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Abstract
We compare two frameworks for the segmentation of words in child-directed speech,
PHOCUS andMULTICUE. PHOCUS is driven by lexical recognition, whereas MULTICUE
combines sub-lexical properties to make boundary decisions, representing differing views of
speech processing.We replicate these frameworks, performnovel benchmarking and confirm
that both achieve competitive results. We develop a new framework for segmentation, the
DYnamic Programming MULTIple-cue framework (DYMULTI), which combines the
strengths of PHOCUS and MULTICUE by considering both sub-lexical and lexical cues
when making boundary decisions. DYMULTI achieves state-of-the-art results and outper-
forms PHOCUS and MULTICUE on 15 of 26 languages in a cross-lingual experiment. As a
model built on psycholinguistic principles, this validates DYMULTI as a robust model for
speech segmentation and a contribution to the understanding of language acquisition.
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Introduction

Unlike many written languages, where words are separated by spaces, spoken commu-
nication is delivered in continuous utterances with only occasional pauses and no clear
demarcation of words (Cole & Jakimik, 1980). Yet, adults are usually able to segment
speech with no problem, without even realising that there are no suchmarkings. They are
assisted in part by more developed lexicons, which they use to identify familiar words in
the speech stream. Children, on the other hand, are bornwith no lexicon to consult, yet by
the age of sixmonths they are already capable of segmenting the speech stream into words
and phrasal units (Jusczyk, 1999).

The question of how children are able to learn to segment speech and bootstrap their
lexicons is the   . In the 1980s and 1990s there was a
renewed interest in examining the statistical properties of language, and in particular how
these may impact the understanding of language acquisition and comprehension
(Christiansen et al., 1998). Psycholinguistic studies from this time found that children
use statistical properties of language to help solve the word segmentation problem. Such
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properties include lexical stress (Cutler & Carter, 1987; Cutler & Mehler, 1993; Jusczyk,
Cutler, et al., 1993), phonotactics (Jusczyk, Friederici, et al., 1993; Mattys et al., 1999;
Mattys & Jusczyk, 2001), predictability statistics (Saffran, Aslin, et al., 1996a; Saffran,
Newport, et al., 1996; Thiessen & Saffran, 2003), allophonic differences (Jusczyk, Hohne,
et al., 1999), coarticulation (Johnson & Jusczyk, 2001), vowel harmony (Suomi et al.,
1997) and prosody (Cooper & Paccia-Cooper, 1980; Gleitman et al., 1988).

Interest in the segmentation problem, combined with the evidence provided by these
psycholinguistic studies, has led to the design of a variety of computational models for an
abstract version of the task. In the established paradigm, utterances are represented
symbolically as strings of phones or phonemes without word boundaries, and models
have the task of finding these boundaries without supervision. Besides offering insight
into the segmentation problem, such models have also developed into successful algo-
rithms for segmenting written text in languages where word boundaries are not marked
(Feng et al., 2004; Sproat & Shih, 1990).

In this study, we compare two approaches taken by such computational models; the
- approach and the   approach. The boundary-
finding approach considers statistical information present around each inter-phoneme
position to make local boundary decisions, often operating phoneme-by-phoneme.
Language modelling methods operate utterance-by-utterance, calculating the most-likely
segmentation of each, based on lexical recognition.We re-implement the top-performing
models for these two approaches, a language modelling approach known as PHOCUS
(Blanchard et al., 2010; Venkataraman, 2001) and a boundary-finding model known as
MULTICUE (Çöltekin, 2017; Çöltekin &Nerbonne, 2014), both of which achieve similar
scores on the child-directed utterances in the English BR corpus, the de-facto standard for
evaluating segmentation models (Brent, 1999). Word segmentation models are typically
trained on speech corpora directed at children aged less than two years because early
indicators of infants’ word segmentation abilities are well-attested in the first year
(Bergelson & Swingley, 2012; Johnson & Jusczyk, 2001; Saffran, Aslin, et al., 1996a)
andmost children are regularly producingmulti-word utterances by this stage. Therefore,
child-directed utterances in the first two years are held to be both crucial and sufficient for
children learning to segment words.

Through the comparison of these two approaches, we observe that the boundary-
finding methods can combine information from multiple sub-lexical cues, but cannot
make decisions based on the placement of other boundaries. We also find that the
language modelling methods can make decisions based on the placement of other
boundaries, but cannot combine information from multiple sub-lexical cues.

The aim of our research is to investigate whether giving a statistical model access to
both lexical and sub-lexical cues improves its ability to segment words across a range of
languages. By considering cues that are accessible to children and allowing the model to
utilize whichever cues it deems valuable, an increased ability to segment words would
suggest that both types of cue provide complementary information useful for word
segmentation. This finding would contribute to our understanding of language acquisi-
tion by highlighting the extensive knowledge that statistical methods can acquire from the
linguistic signal alone, leading to further inquiry into the additional linguistic knowledge
that can be learned jointly with or subsequent to word segmentation.

In this study, we develop the DYnamic programming MULTIple-cue (DYMULTI)
framework for modelling word segmentation. This framework combines the strengths of
both the boundary-finding and language modelling approaches and allows for the consid-
eration of sub-lexical and lexical cues, achieving higher F1-scores scores on the BR corpus
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than any previous model that uses the same constraints. We also undertake novel cross-
lingual evaluation of these models, finding that our model outperforms PHOCUS and
MULTICUE on 15 of 26 languages, confirming its validity as a computational model for
infantword segmentation. In doing so, we also find that theremay be previous research bias
towards performance on English corpora. The contributions of our paper are as follows:

• We give a thorough review of the word segmentation problem and the previous
psycholinguistic and computational modelling studies that have investigated it. We
introduce the DYMULTI framework for segmentation, which achieves the highest
F1-scores to date.

• We perform a thorough and robust benchmarking of segmentation models, com-
paring the PHOCUS, MULTICUE and DYMULTI frameworks. This includes an
investigation into the effect of utterance order, a comparison of learning rates across
models, and cross-lingual evaluation across 26 languages.

• We release our implementations of PHOCUS, MULTICUE and DYMULTI as an
open-sourced repository for reproducibility and future research1.

Background

In this section, we give the psycholinguistic background to the word segmentation
problem. We then discuss the computational models that have been designed to explore
it, detailing the boundary-finding and language modelling approaches.

Cues for segmentation

Despite the lack of consistent acoustic gaps between spoken words, adults are able to
segment the speech stream into linguistically significant units and therefore access their
meaning, a process called segmentation. Early models of speech processing declared
segmentation to be a by-product of lexical identification (Cole & Jakimik, 1980; Marslen-
Wilson & Welsh, 1978), later described as “serendipitous” or “interactionist” segmenta-
tion models (Cairns et al., 1997; Cutler, 1996). These models identify words in the speech
stream by matching them against the listener’s lexicon, either processing the utterance in
a strictly temporal order, as in the COHORTmodel ofMarslen-Wilson andWelsh (1978)
or by using the activation of competing lexical items to cut up the input, as in the TRACE
model of McClelland and Elman (1986). These models can make use of sub-lexical cues,
such as adults’ sensitivity to phonotactic information, to make judgements about possible
words (Greenberg & Jenkins, 1966), but are primarily driven by the lexicon.

Another view of speech processing is that segmentation occurs purely on the basis of
information in the speech signal without making use of any lexical influences. Cutler
(1996) calls these “explicit” segmentation models and multiple studies have found that
adults can segment using purely using low-level information. Saffran, Newport, et al.
(1996), for example, found that within 20 minutes of exposure to an artificial language,
adults are able to use phonotactic information to tell non-words apart from words in a
speech stream. Such studies do not refute interactionist accounts, as these can still
incorporate low-level information, but they do provide evidence that adult segmentation
is not fully driven by lexical recognition.

1https://github.com/codebyzeb/DYMULTI-23.
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When it comes to infants, there is evidence that lexical recognition is used to solve the
segmentation problem, supporting the interactionist view. Six-month-olds learn new
words from utterances containing familiar names (Bortfeld et al., 2005). French eight-
month-olds use function words such as des and mes for segmentation (Shi & Lepage,
2008) and infants at this stage can even make semantic associations with nouns
(Bergelson & Swingley, 2012). It is clear that infants are able to recall familiar sound
patterns and use them weeks later for segmentation (Jusczyk & Hohne, 1997).

The problem with a model of speech segmentation that only considers lexical
recognition lies in explaining how these familiar words are acquired in the first place;
infants cannot have any innate assumptions about rhythmic and phonological regu-
larities as these vary between languages (Cutler & Carter, 1987). One hypothesis is that
these proto-lexicons are initially populated with single words spoken in isolation
(Suomi, 1993). Indeed, in English Parentese (the particular register and style used by
caregivers when talking to children), about one-tenth of utterances consist of isolated
words (Brent & Siskind, 2001). The issue with this hypothesis is that there is no
universal heuristic for identifying single-word utterances and many words will never
occur in isolation. Brent and Siskind (2001) claim that if entire multisyllabic utterances
are initially added to the lexicon, lexical recognition alone could be sufficient for
bootstrapping the lexicon. This claim is supported by a more recent study that found
that the proto-lexicon of eleven-month-old French-learning infants contains both
words and non-words (Ngon et al., 2013).

On the other hand, there is substantial empirical evidence to suggest that infants
use a wide variety of - cues to solve the initial segmentation problem.
Many of these are based on the simple principle that predictability within lexical units
is high, and predictability between lexical units is low (Harris, 1955). It did not become
clear that infants are able to use this principle for segmentation until the influential
studies of Saffran, Aslin, et al. (1996a, 1996b) and Saffran, Newport, et al. (1996).
Following their study in adults, they found that infants as young as eight months
calculate the    of adjacent syllables A
and B, defined as

TP A!Bð Þ= Pr ABð Þ
Pr Að Þ ,

where Pr ABð Þ is the estimated probability of the syllable pair (calculated as the relative
frequency) and Pr Að Þ is the estimated probability of the syllable A, and use these to place
word boundaries when the transitional probability is low (Aslin et al., 1998; Saffran, Aslin,
et al., 1996a, 1996b).

These probabilities are also gathered at lower levels. At the phoneme level, for instance,
differences in probabilities between within-word and across-word consonant clusters are
used to segment novel phrases such as fang tine, as the pair of phones [ŋt] does not occur
within English words (Mattys & Jusczyk, 2001). At the lowest level, seven-and-a-half-
month-old infants use their knowledge of allophonic variations to segment utterances,
such as the variants of /t/ and /r/ that distinguish nitrate and night rate (Jusczyk, Hohne,
et al., 1999).

