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Instituto de Matemáticas UNAM, Campus MoreliaAp. Postal 61-3 (Xangari)CP 58 089 Morelia,

Michoacán, Mexico
e-mail: fluca@matmor.unam.mx

and P. G. WALSH
Department of Mathematics, University of Ottawa, 585 King Edward, Ottawa, Ontario, Canada, K1N-6N5

e-mail: gwalsh@mathstat.uottawa.ca

(Received 30 June, 2004; accepted 11 April, 2005)

Abstract. J.W.S. Cassels gave a solution to the problem of determining all
instances of the sum of three consecutive cubes being a square. This amounts to
finding all integer solutions to the Diophantine equation y2 = 3x(x2 + 2). We describe
an alternative approach to solving not only this equation, but any equation of the
type y2 = nx(x2 + 2), with n a natural number. Moreover, we provide an explicit upper
bound for the number of solutions of such Diophantine equations. The method we
present uses the ingenious work of Wilhelm Ljunggren, and a recent improvement by
the authors.
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1. Introduction. In [2], J.W.S. Cassels gave a solution to the problem of determin-
ing all instances of the sum of three consecutive cubes being a square. This amounts to
finding all integer solutions to the Diophantine equation y2 = 3x(x2 + 2). He showed
that the nonzero values of x that correspond to solutions are x = 1, 2, 24. The proof
essentially uses some clever arguments involving arithmetic in certain quartic number
fields. In this note we point out that this result, and a generalization thereof, can
be deduced from the classical work of Wilhelm Ljunggren. Moreover, by using this
approach, we can describe an effective algorithm for finding all solutions to any
equation of the form

y2 = nx(x2 + 2), (1.1)

and provide an upper bound for the number of integer solutions to such an equation.
The algorithm we present is simplified somewhat by a recent improvement of
Ljunggren’s work by the authors in [5]. We remark that an analogous result was
proved by Bennett on Diophantine equations of the form y2 = nx(x + 1)(x + 2) in [1].

In what follows, let n denote a positive integer. There is no loss in generality by
assuming that n is square-free, and so we henceforth make this assumption for the
statement and proof of the following theorem. Furthermore, we let ω(n) denote the
number of distinct prime factors of n.

THEOREM 1. Equation (1.1) has at most 3 · 2ω(n)−1 solutions in positive integers (x, y),
and there is an effective algorithm to compute all such integer solutions.
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In the case that n is prime, we have the following corollary.

COROLLARY 1. For any prime p, the equation y2 = px(x2 + 2) has at most three
solutions in positive integers (x, y).

Evidently, we see that for p = 3, the upper bound of 3 for the number of solutions
is attained, and so this corollary provides a new proof of Cassels’ result.

Another extension of Cassels’ theorem, is to replace the factor x2 + 2 by x2 − 2.
Unfortunately, the necessary analogues of the theorems of Ljunggren we use to treat
the former case do not exist for this case.

2. Preliminary results. In order to prove Theorem 1, we require three theorems
of Ljunggren. The first can be found in [3].

LEMMA 1. Let d denote a positive non-square integer, and let εd denote the
fundamental unit in the quadratic field Q(

√
d). If the Diophantine equation

X2 − dY 4 = 1 (1.2)

has two positive integer solutions (X1, Y1), (X2, Y2), (Y1 < Y2), then either

εd = X1 + Y 2
1

√
d, ε2

d = X2 + Y 2
2

√
d,

or

εd = X1 + Y 2
1

√
d, ε4

d = X2 + Y 2
2

√
d,

with the latter case occurring for only finitely many d.

For computational purposes, the following improvement to this result was proved
in [7].

LEMMA 2. Let εd = T + U
√

d > 1 denote the minimal solution to X2 − dY 2 = 1,
and for k ≥ 1, let Tk + Uk

√
d = εk

d . Assume that U = lv2 with l square-free. If Uk = Y 2

for some integer Y, then either k = 1, k = 2, (k, d) = (4, 1785), or k = l and l is a prime
of the form 4t + 3.

This lemma shows that the problem of determining all integer solutions to
an equation of the form X2 − dY 4 = 1 essentially amounts to determining the
fundamental solution of X2 − dY 2 = 1.

The following was proved by Ljunggren in [4], and deals with the more general
family of quartic curves

aX2 − bY 4 = 1, (1.3)

with a a nonsquare integer.

LEMMA 3. Let a, b be positive integers, a non-square, for which the equation aX2 −
bY 2 = 1 is solvable in positive integers X, Y. Let τa,b = x1

√
a + y1

√
b denote the

biquadratic unit corresponding to the minimal solution of aX2 − bY 2 = 1, and put
τ 2k+1

a,b = x2k+1
√

a + y2k+1

√
b, which represents all positive integer solutions to aX2 −

bY 2 = 1. Let y1 = lv2 with l a square-free integer. If l is even, then equation (1.3) has
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no solutions in positive integers. If l is odd, then the only possible solution to (1.3) is
(X, Y ) = (xl,

√
yl).

We remark to the reader that for each of l = 1, 3, 5, there are infinitely many pairs
a, b for which equation (1.3) has a solution at the lth power of τa,b. Furthermore,
it was conjectured in [6] that (1.3) is not solvable whenever l > 5. This remains an open
problem.

