism defined by g(x) = [x]j and let h
= ig, where i is an isomorphism of T/J onto P=A*L. Let T' = {xeT:h(x)€A). Then
as was shown in the proof of Theorem 3.3, 7" is an a-subring of T, and it is not difficult
to show that A^T'/J', where J' is the a-ideal of 7" defined by J' = JnT. This
completes the proof of the theorem.

Remark 3.6. It is clear from the proof of the last theorem that Corollary 3.3 remains
valid if "a-representable" is replaced by "isomorphic to an a-field of sets modulo an a-
ideal". Moreover, a Post algebra (B, C) is isomorphic to an a-Post ring of sets modulo
an a-Post ideal if and only if B is isomorphic to an a-field of sets modulo an a-ideal.
The remaining two results in Corollary 3.4 also remain valid after similar changes are
made.
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