Infants also seem to be sensitive to prosodic cues, those as young as 7.5months learn to
use the predictable strong-weak stress pattern in English (as in BAby) for segmentation
(Cutler &Mehler, 1993; Jusczyk, Cutler, et al., 1993; Jusczyk, Houston, et al., 1999).While
statistical cues may precede stress cues in their use (Thiessen & Saffran, 2003), stress and

4 Zébulon Goriely, Andrew Caines, and Paula Buttery

https://doi.org/10.1017/S0305000923000491 Published online by Cambridge University Press

https://doi.org/10.1017/S0305000923000491


coarticulation cues are weighed more heavily by infants once adopted (Johnson &
Jusczyk, 2001). Stress alone is unlikely to be a universal cue for segmentation, as it is
unclear whether all languages even provide reliable prosodic cues (Saffran, Newport, et al.,
1996). Indeed, it has generally been accepted that no single cue is solely responsible for
solving the segmentation problem and that a complete model for explicit segmentation
must consider information frommultiple cues (Blanchard et al., 2010; Christiansen et al.,
1998; Çöltekin & Nerbonne, 2014; Jusczyk, 1999).

Taking these accounts together, it is unclear whether initial segmentation in infants is
purely explicit, or whether a combination of lexical and sub-lexical information is used.
There aremany overlapping and competing cues in these studies, so it is difficult to justify
one view over the other. For example, segmentation around familiar words could be a
result of phonotactic regularity rather than lexical recognition. This motivates the
development of computational models in order to test hypotheses in isolation and
therefore also solve the word segmentation problem. In particular, the DYMULTI
framework developed in this study lets us test whether sub-lexical and lexical cues are
alternative or complementary explanations for speech segmentation.

Segmentation models

Computational models for studying the segmentation problem are often designed to
study one of two questions: (a) how statistical information can be used to segment speech,
and (b) what computational problem is being solved.

These are often discussed using terminology from Marr’s computational theory of
vision (Marr, 1982): the first question operates at Marr’s  , focusing
on the algorithm, and the second operates at Marr’s  , focusing on
the problem being solved.

Algorithmic-level studies are concerned with the implementation of algorithms that
incorporate cognitively plausible mechanisms for the segmentation problem. These
models propose efficient algorithms that follow three constraints:

1. They must start with no knowledge of the target language.
2. They must learn unsupervised.
3. They must operate incrementally.

The first constraint follows from the fact that all languages have different phonotactic
constraints and vocabularies, yet children can learn any of them. The second is established
because children are not always explicitly given the boundaries between words, so neither
should computational models. The third follows from the fact that we process speech as it
is heard, not in batches sometime later.

Numerous models have been proposed based on these constraints, taking a wide
variety of approaches. Two broad categories stand out: boundary-finding methods and
language modelling methods. These are somewhat related to interactionist and explicit
views of speech processing, although top-performingmodels make use of both lexical and
sub-lexical cues. Investigating these two approaches is the focus of this study. Note,
however, that these models tend to operate on phonemic transcripts and so do assume
some knowledge of the target language, not quite meeting the first constraint. However,
this is still preferable to using orthographic transcriptions, as the phonemic forms are still
representations of the sound signal.
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By contrast, computational-level studies are concerned with defining the goal of segmen-
tation and the logic of the strategy used to meet that goal. As the focus of these studies is not
the algorithm, the models developed need not meet the three constraints. An example is the
probabilistic model of Goldwater et al. (2009), who find that the assumption that words are
statistically independent units leads to under-segmentation by an ideal learner. As a
computational-level study, their algorithm does not have to be cognitively plausible. It
operates in batches over the corpus, using a hierarchical Dirichlet Process bi-gram model
estimated using a Gibbs sampling algorithm. Besides the batch processing violating the third
constraint for an algorithmic-levelmodel, the computation time is also over 2000 times longer
than most algorithmic-level models when presented with the same amount of data (Fleck,
2008). In this study, we do not work directly on these computational-level models, although
many algorithmic-level models often offer insight at the computational level.

Boundary-finding methods for segmentation
Boundary-finding methods for segmentation relate to the explicit view of speech pro-
cessing, that segmentation is driven by local information at each inter-phoneme position
rather than lexical recognition. Models that use these methods follow directly from
experimental studies. For example, Saksida et al. (2017) follow the findings of Saffran,
Aslin, et al. (1996a), showing that children segment utterances at low points of transi-
tional probability. Their unsupervised algorithm places boundaries between a syllable
pair when the transitional probability of the syllable pair is lower than the two neigh-
bouring pairs. Using syllables as the basic unit of segmentation is widely debated
(Coltekin, 2011) and also has a high-performing baseline since the vast majority of
child-directed English words are monosyllabic (Gambell & Yang, 2006).

Earlier studies made use of connectionist models for infant segmentation, as was the
trend for investigating many cognitive phenomena at the time (Christiansen et al., 1998;
Elman, 1990). As cognitively-plausible models for segmentation need to be unsupervised,
these models could not be trained to predict word boundaries directly. Instead, they were
often trained on an alternative task. Elman (1990) trained a recurrent neural network to
predict phonemes, finding that relatively high error in prediction could indicate word
boundaries. Cairns et al. (1994) found that peaks in the error score could also indicate
word boundaries. Finally, Christiansen et al. (1998) developed a recurrent neural network
to predict utterance boundaries, phonemes and lexical stress information in an utterance,
finding that the prediction of an utterance boundary was a good indicator of a word
boundary. This model allowed them to test these different cues together and in isolation,
finding that the best performance was achieved when all three cues were combined.

Inspired by this model, Çöltekin andNerbonne (2014) developed an explicit model for
segmentation, arguing that it is difficult to interpret what connectionist models learn.
Their model uses statistical information at each inter-phoneme position, as with transi-
tional probability models, but extends this by introducing a cue-combination method to
combine statistical information frommultiple sources, also achieving far better perform-
ance than the connectionist models. This is the boundary-finding approach that we
re-implement in this study.

Language modelling methods for segmentation
Language modelling methods are based on the interactionist view of speech processing,
that segmentation and lexical recognition occur serendipitously, driven by lexical
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knowledge. These models typically build word n-gram models and use statistical criteria
to define the best segmentation of an utterance, bootstrapping a lexicon that is then used
for further segmentation.

Brent (1999) and Venkataraman (2001) both developed probabilistic languagemodels
and used dynamic programming to infer the best segmentation. In Venkataraman’s
model, the probability of a segmented utterance is given as the joint probability of all
words in that utterance. The Viterbi algorithm is then used to find the segmentation that
maximises an estimate of this probability. Word probabilities are approximated by n-
grams, with a back-off procedure to lower-order n-grams. As the model processes more
utterances, these probability estimates are refined and more words are added to the
lexicon, further improving the model. These models produced state-of-the-art results
unmatched by boundary-finding methods until later work (Çöltekin, 2017; Çöltekin &
Nerbonne, 2014; Fleck, 2008).

It is worth noting that none of the successful language modelling methods rely only on
lexical recognition. Amodel that onlymatches utterances with previously-seen utterances
will fail, as “short, frequently occurring utterances are likely to be segmented within larger
word-level chunks resulting in an over-segmentation of words into their segmental
phonology” (Monaghan & Christiansen, 2010). For instance, if no has been added to
the lexicon, then note could later be segmented as no and te, followed by increasingly
smaller segmentations. As such, these models often gather sub-lexical statistics or make
sub-lexical assumptions to prevent over-segmentation. The PUDDLE model, for
example, uses word-initial and word-final phoneme clusters derived from its lexicon to
restrict segmentation (Monaghan & Christiansen, 2010). The model of Venkataraman
(2001) incorporates phoneme-level statistics to estimate the probability of unseen words.
Finally, the model of Blanchard et al. (2010) extends Venkataraman’s model with an
additional constraint that all segmented words must contain a syllabic nucleus. It is these
latter two models that we re-implement and compare in this study.

Segmenting from raw speech
In this article, we focus on the abstract version of the word segmentation task, with
utterances consisting of sequences of discrete, symbolic phonemes. Although this has
remained an established paradigm for the study of word segmentation, in recent years the
speech research community has made great advances in the area of -
 . These studies aim to develop unsupervised methods that learn from
raw speech audio only, pioneered in recent years by the Zero Resource Speech Challenge
(ZRC) series (Dunbar et al., 2022).

One of the four tasks presented by the ZRC series is Spoken Term Discovery, the text-
less counterpart to word segmentation. The general approach proposed by ZRC is to first
match speech fragments consisting of the same sequence of phonemes (thematching sub-
task), then build a lexicon of word types (the lexicon discovery sub-task) and finally then
use these to find word boundaries (the word segmentation sub-task). “Match-first”
systems focus first on the matching problem, placing boundaries at the edges of dis-
covered segments (Räsänen&Blandón, 2020). “Segmentation-first” systems prioritise the
discovery of boundaries – for instance, by jointly optimising segmentation and building
clustered word embeddings using Bayesian modelling (Kamper et al., 2017) or by using
self-expressive autoencoders to build a segmentation frommatched learned acoustic units
(Bhati et al., 2020). The most recent approaches do not even attempt to build a lexicon of
types, either using a Bayesian approach directly on learned tokens (Algayres et al., 2022)
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or by using peaks in surprisal across sequences of learned units (Kamper, 2023), similarly
to traditional text-based boundary-finding methods for segmentation.

In this study, we were motivated by the availability of phonemic transcripts for
26 languages provided by Caines et al. (2019) to carry out novel cross-lingual analysis
of word segmentation models. As the original audio recordings have not been made
available for the majority of these transcriptions, we were unable to consider the models
developed for ZRC series. However, many of the models presented in this study could
operate on raw audio; their only requirement is that the units are discrete, so the input
could easily be replaced with features derived from speech frame units. We discuss these
ideas further at the end of the article.

Summary

Experimental psycholinguistic studies provide evidence that infants use sub-lexical
statistical and speech cues for solving the segmentation problem, supporting the explicit
view of speech processing. Other studies find that infants make use of lexical knowledge,
supporting the interactionist view. To study the problem in a controlled manner,
computational models have been designed to solve an abstract version of the problem,
where continuous speech is represented as a series of symbolic phonemes. These models
either explore what problem is being solved or present cognitively plausible algorithms for
solving the problem. To be cognitively plausible, these algorithms must segment incre-
mentally, start with no knowledge of the target language and learn unsupervised.
Boundary-finding algorithms correspond to the explicit view of speech processing; and
language modelling algorithms correspond to the interactionist view.

Implementation of Segmentation Models

In this section, we present our re-implementation of the state-of-the-art models for the
boundary-finding approach of Çöltekin and Nerbonne (2014) and the language model-
ling approach of Venkataraman (2001) and its extension presented by Blanchard et al.
(2010). We discuss the benefits and drawbacks of these two approaches and produce a
new model that combines their strengths.