We state one more result of Ljunggren, proved in [4], which essentially solves the
Diophantine equation

aX2 − bY 4 = 2. (1.4)

LEMMA 4. Let a, b be odd positive integers for which the equation aX2 − bY 2 = 2 is
solvable in odd positive integers X, Y. Let τa,b = (x1

√
a + y1

√
b)/

√
2 denote the minimal

solution of aX2 − bY 2 = 2, and put τ 2k+1
a,b = (x2k+1

√
a + y2k+1

√
b)/

√
2, which represents

all positive integer solutions to aX2 − bY 2 = 2. Let y1 = lv2 with l a square-free integer.
Then the only possible solutions to (1.4) are (X, Y ) = (xl,

√
yl) and (X, Y ) = (x3l,

√
y3l).

We remark that in [5], we improved upon this result by showing that equation (1.4)
is not solvable if l > 1, and the only possible solutions arise from (X, Y ) = (x1,

√
y1)and

(X, Y ) = (x3,
√

y3). This is evidently quite useful for computational purposes.

LEMMA 5. An odd square-free positive integer n > 1 has at most 2ω(n)−1 divisors d
satisfying d ≡ 3 (mod 8).

Proof. Assume first that n �≡ 1 (mod 8). In this case, for each divisor d of n, we
have that d �≡ n/d (mod 8), and so n has at most 2ω(n)−1 divisors which are 3 (mod 8).
We remark that this argument also shows that for each i ∈ {1, 3, 5, 7}, n has at most
2ω(n)−1 divisors which are i (mod 8).

Now assume that n ≡ 1 (mod 8), and assume that n has at least one prime divisor
p for which p �≡ 1 (mod 8), for otherwise the result follows immediately. We partition
the set of divisors of n as S1

⋃
S2, where S1 = {d | d | n/p} and S2 = {pd | d ∈ S1}. By

the first part of this proof, we see that S1 has at most 2ω(n/p)−1 = 2ω(n)−2 elements which
are 3 (mod 8). The number of elements in S2 which are 3 (mod 8) is the same as the
number of elements in S1 which are 3p−1(mod 8), and by the remark at the end of the
previous paragraph, we see that this number is at most 2ω(n/p)−1 = 2ω(n)−2. The lemma
now follows. �

3. Proof of Theorem 1. Let n be a positive square-free integer, and let x, y be
positive integers satisfying

y2 = nx(x2 + 2).

As n is square-free, replacing y/n by w, we see that

nw2 = x(x2 + 2).

Consider first the case in which x is odd. Then there are integers n1, n2, u, v for which
n = n1n2, x = n1u2, and x2 + 2 = n2v

2. This yields the equation

n2v
2 − n2

1u4 = 2.
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Assume that the equation n1X2 − n2
2Y 4 = 2 has two solutions in positive integers

(x1, y1), (x2, y2), (y1 < y2), which is the maximum possible number of solutions by
Lemma 4. Then, by Lemma 4, we have that

(
x2

√
n1 + y2

2

√
n2

2

)/√
2 = ((

x1
√

n1 + y2
1

√
n2

2

)/√
2
)3

,

from which it follows that y2
2 = y2

1(2y4
1n2

2 + 3), which in turn implies that 2y4
1n2

2 + 3 is the
square of an integer. This equation is not possible (mod 9). We therefore conclude that
for a given pair of integers n1, n2 satisfying n = n1n2, the equation n1X2 − n2

2Y 4 = 2
has at most one solution in odd positive integers X, Y . If such an equation is solvable,
then necessarily n1 ≡ 3 (mod 8). Therefore, by Lemma 5, the total number of solutions
to y2 = nx(x2 + 2), with x odd, is at most 2ω(n)−1.

Now consider the case in which a solution to y2 = nx(x2 + 2) has x is even, and
put x = 2z. As before, since n is square-free, we shall replace y/2n by w to get

nw2 = z(2z2 + 1).

In this case there are integers n1, n2, u, v for which n = n1n2, z = n1u2, and 2z2 + 1 =
n2v

2, which yields the equation

n2v
2 − 2n2

1u4 = 1.

By Lemma 3, if n2 > 1, there can be at most one solution. On the other hand, if n2 = 1,
Lemma 1 states that there are at most two solutions, but we shall show that in fact
there can be at most one solution. If two solutions exist then, by Lemma 1, they must
correspond to the fundamental unit in Q(

√
2n2

1) = Q(
√

2), and either its square or
fourth power. But the fundamental unit in the ring of integers of this field is 1 + √

2,
which has norm −1, and hence cannot give rise to a solution of n2v

2 − 2n2
1u4 = 1.

Therefore, in total, there are at most 2ω(n) solutions to y2 = nx(x2 + 2) with x even.
Combining this bound with the bound for solutions with x odd yields a total bound
of 3 · 2ω(n)−1 solutions to (1.1) in positive integers x, y.

The effectiveness of this result stems from the fact that all integer solutions to the
equation y2 = nx(x2 + 2) arise from specific powers of certain units in either quadratic,
or biquadratic, number fields whose discriminant depends entirely on the integer n.
This completes the proof of Theorem 1.
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