Çöltekin and Nerbonne’s multiple-cue boundary-finding model

The model presented by Çöltekin & Nerbonne (2014) iterates through utterances
phoneme-by-phoneme, placing boundaries by combining votes from a set of indicators
based on a variety of cues. It is explicit in nature, although it does use statistical cues
derived from the lexicon. We refer to this model as MULTICUE.

Cue combination algorithm
The core strength of MULTICUE lies in its cue combination algorithm, which allows for
the consideration of an arbitrary number of psychologically-motivated boundary indi-
cators. All of the cues are language-independent and the task of the algorithm is to
determine how to use themwithout any supervision. As no single cue is solely responsible
for the placement of word boundaries, this allows for a more comprehensive model for
explicit segmentation.
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Each boundary indicator labels every inter-phoneme position as either ‘boundary’ or
‘word internal’. The model then makes a final decision based on a variation of the
weighted majority voting algorithm (Littlestone & Warmuth, 1994). In Çöltekin
(2017), the following condition for deciding on the ‘boundary’ label is given:

XK
i

wi1i >
K
2
,

where K is the number of boundary indicators, wi is the weight and 1i gives the boundary
decision for indicator i , equal to 1 for ‘boundary’ and 0 for ‘word-internal’. This is a
conservative threshold, relying heavily on informed indicators. It also requires that the
weights are all over 0.5 on average (otherwise the model would never be able to place a
boundary). For instance, if all K boundary indicators were assigned a weight of 0.5, the
model would never be able to place a boundary. This is because even if all indicators voted

for a boundary, the weighted majority vote would only equal
PK
i
0:5 = K

2 .

Instead, our implementation places a boundary if the weighted vote for the ‘boundary’
label is greater than the weighted vote for the ‘word-internal’ label:

XK
i

wi1i >
XK
i

wi 1�1ið Þ: (1)

By noticing that the two sides sum to
Pk

i wi, and so the boundary can simply be placed if

the normalised weighted vote exceeds 0:5, this equation can also be rewritten as:

Pk
i wi1iPk
i wi

>
1
2
:

We discussed this with Çöltekin and he agreed that this boundary decision formulation is
better, representing a more general case where we make no assumptions about the
weights. He also noted that this makes the model more robust to bad indicators, but
may favour recall over precision— recall indicating the retrieval of true boundaries and
precision indicating how accurate a model’s predicted boundaries are.

The majority-vote algorithm is a common and effective method for combining
multiple classifiers (Narasimhamurthy, 2005). In this case, the  majority-
vote is used so that votes from boundary indicators that make fewer errors have larger
weights. As the model must be unsupervised, the ground-truth boundary locations
cannot be used to update the weights. Instead, an error happens when an individual
cue disagrees with the majority vote. At each inter-phoneme position, the incremental
algorithm gathers votes from each indicator i, decides whether the position is a ‘boundary’
or is ‘word-internal’, and then increments the error count ei for each indicator that
disagreed with this decision. Finally, the weight wi of each indicator is updated:

wi = 1�2
ei
N
,
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where N is the total number of inter-phoneme positions seen, producing weights in
�1,1½ �.
Çöltekin &Nerbonne (2014) state that this update rule “sets the weight of a vote that is

half the time wrong to zero, eliminating incompetent voters” and that with this model, the
success of boundary decisions depends on the precision of individual boundary indica-
tors. In reality, this score is related to the  of these indicators. As there are fewer
true ‘boundary’ labels than ‘word-internal’ labels, an indicator that never places a
boundary will achieve higher accuracy than an indicator that always places a boundary,
so setting weights to zero when the accuracy is 0.5 is misleading. In our implementation,
we use the following:

wi = 1� ei
N
: (2)

These weights are in the range 0,1½ � and are exactly equal to the accuracies of each
indicator with respect to the final votes.

Cues and boundary indicators
Using themajority-voting framework, any number of indicators can be considered. describes
a series of indicators derived from four sets of cues; predictability statistics, utterance
boundaries, lexical stress and the lexicon, all deriving from psycholinguistic studies.

All of the indicators calculate a certain measure based on these cues. To propose
boundaries, they use a - strategy. This is based on the peak strategy of
transitional probability models where a boundary would be suggested if the transitional
probability at an inter-phoneme position was lower than the transitional probabilities on
either side of that boundary. Each cue is split into two indicators, splitting this peak in half.
An example is given in Figure 1, where the first indicator proposes a boundary after a
decrease in transitional probability and the other proposes a boundary before an increase
in transitional probability. The model can then learn weights associated with each
indicator, using the weighted majority-vote algorithm.

Çöltekin & Nerbonne (2014) also include indicators that calculate statistics over a
larger context of three phonemes, capturing higher-order regularities, as well as indicators
that calculated reverse measures, following the study of Pelucchi et al. (2009) that found
that children can also use  transitional probabilities for segmentation. Çöltekin,
(2017) later usedMULTICUE to explore various predictability cues in isolation. He found
that the best performance was achieved when including indicators with a context size of
one, two, three and four phonemes and also found that   was a better

Figure 1. Two indicators following the partial-peak strategy, segmenting the phrase is that a kitty. One segments
at an increase in transitional probability and the other segments at a decrease. Letters are used instead of
phonemes for clarity.
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predictability measure than transitional probability. Successor variety is the predictability
measure originally described by Harris (1955) as being a good measure for predicting
morpheme boundaries. For a set A of phonemes in the input language, the successor
variety for a substring of phonemes l is given by:

SV lð Þ=
X
r∈A

c l,rð Þ,

where

c l,rð Þ= 1 if  substring lr occurs in the corpus,
0 otherwise:

�

We reimplemented all cues used by Çöltekin & Nerbonne (2014) as well as the predict-
ability cues used by Çöltekin (2017). Using a simple command-line interface, we
re-implemented their models, which we henceforth refer to as MULTICUE-14 and
MULTICUE-17 respectively. These models only vary in which indicators are included;
MULTICUE-14 has 44 stress, predictability, lexicon and utterance-boundary indicators
and MULTICUE-17 has 16 predictability indicators. For our reported results of
MULTICUE-17, we use the successor variety predictability cue, as this was the measure
that Çöltekin (2017) found to give the best performance. See Çöltekin &Nerbonne (2014)
and Çöltekin (2017) for detailed descriptions of these cues.

An updated set of cues
Based on the success of using a variety of cues (Çöltekin & Nerbonne, 2014) and the
success of using higher-order n-grams and the successor variety cue (Çöltekin, 2017), we
propose a new set of indicators that combine these ideas. This set consists of the successor
variety cue of MULTICUE-17 and the lexicon and utterance boundary cues of
MULTICUE-14. Indicators are created for n-gram values from 1 to 4. The stress cue is
not included, following the finding of Çöltekin & Nerbonne (2014) that it decreases
performance and also because the cross-lingual corpora that we use for evaluation do not
provide stress alignment information.

We refer to the MULTICUE model using this new set of cues as MULTICUE-23. A
summary of MULTICUE-14, MULTICUE-17 and the new MULTICUE-23 model is
given in Table 1.

Venkataraman’s language modelling algorithm

Venkataraman’smodel follows a language-modelling approach to segmentation. As a lexicon
is developed and phonemic distributional statistics are learned, utterances are decoded using
the Viterbi algorithm to find themaximum-likelihood segmentation. This is an interactionist
approach as it is driven by lexical recognition rather than boundary placement.

Language model
A standard language model is used to calculate the likelihood of a segmentation. Given a
segmentation W=w1,…,wn composed of n individual words wi ∈L in a lexicon L, the
most likely segmentation bW is
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cW= arg maxWP Wð Þ,

= arg maxW

Yn
i = 1

P wijw1,…,wi�1ð Þ:

To prevent underflow errors in computation, an equivalent calculation is made using log-
likelihoods:

cW= arg minW

Xn
i= 1

� logP wijw1,…,wi�1ð Þ:

A common approximation when implementing language models is the n-gram approxi-
mation, collapsing these conditional probabilities to consider at most n�1 words.
Venkataraman (2001) makes a three-gram approximation, estimating P wijwi�2,wi�1ð Þ
with relative frequencies and using a back-off procedure to estimate the probability of
unseen n-gramswith lower order n-grams (Katz, 1987). He uses a back-off technique given
by Witten & Bell (1991), using phoneme 1-grams to estimate unseen words.

Venkataraman (2001) implemented 1-gram, 2-gram and 3-gram models, finding a
trade-off between precision and recall, with 1-grams giving the best performance overall.
This is surprising, as n-gram contexts typically improve performance in such systems.
Venkataraman claimed that this is because the 2-gram and 3-gram models are more
conservative, as longer n-grams are more infrequent, leading to whole utterances being
often inserted into their lexicons. As such, we only implement the 1-gram model.

Table 1. Summary of Models Implemented in this Study

Model Sub-Lexical Cues Lexical Cues Segmentation Algorithm

MULTICUE-14 Predictability, Stress, Lexicon
Boundaries, Utterance
Boundaries

None Weighted Majority Voting

MULTICUE-17 Predictability None Weighted Majority Voting

MULTICUE-23 Predictability, Stress, Lexicon
Boundaries, Utterance
Boundaries

None Weighted Majority Voting

PHOCUS-1 None 1-gram Language
Model

Viterbi Decoding

PHOCUS-1S None 1-gram Language
Model, Syllabic
Nucleus Constraint

Viterbi Decoding

DYMULTI-14 Predictability, Stress, Lexicon
Boundaries, Utterance
Boundaries

Syllabic Nucleus
Constraint, Lexical
Recognition ( α > 0)

Viterbi Decoding with
Weighted Majority Voting

DYMULTI-17 Predictability Syllabic Nucleus
Constraint, Lexical
Recognition ( α > 0)

Viterbi Decoding with
Weighted Majority Voting

DYMULTI-23 Predictability, Stress, Lexicon
Boundaries, Utterance
Boundaries

Syllabic Nucleus
Constraint, Lexical
Recognition ( α > 0)

Viterbi Decoding with
Weighted Majority Voting

12 Zébulon Goriely, Andrew Caines, and Paula Buttery

https://doi.org/10.1017/S0305000923000491 Published online by Cambridge University Press

https://doi.org/10.1017/S0305000923000491


Viterbi search
The language model defines the likelihood of a segmentation, but a search procedure is
required to find the most likely segmentation. Exhaustive search is computationally
intractable as there are 2n�2 possible segmentations for an utterance of n phonemes,
so this would be an unreasonablemodel for human segmentation. Instead, Venkataraman
uses Viterbi search (Viterbi, 1967) to decode each utterance, a dynamic programming
algorithm that only explores n�2ð Þ2 segmentations.

The algorithm begins with an empty lexicon and no knowledge of phoneme frequen-
cies, building these incrementally as each utterance is processed. The process is unsuper-
vised, as noword boundaries are ever provided to themodel. As such, all three constraints
for algorithmic-level segmentation are satisfied.

Blanchard’s extended algorithm
Blanchard et al. (2010) extend Venkataraman’s 1-gram model to produce PHOCUS, for
PHonotactic CUe Segmenter. They introduce two phonotactic cues: language-specific
and language-universal. The first extends the unseen word estimate to use conditional
probabilities of phoneme n-grams, rather than the phoneme 1-grams of Venkataraman.
This cue is language-specific as phonotactic constraints (permissible phoneme combin-
ations) vary between languages, so the phoneme n-gram probabilities must be learned.
The models that keep track of phoneme n-grams are referred to as PHOCUS- n, with
PHOCUS-1 being equivalent to Venkataraman’s model. For simplicity, we do not
consider higher-order phoneme n-grams here.

The second cue is the universal constraint that words must have at least one 
. Syllabic nuclei in English consist of all vowels and some consonant sounds
(such as the [l,m,ɹ,r] sounds in awful [ɔfl ̩], rhythm [ɹɪðm̩], butter [bʌtɹ̩] and even [ivn ̩]).
There is much debate about the validity of syllables as a perceptual unit (Mehler et al.,
1981; Räsänen et al., 2018; Ziegler & Goswami, 2005), but Blanchard et al. claim that this
constraint is plausibly a prior that does not need to be learned, as it can be explained
without making assumptions about the perceptual status of syllables: instead, this
assumption only depends on sonority (for vowels) or manner of articulation (nasals,
liquids) and the fact that every word requires at least one of these. To implement this
constraint, probabilities of words that do not have a syllabic nucleus are set to 0. Adding
this constraint to PHOCUS-1 gives PHOCUS-1S.

Full algorithm
PHOCUS-1S iteratively processes each utterance using the Viterbi algorithm to find the
segmentation that maximises the product of estimated word probabilities. After seg-
menting each utterance, the proto-lexicon and phoneme counts are updated, improving
the language model.

An example of this loop is given in Figure 2, where possible segmentations of the
utterance andadoggy are considered. For the first possible segmentation, and adoggy, the
probability of the word and is given by its relative frequency in the proto-lexicon. The word
adoggyhas not been seen before, so its probability is calculated using the relative frequencies
of each of its symbols (graphemes in this example, phonemes in our experiments). For the
second possible segmentation given in the example, andado gg y, the word gg contains no
syllabic nucleus, so has a probability of 0, resulting in a probability of 0 for the whole
utterance. Assuming 0.02 is the highest score out of all segmentations considered by the
Viterbi algorithm, and adoggywould be selected as the best segmentation for this utterance.
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Model summary
The PHOCUS-1 model of Venkataraman (2001), extended by Blanchard et al. (2010) to
produce PHOCUS-1S, uses a language model to define the probability of a segmentation
based on seen-word frequency and phoneme frequency for unseen words. In PHOCUS-
1S, probabilities of words not containing a syllabic nucleus are set to 0. A Viterbi
algorithm finds the most-likely segmentation of an utterance. We implemented both
PHOCUS-1 and PHOCUS-1S for comparison with theMULTICUEmodels. A summary
of both models is given in Table 1.

DYMULTI: A combined segmentation model

MULTICUE is in principle a boundary-finding model for segmentation, but
MULTICUE-14 does use indicators based on the lexicon, so it could be considered an
interactionist model. PHOCUS is also an interactionist model, using a languagemodel for
calculating the probability of segmenting an utterance, but it does use sub-lexical
information for estimating the probability of unseen words. Therefore, both models
involve a complicated interaction of lexical and sub-lexical information, which is con-
sistent with studies showing that infants use both sources of information for solving the
segmentation problem. There are, however, drawbacks to both approaches.

One of the key benefits of MULTICUE is that it can combine an arbitrary number of
sub-lexical boundary indicators. This is a good model for explicit segmentation, as
experimental studies have shown that infants are sensitive to a wide variety of cues.
PHOCUS, on the other hand, cannot consider an arbitrary number of sub-lexical
indicators. This is not just a drawback of PHOCUS, but of any language modelling
approach to segmentation. To add a new indicator, the entire languagemodel would need
to be redefined and this would be very difficult to do without making prior assumptions
about the cues.

The strength of PHOCUS lies in the Viterbi search process. The segmentation of an
utterance is decided at the lexical level, based on the scores assigned to each word in the
segmentation. This means that it is easy to incorporate lexical-level constraints, such as
the syllabic nucleus constraint of Blanchard et al. (2010). Such a constraint cannot be

Figure 2. An example of PHOCUS-1S segmenting the utterance andadoggy, using letters as our discrete symbolic
unit instead of phonemes for clarity.
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easily incorporated into the MULTICUE model, or indeed into any boundary-finding
approach to segmentation, as boundary-finding models place boundaries independently
of each other using only the local context around that boundary. Hence, the decision
cannot depend on the placement of previous or future boundaries.

In this section, we present a new framework for segmentation models that combines
the two approaches. It collects scores for each inter-phoneme position from multiple
indicators using the weighted majority-vote algorithm of MULTICUE, then uses a
modification of the Viterbi algorithm from PHOCUS to choose the best segmentation,
rather than just placing boundaries greedily. This combined model allows for the
consideration of multiple sub-lexical and lexical cues, addressing the drawbacks of both
the boundary-finding and language-modelling approaches to segmentation. We name
this framework DYMULTI for DYnamic programming MULTIple-cue model.

Using weighted boundary votes with the Viterbi algorithm
In DYMULTI, the Viterbi algorithm finds the best segmentation according to boundary
scores rather than word scores. These boundary scores are adapted from the weighted
majority-vote algorithm of the MULTICUE model, adjusting equation (1) to give a real-
valued score instead of a binary decision:

scoreðjÞ=
Pk
i
wi1ij

Pk
i
wi

�
Pk
i
wið1�1ijÞ
Pk
i
wi

, (3)

where wi are the weights for indicator i, as given by equation (2). These scores lie between
-1 and 1 with scores over 0 indicating a boundary and scores close to 1 or -1 suggesting
strong agreement between indicators.

The function returns the score at position j in the utterance where 1ij is the vote of
indicator i at this inter-phoneme position.

We then adapt the Viterbi algorithm to maximise the sum of these boundary scores,
rather thanminimise the sum of negative log word probabilities. The word score function
now simply returns score(j), the score given by the weighted majority-vote algorithm
between phoneme j�1 and j. At the utterance boundaries, score(j) always returns 1.

Without any other changes, this algorithm simply places boundaries at every position
where the score is greater than 0, as this maximises the sum over the utterance. As scores
over 0 indicate where MULTICUE would have placed a boundary according to equation
(2), this means that DYMULTI will act exactly likeMULTICUE if the same indicators are
provided. The difference with this new framework is that lexical-level processes can be
introduced by adjusting the word score function, as described in the next two sections.

Introducing the require-syllabic-sound lexical constraint
The first lexical-level process we introduce toDYMULTI is the syllabic nucleus constraint
of Blanchard et al. (2010). We adjust the word score function so that if the word has no
syllabic nucleus, the function returns -100. This number is chosen to be far smaller than
any positive sum could account for, similarly to the large negative log probability used to
simulate a probability of 0 in our implementation of PHOCUS-1S.
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An example of the DYMULTI framework segmenting the utterance andadoggy is
given in Figure 3. First, the boundary scores for the utterance are calculated using
equation (3). These scores are then used to calculate the score of each segmentation,
using the Viterbi algorithm. For the segmentation and adoggy, the boundary scores to the
left of the two words are 1.0 and 0.7, so the score for the segmentation is 1.7. As with
PHOCUS-1S, the syllabic nucleus constraint prevents andado gg y from being a valid
segmentation, giving a score of -100 to the word gg.

Introducing a lexical recognition model
Using the Viterbi algorithm, other lexical processes can also be introduced to DYMULTI.
Here, we propose one such process: a rudimentary lexical recognition process to favour
previously-seen words. This mirrors the lexical recognition driving many of the language
modelling methods for segmentation (Blanchard et al., 2010; Brent, 1999; Monaghan &
Christiansen, 2010; Venkataraman, 2001).

This lexical recognition introduces a single parameter, α, to DYMULTI. To favour
previously-seen words, this process simply adds α to the score of a wordw if w∈ L, where
L is the proto-lexicon populated with words in previous segmentations. Reasonable values
of α lie in 0,1½ �, where α= 0 is equivalent to not using the lexical recognition process.
Setting α= 1 has the effect of always trying to place boundaries around previously-seen
words, as it will always return scores above 0 since score sð Þ∈ �1,1½ �. Note that due to the
syllabic nucleus constraint, these boundaries will not necessarily be placed, but there will
still be a very strong bias towards them. Intermediate values of α result in a balance
between the lexical recognition process and the boundary-finding process.

The full word score function with both lexical processes is given in Figure 4.

Summary

The new DYMULTI framework addresses the drawbacks of the language modelling and
boundary-finding approaches to segmentation. The model uses the weighted majority-
vote algorithm of MULTICUE to produce scores that are then used to select the best
segmentation using theViterbi algorithm of PHOCUS. Using this dynamic programming

Figure 3. An example of DYMULTI segmenting the utterance andadoggy, using letters as our discrete symbolic unit
instead of phonemes for clarity.
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algorithm, the model is able to incorporate lexical processes. We describe two such
processes: the syllabic nucleus constraint from PHOCUS-1S (Blanchard et al., 2010)
and a rudimentary lexical recognition process that takes a single parameter to adjust the
weighting given to previously-seen words. The full model efficiently combines multiple
sub-lexical and lexical cues for segmentation, without the drawbacks of previous models.

A summary of the DYMULTI models used in this study is given in Table 1, high-
lighting how the concepts behind MULTICUE and PHOCUS have been combined. We
implement DYMULTI with the cues fromMULTICUE-14, MULTICUE-17 and our new
MULTICUE-23 model.

Data and Evaluation

In this section, we discuss the procedure used to evaluate PHOCUS, MULTICUE and
DYMULTI. This includes the data used, the baseline segmentation model and the
evaluation metrics.

Corpora

To evaluate computational models for speech segmentation, it is customary to use
transcriptions of real child-directed speech as input data. The first corpus we use in this
study is the BR , the de-facto standard for evaluating computational models for
segmentation. It was originally collected by Bernstein Ratner et al. (1987) by recording the
conversations between nine mothers and their children. It makes up part of the English
section of CHILDES, a large database that contains orthographic transcriptions of speech
between carers and children of a variety of ages in amultitude of languages (MacWhinney
& Snow, 1985).

The BR corpus was later hand-processed by Brent and Cartwright (1996) to produce a
phonemic transcription, keeping only child-directed utterances and removing onomato-
poeia and interjections. They removed all word boundaries, keeping only utterance
boundaries, for a total of 95,809 phonemes, 33,387 words and 9,790 utterances. The
transcription system used is not standard, often combining diphthongs, r-colored vowels
and syllabic consonants into a single symbol. As there are only 50 symbols used, there is

Figure 4. The expanded word score function for DYMULTI with the lexical recognition process.
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an average of 2.9 phonemes per word. The lexical stress was later added by Çöltekin &
Nerbonne (2014) semi-automatically according to stress patterns in the MRC psycho-
linguistic database. Examples of utterances from the corpus can be seen in Table 2.
Segmentation models have the task of correctly placing word boundaries given these
input utterances, without any supervision. For example, if the input is yuwanttusiD6bUk
then the correct output is yu want tu si D6 bUk (you want to see the book). We also note
that the corpus represent a tiny fraction of the total input available to children, which has
been estimated to be between 2M and 7M words per year (Gilkerson et al., 2017).

In this study, we also evaluate models cross-lingually, using phonemic transcriptions
of child-directed speech from 26 different languages created by Caines et al. (2019).
Their dataset consists of 132 monolingual CHILDES corpora, each containing 10,000
child-directed utterances aimed at children two years or younger. They processed these
corpora using the eSpeak Next Generation (NG) speech synthesizer text analysis
module2 or segments grapheme-to-phoneme transformer3 to produce phonemic tran-
scriptions. We direct readers to their study for a full description of the corpora. Of these
132 transcripts, we select one for each language4, for a total of 26. This was done to
facilitate comparison: as otherwise, the corpora for some languages would be much
larger than others – there are 28,000 total utterances for North American English but
only 10,000 utterances for Basque.

These transcriptions use the International Phonetic Alphabet which contains more
symbolic phonemes than the alphabet used for the BR corpus. In these transcriptions,
there is an average of 3:7 ± 0:7 phonemes per word due to the more fine-grained
phonetic detail. This also varies between languages. For instance, the Turkish transcript
has an average of 5.4 phonemes per word but the Cantonese transcript only has an
average of 2.6 phonemes per word, reminding us that the notion of a “word” is not equal
across languages.

It also must be stated that the BR corpus and these cross-lingual corpora represent an
idealisation of the natural scenario. There is likely to have been a degree of error in the
transcription stage. Additionally, the phonemic representations of the transcriptions are
idealised productions based on dictionary pronunciation; orthographic words are pho-
nemically transcribed in the sameway each time they occur, regardless of context. Finally,
the largest simplifying assumption made by working with phonemic transcripts is that

Table 2. First Five Utterances in the BR Corpus

Input utterance Correct segmentation Orthographic equivalent

yuwanttusiD6bUk yu want tu si D6 bUk you want to see the book

lUkD*z6b7wIThIzh&t lUk D*z 6 b7 wIT hIz h&t look there’s a boy with his hat

&nd6dOgi &nd 6 dOgi and a doggie

yuwanttulUk&tDIs yu want tu lUk &t DIs you want to look at this

lUk&tDIs lUk &t DIs look at this

2https://github.com/espeak-ng/espeak-ng.
3https://github.com/cldf/segments.
4Their study had 28 languages but counted English and Portuguese twice each, as these are separated by

region (North America and UK for English, Brazil and Portugal for Portuguese) in CHILDES. We selected
North American English and Brazilian Portuguese for this study.
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infants at this age are able to segment speech into phonemes, requiring them to both
group phone realisations as phonemes and to have access to phone boundaries, neither of
which is a simple task.We discuss the validity of this assumption and the implications for
future work in child language acquisition at the end of the paper.

Evaluation metrics

We report eachmodel’s performance standardmeasures; precision, recall and F1-score as:

P =
TP

TPþFP
,

R=
TP

TPþFN
,

F1� score= 2 ×
P ×R
PþR

:

TP is the number of true positives identified by the model, FP is the number of false
positives (items identified by the model that are incorrect with respect to the gold
standard) and FN is the number of false negatives (items missed by the model). The
F1-score is calculated as the harmonic mean of precision and recall, providing a single
balanced measure. As is conventional, we report F1-scores as percentages.

Studies of computational segmentation report these measures in three different ways
(Brent, 1999; Çöltekin & Nerbonne, 2014), BOUNDARY, TOKEN and TYPE:

Boundary scores
TP, FP and FN are calculated according to the boundaries placed. For instance, TP is the
number of correctly identified boundaries. This gives BP, BR and BF for the BOUNDARY
PRECISION, BOUNDARY RECALL and BOUNDARY F1-SCORE. Note that utterance
boundaries are not included in these calculations, as these are assumed to be trivial to place.

Token/word scores
These are stricter measures that indicate howwell word tokens have been identified in the
speech stream. As such, true positives are counted only if both boundaries of a word are
found without an intervening boundary

between them. These scores are necessarily lower than the boundary scores. This gives
WP,WR andWF for the ,  and F1-. Note that
these include utterance-initial and utterance-final words.

Type/lexicon scores
These are similar to word scores, but true positives are marked over word types rather
than word tokens, so are not skewed by the frequency of each type. This is done by
comparing the final lexicon learned by the model to the expected lexicon, the true set of
word types in the corpus. If the model is better at segmenting high-frequency words, the
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lexicon scores will be lower than the word scores. The lexicon scores are LP, LR and LF for
the  ,   and  F1-.

Finally, we report two errormeasures to give insight into how themodels may fail, related
to two of the error types a model may make. First, a model may miss a boundary, causing
-. Second, the model may place a boundary where there should not
be one, causing -. As the simple error counts will change depending
on the size of the corpus and as there are many more word-internal positions than
boundaries, normalised measures are used for under-segmentation ðEu) and over-
segmentation ðEo):

Eu =
FN

FPþTP
,

Eo =
FP

FPþTN
,

where TP, FP and FN are the quantities used for the boundary measures and TN gives the
true negatives (the total count of correctly placed word-internal positions). Intuitively, Eu

gives the fraction of boundariesmarked as word internal and Eo gives the fraction of word
internal positions incorrectly marked as boundaries.

Evaluation procedure

In themachine learning literature, models are typically evaluated by training them on one
section of the corpus then testing them on another. Computational models for segmen-
tation, however, are unsupervised. Thus, we follow the procedure outlined by previous
studies, training ourmodels on a single run of the whole corpus and reporting the average
scores across this training period. Although models improve as they learn, they cannot
correct past mistakes, resulting in lower average scores than if a test-train split were used.

As a baselinemodel, we implemented BASELINE, which assigns boundaries randomly
but with the correct probability (the true proportion of word boundaries). BASELINE is
therefore more informed than a truly random classifier, as this probability is difficult to
estimate. This has been the customary baseline for evaluating segmentation models since
Brent & Cartwright (1996).

Most previous studies only report their results on one run of the unshuffled corpus, in
order to best represent the input that children receive, but some studies report results
averaged over multiple shuffles, as is standard practice when performing empirical
evaluation of machine learning systems. In order for our study to be as thorough and
consistent with previous work as possible, we report both types of results. All models
reported here are deterministic, so only one run is needed per shuffle. Comparing
unshuffled to shuffled results has the additional benefit of isolating the effect of utterance
order, allowing us to identify if parents unknowingly bias the ordering of utterances
spoken to their children to increase learnability.

Results

In this section, we first evaluate our re-implementations of MULTICUE and PHOCUS.
We compare older sets of cues to the new set of cues used in MULTICUE-23. We then
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evaluate DYMULTI against PHOCUS and MULTICUE by comparing the average
performance, learning rates across the BR corpus and different values of the lexical
recognition constant α. We then compare DYMULTI to previous studies to place its
performance in context. Finally, we perform cross-lingual evaluation, comparing
DYMULTI, PHOCUS and MULTICUE on 26 different languages. This marks the first
time that state-of-the-art segmentation models have been compared on so many lan-
guages (Caines et al. (2019) compared baseline models with one state-of-the-art model).

In the analysis below, significance is tested using a pairwise t-test, α= 0:001 using
samples collected from running each model over 10 shuffles of the input data. When not
otherwise stated, we set the DYMULTI’s lexical recognition parameter α to 0.

Reimplementation of PHOCUS and MULTICUE models

MULTICUE models
Table 3 gives the results for MULTICUE, run with different sets of indicators. Our
implementations of MULTICUE-14 and MULTICUE-17 achieve similar scores to Çöl-
tekin & Nerbonne (2014) and Çöltekin (2017), with slightly higher error rates than the
reported results but far exceeding the baseline. These differing error rates are likely due to
fine-grained implementation differences, such as how probability estimates are calculated
and how utterances are internally represented.

Table 3 also compares running MULTICUE-14 without the stress cue, as Çöltekin &
Nerbonne (2014) found the stress cue to decrease performance. The model achieves
slightly lower scores than the published results in this case, with a higher under-
segmentation error rate. As such, we can confirm the finding of Çöltekin & Nerbonne
(2014), that including the stress cue leads to worse overall performance. Also included are
the results of MULTICUE-23, whose set of indicators combines the strengths of the
MULTICUE-14 and MULTICUE-17 models. This set of indicators clearly leads to
substantial improvements, with MULTICUE-23 achieving better F1-scores than
MULTICUE-14 and MULTICUE-17.

Table 3. Comparison of Reimplemented MULTICUE Models on the BR Corpus

Model BP BR BF WP WR WF LP LR LF Eu Eo

MULTICUE-14 93.4 78.0 85.0 80.3 70.9 75.3 27.4 60.9 37.8 21.9 2.1

Referencea 92.8 75.7 83.4 78.3 68.1 72.9 26.8 62.7 37.5 24.3 2.2

MULTICUE-14/S 84.3 88.3 86.2 73.6 76.1 74.8 38.7 64.8 48.5 11.7 6.2

Referencea 83.7 91.2 87.3 74.1 78.8 76.4 43.9 67.7 53.3 8.8 6.7

MULTICUE-17 84.0 87.7 85.8 73.1 75.3 74.2 35.6 66.6 46.4 12.3 6.3

Referenceb 84.9 88.5 86.7 74.3 76.5 75.4 38.0 67.0 48.5 11.5 5.9

MULTICUE-23 89.7 87.1 88.4 80.2 78.5 79.3 41.2 69.6 51.7 12.9 3.8

BASELINE 27.6 29.5 28.5 12.5 13.1 12.8 6.0 43.4 10.6 70.5 29.3

Note. BP, BR and BF stand for boundary precision, recall and F1-score. W and L scores are similar for the word and lexicon
measures. Eu and Eo give over-segmentation and under-segmentation. The highest scores and lowest error rates (not
including referenced results) are given in bold. Italicised lines give the scores reported for each model in their corres-
ponding studies. MULTICUE-14/S is the MULTICUE-14 model without the stress cue. The models are only run once on the
unshuffled corpus to facilitate direct comparison with the corresponding reported scores.
aAs reported by Çöltekin & Nerbonne (2014).
bAs reported by Çöltekin (2017).
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PHOCUS models
The performance of the two PHOCUSmodels is given in Table 4. Reference rows are not
available because Venkataraman (2001) and Blanchard et al. (2010) use different evalu-
ation schema. Venkataraman reports only WP, WR and LP for PHOCUS-1, averaged
over 100 shuffles of the corpus, giving 67.7, 70.2 and 52.9 respectively. Averaging over
10 shuffles, we get 69:2 ± 2:9, 67:2 ± 2:5 and 47:4 ± 1:2 respectively. Deriving aWF score
from his WP and WR scores gives 68.9, which is close to our WF score of 68:2 ± 2:6.

Blanchard et al. only give theWF score of PHOCUS-1S, reportingWF = 80, but do not
include the first 1000 utterances in this calculation. Replicating this, we achieve a very
close WF score of 80.8. Overall, our implementation of these models seems to perform
similarly to the original studies.

Comparing the scores achieved by our implementations of the two models, it is clear
that the syllabic nucleus constraint introduced in PHOCUS-1S leads to a significant
increase in all F1-scores, showing the benefit of a boundary-finding model that can use
this constraint. Significance scores are given in Table 5. The over-segmentation error rate
is halved from 6.1 to 3.0, a significant reduction ðt = �12:4, p= 5:8 × 10�07), indicating
that this constraint is preventing boundaries from being placed at word-internal positions
that would otherwise lead to producing words without syllabic nuclei.

Table 4 also reveals that F1-scores decrease when the input corpus is shuffled. This
indicates that the specific ordering of utterances in the BR corpus is useful for segmentation.
As the ordering of utterances comes from real child-directed speech, this suggests that
parentsmay positively bias the ordering of utterances spoken to their children to assist with
segmentation, such as pairing new word types with previously-uttered word types.

Performance of DYMULTI

Comparing DYMULTI to MULTICUE when using the same set of indicators
Table 6 gives the full scores comparing MULTICUE to DYMULTI, considering just the
syllabic nucleus constraint. Every F1-score is significantly improved using the DYMULTI
model, with scores given in Table 5. DYMULTI-23 achieved the best F1-scores; 89.5, 81.8
and 51.9 for BF, WF and LF respectively. Generally, using the DYMULTI model
significantly decreases the over-segmentation error rate of the MULTICUE models. This
confirms that the syllabic nucleus constraint alone is a useful addition, correctly prevent-
ing the model from placing erroneous boundaries. The increase in WF and LF scores

Table 4. Comparison of Reimplemented PHOCUS Models on the BR Corpus

Model BP BR BF WP WR WF LP LR LF Eu Eo

PHOCUS-1 82.3 84.4 83.3 70.0 71.3 70.7 53.8 55.7 54.7 15.6 6.9

PHOCUS-1 (avg)a 83.2 79.9 81.5 69.2 67.2 68.2 47.6 54.0 50.6 20.1 6.1

PHOCUS-1S 91.3 84.4 87.7 81.6 77.2 79.3 57.9 67.8 62.5 15.6 3.0

PHOCUS-1S (avg)a 90.9 79.9 85.1 78.8 72.1 75.3 51.8 66.5 58.2 20.1 3.0

BASELINE 27.6 29.5 28.5 12.5 13.1 12.8 6.0 43.4 10.6 70.5 29.3

Note. BP, BR and BF stand for boundary precision, recall and F1-score. W and L scores are similar for the word and lexicon
measures. Eu and Eo give over-segmentation and under-segmentation. The highest scores and lowest error rates are given
in bold.
aScores averaged over ten shuffles of the BR corpus.
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shows that the Viterbi algorithm, considering this constraint, is finding the correct words
to segment, leading to a more accurate lexicon.

Learning rates of segmentation models
The scores in Table 6 were calculated by taking the average performance of each model
over the whole BR corpus, including the many initial mistakes made as the models gather
statistical information. While this gives an indication of how well each model learns to

Table 5. Result of a Pairwise Student’s t-test Comparing F1-scores of Segmentation Models

BF WF LF

Models t p t p t p

PHOCUS-1 vs PHOCUS-1S 8.6 1.2 × 10�05 10.6 2.2 × 10�06 19.2 1.3 × 10�08

MULTICUE-14 vs DYMULTI-14, α= 0 13.0 4 × 10�07 11.7 9.5 × 10�07 4.9 0.00081

MULTICUE-14 vs DYMULTI-14, α= 0:5 23.8 1.9 × 10�09 16.1 6.1 × 10�08 43.2 9.5 × 10�12

MULTICUE-14 vs DYMULTI-14, α= 1 17.0 3.8 × 10�08 8.0 2.2 × 10�05 30.5 2.2 × 10�10

MULTICUE-17 vs DYMULTI-17, α= 0 32.9 1.1 × 10�10 36.0 4.8 × 10�11 39.0 2.4 × 10�11

MULTICUE-17 vs DYMULTI-17, α= 0:5 14.8 1.3 × 10�07 13.9 2.2 × 10�07 39.8 2 × 10�11

MULTICUE-17 vs DYMULTI-17, α= 1 9.6 5 × 10�06 7.7 3.1 × 10�05 23.5 2.2 × 10�09

MULTICUE-23 vs DYMULTI-23, α= 0 10.2 3.1 × 10�06 10.9 1.8 × 10�06 6.9 7.4 × 10�05

MULTICUE-23 vs DYMULTI-23, α= 0:5 8.1 1.9 × 10�05 6.1 0.00017 33.9 8.4 × 10�11

MULTICUE-23 vs DYMULTI-23, α= 1 -0.2 0.86 -1.5 0.17 14.9 1.2 × 10�07

Note. BF, WF and LF stand for boundary, word and lexicon F1-scores. Each pairwise comparison considers the same set of
indicators (e.g., DYMULTI-14 uses the same set of indicators as MULTICUE-14). We set α= 0 for the DYMULTI models. Each
model is run on ten shuffles of the BR corpus and scores are paired for each shuffle. All scores are significant at the p < 0:001
level except for the final test.

Table 6. Comparison of MULTICUE and DYMULTI Models on the BR Corpus

Model BP BR BF WP WR WF LP LR LF Eu Eo

MULTICUE-14 92.8 78.3 84.9 80.0 71.1 75.3 27.6 61.9 38.2 21.7 2.3

DYMULTI-14 93.9 80.0 86.4 82.2 73.6 77.6 28.8 62.1 39.4 20.0 2.0

MULTICUE-17 83.5 88.1 85.7 72.6 75.4 74.0 34.9 65.6 45.6 11.9 6.6

DYMULTI-17 90.1 88.4 89.3 82.0 80.9 81.4 38.2 70.2 49.5 11.6 3.7

MULTICUE-23 88.4 87.4 87.8 78.5 77.9 78.2 40.3 69.8 51.1 12.6 4.4

DYMULTI-23 92.0 87.0 89.5 83.4 80.2 81.8 40.8 71.2 51.9 13.0 2.8

BASELINE 27.6 29.5 28.5 12.5 13.1 12.8 6.0 43.4 10.6 70.5 29.3

Note. BP, BR and BF stand for boundary precision, recall and F1-score. W and L scores are similar for the word and lexicon
measures. Eu and Eo give over-segmentation and under-segmentation. Each pairwise comparison considers the same set
of indicators (e.g., DYMULTI-14 uses the same set of indicators as MULTICUE-14). We set α= 0for the DYMULTI models. Each
model is run on ten shuffles of the BR corpus, averaging scores, with the highest scores and lowest error rates in bold.
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segment after beginning with no knowledge of the target language, it can be more
informative to see how the performance of each model progresses across the corpus.

Figure 5 gives the WF and LF learning rates for a selection of the models described in
this study. These models initially perform very poorly, but quickly improve over the first
1000–2000 utterances, after which scores do not increase or decrease by more than
10 points. This is expected, as the models begin with very poor representations of the
target language and so make poor boundary decisions. As such, the average scores over
the whole corpus are not representative of the final performance of each model. For
example, over the whole corpus MULTICUE-14 has an average WF score of 75:4 ± 0:5
and MULTICUE-23 has an average WF score of 78:2 ± 1:0 but there is no significant
difference between their WF scores on the final block of 200 utterances. It seems that
MULTICUE-14 initially learns very slowly, likely due to a large number and a high variety
of indicators that need to be learned.

From these learning rates, we also see the consistent benefit of the syllabic nucleus
constraint. At every stage in the learning process, PHOCUS-1S achieves higher F1-scores
than PHOCUS-1 and DYMULTI-23 achieves higher F1-scores than MULTICUE-23.
Indeed, DYMULTI-23 achieves the highest F1-scores out of any model at almost every
stage of the learning process, achieving WF and LF scores of 86:3 ± 1:7 and 82:9 ± 2:0
respectively on the final 200 utterances of the BR corpus. This confirms the validity of this
model and the benefits of combining the boundary-finding and language modelling
approaches to segmentation.

Lexical recognition process

Figure 6 compares MULTICUE to DYMULTI, considering three values for the lexical
recognition parameter α. In all cases but one, the DYMULTI model performs signifi-
cantly better than theMULTICUEmodel when bothmodels use the same set of indicators
(see Table 5 for the significance test results). It seems the LF scores are more sensitive to
this change in model than the WF scores. The LF score for MULTICUE-14, for instance,
jumps by more than 20 points when DYMULTI is used with α= 0:5. This suggests that
the lexical processes of DYMULTI help capture infrequent words.

Figure 5. Word and Lexicon F1-scores (WF, LF) for a selection of the models implemented in this study, calculated
over blocks of 200 utterances. Scores are calculated by running each model separately on ten shuffles of the BR
corpus and averaging results.
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The learning rates for these models, however, tell a different story. Figure 7 compares
the learning rates of these models, revealing that the relatively higher  WF and
LF scores over the corpus for DYMULTI with α= 0:5 and α= 1 given in Figure 6 are
actually due to a very steep initial learning rate. Indeed, the final WF and LF scores for
these two values of α are actually lower than DYMULTI-23 with α= 0 and are in fact
lower than MULTICUE-23. It seems that segmenting on the basis of previously-seen
words is a useful strategy at the very start of learning to segment while the boundary cues
are still gathering statistical information. As the boundary-based process improves, this
lexical recognition procedure actually harms the model, leading to a decrease in WF and
LF over time. We also experimented with smaller values of α but never reached
significantly higher F1-scores by the end of learning.

We believe that this is because the lexical recognition process described in this study is
very rudimentary, simply adding a fixed value to the score when a word is recognised.
While the model is gathering statistical information, the boundary-based votes are likely

Figure 6. Word and Lexicon F1-scores (WF, LF) for four models using three sets of indicators. MULTICUE-14,
MULTICUE-17 and MULTICUE-23 are compared to three DYMULTI models using the same sets of indicators, setting
α= 0,0:5,1. Scores are calculated by running eachmodel separately on ten shuffles of the BR corpus and averaging
results.

Figure 7. Word and Lexicon F1-scores (WF, LF) for MULTICUE-23 and DYMULTI-23, setting α= 0,0:5,1. Scores are
calculated by running each model separately on ten different shuffles of the BR corpus and averaging results.
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to be inaccurate and extreme, so the lexical recognition process will help prevent incorrect
segmentation. As the boundary-based votes become more fine-grained, however, the
fixed score of the lexical recognition process will dominate. This will prevent the
boundary-based votes from discovering new words, explaining the decrease in LF over
time. A more nuanced lexical recognition process should account for this, perhaps by
including a decay parameter that decreases α gradually, relying less on the lexical
recognition process as the boundary-based votes become more stable predictors. Using
DYMULTI, it is easy to explore the inclusion of such a lexical process, without needing to
define or run a new model.

Comparison to previous studies

Table 7 compares DYMULTI-23 and MULTICUE-23 to other models in the word
segmentation literature. Note that these models differ in terms of the evaluation proced-
ure. The first four models are incremental, so scores are calculated over a single run of the
BR corpus (averaging over 100 independent runs over shuffles of the corpus in the case of
Venkataraman (2001)). The next two models are incremental, but run over the corpus
multiple times and only report the results for the final run. The following two models are
batch-based, so scores are calculated after many iterations of training over the corpus
(ranging from two to several thousand). DYMULTI-23 with α= 0, achieves higher BF and
WF scores than all of these, with a comparable LF score. Using α= 0:5 results in the
highest LF score, but this is potentially misleading, as discussed in the previous section. It
is also interesting that DYMULTI-23 outperforms the several-runmodels of Fleck (2008);
Ma et al. (2016) and the batch-based models of Elsner & Shain (2017); Goldwater et al.
(2009) as these do not suffer from the lower performance in the initial learning phase. It is
also worth noting that our implementation of PHOCUS-1S already outperforms most
previous studies.

Many previous studies only explore one or two cues for segmentation, stating that they
expect a model that considers more cues to perform better (Blanchard et al., 2010;
Çöltekin, 2017; Ma et al., 2016). The set of cues chosen here seems particularly effective,
withMULTICUE-23 already achieving higher BF andWF scores than in previous studies.
The LF score for DYMULTI-23 with α= 0 is still lower than many of the other models in
Table 7, only outperforming the models of Çöltekin (2017); Fleck (2008); Ma et al. (2016)
that do not store a lexicon at all, but setting α= 0:5remedies this, leading to the highest LF
score.

This comparison confirms both the strength of the boundary cues included and the
strength of the syllabic nucleus constraint at the lexical level.

Cross-lingual evaluation

Comparison of PHOCUS, MULTICUE and DYMULTI across 26 languages
The majority of studies that present models for child word segmentation only report
results on English transcripts, typically only using the BR corpus. Exceptions include
Blanchard et al. (2010), who also report results on a Sesotho corpus, Fleck (2008), who
also reports results on Spanish and Arabic corpora, and Caines et al. (2019), who
compared three different segmentation models on 26 languages. As these models are
designed to represent the ability of a child to acquire any language, proper evaluation is
incomplete if themodels are not run on awide variety of languages. Otherwise, themodels
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Table 7. Comparison of Computational Models for Word Segmentation

Model BP BR BF WP WR WF LP LR LF Eu Eo

Brent (1999) 80.3 84.3 82.3 67.0 69.4 68.2 53.6 51.3 52.4 25.7 –

Venkataraman (2001) – – – 67.7 70.2 68.9 52.9 – – – –

Çöltekin & Nerbonne (2014) 83.7 91.2 87.3 74.1 78.8 76.4 43.9 67.7 53.3 8.8 6.7

Çöltekin (2017) 84.9 88.5 86.7 74.3 76.5 75.4 38.0 67.0 48.5 11.5 5.9

Fleck (2008) 94.6 73.7 82.9 – – 70.7 – – 36.6 26.3 –

Ma et al. (2016) – – 82.9 – – 68.7 – – 42.6 17.3 6.4

Goldwater et al. (2009) 90.3 80.8 85.2 75.2 69.6 72.3 63.5 55.2 59.1 19.2 –

Elsner & Shain (2017) 81 85 83 – – 72 – – – 15 –

PHOCUS-1Sa 91.3 84.4 87.7 81.6 77.2 79.3 57.9 67.8 62.5 15.6 3.0

MULTICUE-23 89.7 87.1 88.4 80.2 78.5 79.3 41.2 69.6 51.7 12.9 3.8

DYMULTI-23, α= 0 92.8 86.4 89.5 84.4 80.2 82.2 41.4 71.4 52.4 13.6 2.5

DYMULTI-23, α= 0:5 85.9 95.7 90.6 79.7 86.2 82.8 63.6 65.3 64.5 4.3 5.9

BASELINE 27.6 29.5 28.5 12.5 13.1 12.8 6.0 43.4 10.6 70.5 29.3

Note. MULTICUE-23 and DYMULTI-23 are compared to a variety of the top-performing models from the child word segmentation literature. BP, BR and BF stand for boundary precision, recall and
F1-score. W and L scores are similar for theword and lexiconmeasures. Eu and Eo give over-segmentation and under-segmentation. Scores are obtained on the BR corpus, with the highest scores and
lowest error rates in bold. If there were multiple models reported in a study, the model with the highest LF score is given. The scores across models are not always directly comparable, as some are
calculated differently from others.
aOur implementation of PHOCUS-1S is used as a stand-in for the model of Blanchard et al. (2010) as they only report WF.
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could be biased towards learning English, and therefore not represent a truly universal
language acquisition procedure.

Figure 8 compares the LF scores of PHOCUS-1S, MULTICUE-17 and DYMULTI-23
across 26 languages. These transcripts come from the study of Caines et al. (2019). The
models they evaluate in their study either perform significantly worse than those
presented here or process the transcripts several times, so are not comparable to these
three single-run and incremental state-of-the-art models. To account for the initial
learning curve whichmay differ betweenmodels and languages, we only report the scores
achieved over the last 5000 utterances of each transcript, after the models have stabilised.

For 15 of the 26 languages, DYMULTI-23 achieves a significantly higher LF score than
MULTICUE-17 and PHOCUS-1S (according to a paired t-test, with p < 0:001). This is
significantly above the chance level of 26

3 for this experiment5. If we order the languages
by LF score, English comes second for MULTICUE-17 and PHOCUS-1S and fourth for
DYMULTI-23. As DYMULTI builds on MULTICUE and PHOCUS, which themselves
build on previous work, this suggests that the research into child segmentation has been
biased towards performance on English corpora. Also note that PHOCUS-1S achieves a
higher LF score than DYMULTI-23 for English, which was not the case for the BR corpus
(as seen in Figure 5). This highlights the importance of testing onmultiple corpora, as the
transcription system seems to have an effect on the performance of the models.

Correlating DYMULTI performance with language features
As a preliminary investigation into why DYMULTI-23 performs better on some lan-
guages than others, we grouped the languages by their sub-families using Glottolog

Figure 8. Lexicon F1-scores (LF) for PHOCUS-1S, MULTICUE-17 and DYMULTI-23 with α= 0 compared across
26 languages, sorted by LF scores for DYMULTI-23. Scores are calculated by running each model separately on
ten shuffles of each transcript and averaging results over the last 5000 utterances of each run, accounting for
differing initial learning rates.

5The chance that DYMULTI-23 would randomly outperform the other two systems on at least 15 lan-
guages can be calculated with a binomial distribution with p= 1

3, giving P X ≥ 15ð Þ < 0:01
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(Hammarström et al., 2022). Any languages that did not share a sub-family with any other
languages were classed as ‘Other’. The resulting groups are:

• Sinitic (Cantonese and Mandarin)
• Germanic (Danish, Dutch, English, German, Icelandic, Norwegian and Swedish)
• Balto-Slavic (Serbian and Croatian)
• Italic (French, Italian, Portuguese, Romanian and Spanish)
• Other (Basque, Estonian, Farsi, Greek, Hungarian, Indonesian, Irish, Japanese,
Korean and Turkish)

All languages in the Italic group are also Romance languages (amodern subgroup of Italic
languages). These languages have a number of shared features; they are moderately
inflecting, have a primarily subject-verb-object word order and accent with stress.
Germanic languages also accent with stress but vary when it comes to inflection; German
and Icelandic have complex inflectional morphology whereas English and Swedish are
largely analytical. Germanic languages also have verb-second word order (English is an
exception), unlike other families. Serbian and Croatian are mutually intelligible varieties
of Serbo-Croatian, a highly inflectional language that has a flexible word order, often
defaulting to subject-verb-object as with Italic languages. Serbo-Croatian also has a
simple tone system. The Germanic, Balto-Slavic and Italic groups are all divisions of
the Indo-European family. The Sinitic group, on the other hand, is a sub-division of the
Sino-Tibetan family. These languages have relatively simple morphology, with no inflec-
tions or conjugations. The basic word order is subject-verb-object and modifiers usually
precede the words they modify. One distinguishing feature of Sinitic languages is the use
of tones to distinguish words. Of the languages in the ‘Other’ group, Greek, Farsi and Irish
are also Indo-European, members of the Hellenic, Indo-Iranian and Celtic sub-families,
respectively. The remaining languages are all members of different top-level families;
Koreanic (Korean), Uralic (Hungarian, Estonian), Japonic (Japanese), Turkic (Turkish)
andAustronesian (Indonesian). Basque is a language isolate, not classified into any family
(King, 2018). Figure 9 presents DYMULTI-23 LF scores with languages grouped using
this classification.We see that DYMULTI-23 performs better on all Sinitic and Germanic
languages than any Balto-Slavic or Italic language. This suggests that the features of a
language family can predict how easy it is to learn the segmentation of the languages
within that family.

To investigate this further, we extracted the structural properties of each language
using the World Atlas of Language Structures (WALS) database (Dryer & Haspelmath,
2013). WALS uses 192 grammatical, phonological and lexical features to describe the
cross-linguistic diversity, each feature taking between 2 and 28 values.We then calculated
the feature-value pairs that best predicted the DYMULTI-23 LF score achieved for each
language6.

Figure 10 presents the best ten of these feature-value pairs.We see that out of languages
in which the adjective precedes the noun, languages in which the object precedes the verb
(line 6) tend to be harder to segment than languages in which the verb precedes the object
(line 7). Six of themost predictive features are to dowithword order, which is significantly
higher than expected, given that out of the 510 feature-value pairs considered, only

6This was done using the SelectKBest method in the scikit-learn library (Pedregosa et al., 2011), selecting
the feature-value pairs that maximised F1-score on a regression task
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123 are to do with word order7. Korean and Japanese share five of the word order features
and DYMULTI-23 achieves the lowest performance on these two. As many of the cues
used in DYMULTI-23 identify infrequent phoneme combinations across word bound-
aries, it is understandable that languages with particular word order features would be
easier to segment than others with this model.

Figure 9. The Lexicon F1-scores (LF) that DYMULTI-23 achieves for each language. Languages are grouped by
family and LF scores are calculated using 10 runs over different shuffles of each transcript.

Figure 10. The 10 structural language features that best predict DYMULTI-23 LF score. Each point in a row is a
language, with the x-value giving the average DYMULTI-23 LF score achieved for that language across 10 runs. Each
point is marked with a cross if the language contains the corresponding feature. Languages are grouped by family.

7The probability of 6 or more word order feature-value pairs being randomly selected is p= 0:0165 ,
calculated using the binomial distribution
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For more fine-grained analysis, we repeated this experiment considering just lan-
guages in the Balto-Slavic, Germanic and Italic sub-families. The results are presented in
Figure 11. Once again, six of the ten features are to do with word order. The Italic
languages have Noun-Adjective word order, whereas the Balto-Slavic and Germanic
languages have Adjective-Noun word order. There are also two phonological features
selected. The Italic languages all have ultimate or penultimate stress. Given that
DYMULTI-23 does not use a stress cue, this could explain the relatively low performance
on Italic languages; perhaps for these languages, with their relatively freer word order,
stress is a crucial cue for segmentation.

Correlating DYMULTI performance with information-theoretic measures
As the cues used by DYMULTI-23 are largely statistical, we decided to compare the
information-theoretic properties of each language.We calculated the followingmeasures:

• the unique number of phonemes in each transcript,
• the entropy of phoneme n-grams, and
• the conditional entropy of phoneme n-grams.

The first measure was chosen as one of the most basic metrics for phonological com-
plexity (Nettle, 1995). Historically, the number of vowels or the number of consonants
have also been used as count-based measures (Moran & Blasi, 2014). Count-based
measures are simple to calculate but do not consider the phonotactics of a language.
Entropymeasures capture the phonological complexity of each language according to the
predictability of the phonemes in that language, inherently capturing the nuanced

Figure 11. The 10 structural language features that best predict DYMULTI-23 LF score. Each point in a row is a
language, with the x-value giving the average DYMULTI-23 LF score achieved for that language across 10 runs. Each
point is marked with a cross if the language contains the corresponding feature. Languages are grouped by family,
considering only Germanic, Balto-Slavic and Italic languages.
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interactions that the count-based measures do not (Piantadosi et al., 2011; Pimentel et al.,
2020). When calculating these measures we use the target segmentation transcripts,
which include spaces, so across-word and within-word probabilities are both considered.

Figure 12 presents DYMULTI-23 LF scores plotted against the 3-gram conditional
entropy of each language transcript used. There is a strong negative correlation of -0.65.
This suggests that the more predictable a phoneme is within context, the more capable
DYMULTI-23 is of identifying boundaries.

Figure 13 gives the correlations between each information-theoretic measure and each of
the three F1-scores thatDYMULTI achieves. It is clear that the information-theoretic statistics
of each language are strongly linked to the performance of segmentation models. For Italic
languages, whose phonemes are not as predictable within context compared to Germanic
languages, additional cues such as stress may be required for successful segmentation.

Summary

In this section, we evaluated PHOCUS,MULTICUE and the newDYMULTI framework.
Our re-implementations of PHOCUS and MULTICUE achieved similar performance to
their original studies, successfully replicating their findings. We also found that our new
set of cues for MULTICUE significantly improves its performance.

Comparing DYMULTI to PHOCUS and MULTICUE, we found that the syllabic
nucleus significantly improved performance over MULTICUEmodels using the same set
of cues. The lexical recognition process also improved performance, but this was due to a
very fast initial learning period; performance actually decreased over time when αwas set
to 0.5 or 1. DYMULTI also outperformed prior work, including models that used batch
training or other weaker constraints.

Finally, we performed cross-lingual evaluation, which has not been done at this
scale for state-of-the-art segmentation models. This validated the performance of

Figure 12. 3-gram conditional entropies of each language transcript used in the study. Languages are grouped by
family and are plotted against the Lexicon F1-scores (LF) that DYMULTI-23 achieves in 10 runs over different shuffles
of the transcript for that language.
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DYMULTI-23, which outperformed PHOCUS-1S and MULTICUE-17 on 15 of 26 lan-
guages.We analysed the structural properties of each language and found that word order
features are predictive of DYMULTI-23 performance. We then performed information-
theoretic analysis of the language transcripts, finding several correlations between these
and the performance of DYMULTI-23 on these languages. Taken together, the above two
findings mean that for less predictable languages (which tend to have freer word orders),
additional cues such as stress may be needed for successful segmentation.

Discussion and Summary

In this study, we explored both boundary-finding and language modelling methods for
word segmentation, producing a new segmentation framework, DYMULTI, that com-
bines the powerful boundary decisions from the MULTICUE framework of Çöltekin &
Nerbonne (2014) with the lexical constraints of the PHOCUS-1S model of Blanchard
et al. (2010). In this section, we first consider the performance of DYMULTI with respect
to the different views of speech processing. We then discuss our re-implementations of
PHOCUS and MULTICUE and the novel benchmarking that we have carried out in this
study. Finally, we describe the limitations of this study and future directions, concluding
with the wider implications of this research.

Performance of DYMULTI

We presented two views of speech processing from the cognitive science literature.
The interactionist view states that speech segmentation is driven by lexical recognition.

Figure 13. Correlation scores between information-theoretic measures and the average F1-scores that DYMULTI-
23 achieves for each language across 10 runs.

Journal of Child Language 33

https://doi.org/10.1017/S0305000923000491 Published online by Cambridge University Press

https://doi.org/10.1017/S0305000923000491


The explicit view states that segmentation is purely a result of placing boundaries using
sub-lexical information, without making use of any lexical influences.

Our goal was to compare the language modelling and boundary-finding
approaches to solving the speech segmentation problem (which relate to these views
of speech processing) and to establish if combining these approaches would lead to
improvements in performance on transcriptions of child-directed speech. To achieve
this, we first reimplemented the PHOCUS models of Venkataraman (2001) and
Blanchard et al. (2010) and the MULTICUE models of Çöltekin & Nerbonne (2014)
and Çöltekin (2017). Bothmodels can make use of sub-lexical and lexical information,
but PHOCUS primarily uses lexical cues and MULTICUE primarily uses sub-lexical
cues. As such, these models corroborate the studies in the cognitive science literature
that find that children make use of sub-lexical and lexical cues for solving the word
segmentation problem.

Until this study, it was not possible to conclude whether sub-lexical and lexical cues
were complementary or alternative explanations for segmentation, as no model had been
designed thatwas able to efficiently combine lexical and sub-lexical cueswithout constraint.
Presenting the DYMULTI framework, we confirmed an improvement over PHOCUS and
MULTICUEmodels. This implies that sub-lexical and lexical cues are indeed complemen-
tary and that both can be helpful for solving the word segmentation problem.

We also found that DYMULTI-23 outperforms previous state-of-the-art systems for
segmentation on the BR corpus, including those that run over the corpus several times or
learn in batch. As DYMULTI makes use of cues found to be used by infants for speech
segmentation and builds on established, state-of-the-art models, this means that
DYMULTI is a good representation of how children may learn to segment speech and
begin to build their lexicon.

Novel benchmarking of state-of-the-art models

Besides presenting a new state-of-the-artmodel for segmentation, amajor contribution of
this study was the thorough benchmarking and replication of the PHOCUS andMULTI-
CUE frameworks. Replication is an important scientific discipline and few state-of-the-
art models have been re-implemented in prior work. Re-implementing these frameworks,
we achieved comparable results to their respective studies. Running MULTICUE-14
without the stress cue, we confirmed the result of Çöltekin & Nerbonne (2014) that it
increased performance. We also validated the finding of Blanchard et al. (2010) that the
syllabic nucleus constraint improves performance, using this as the core motivation for
the design of DYMULTI.

Despitemost studies in this field using the same corpus for evaluation, they all evaluate
their models differently, making cross-comparison difficult. This is also the case for the
PHOCUS and MULTICUE frameworks. For example, the PHOCUS studies do not
provide boundary scores and the MULTICUE studies do not provide the learning rates
of their models. In this study, we compared these models with a wide range of experi-
ments, including calculating average scores over the whole corpus, plotting learning rates
over time and performing novel cross-lingual evaluation. This is the first time these
models have been directly compared, producing a useful survey of the field. The cross-
lingual evaluation is particularly noteworthy, as few state-of-the-art models have previ-
ously been compared on more than two languages. This needs to become a regular
practice if the goal of these models is truly to understand how any language is acquired,
not just English.
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Limitations of child-directed corpora

One of the strengths of the DYMULTI framework is that it is much more flexible than
previous models as it can easily consider multiple boundary-based cues and lexical
processes. This allowed for the combination of phonotactic, utterance-boundary, lexicon
and stress cues derived from phonetic transcriptions of child-directed speech.

The BR corpus is the de-facto standard for evaluating such computational models, but it
has certain limitations. Containing only 9,790 utterances spoken by only nine speakers of
U.S. English from the east coast in 1987, it is not very representative of child-directed speech
in English and all its varieties, yet alone other languages. To validate our results, we ran
PHOCUS, MULTICUE and DYMULTI on corpora from 26 different languages.

Through this cross-lingual evaluation, we found that the models perform consist-
ently better on English than on most other languages. This is another limitation of
using a single corpus for cross-comparison, as it suggests that previous work may have
been biased towards performance on the BR corpus, producing models that perform
well on English at the expense of other languages. For example, Çöltekin & Nerbonne
(2014) found that including the stress cue decreased the performance of MULTICUE,
but this may only be the case for English. In our cross-lingual analysis we found that
DYMULTI-23 performs worse on Italic languages than Germanic languages. It may be
that with the freer word order and lower phonemic predictability of Italic languages,
stress cues play a more important role in segmentation. Using the DYMULTI frame-
work, this could be investigated in future work by experimenting with different cues
and implementing different lexical processes to see how these choices alter the
performance across languages.

Another limitation of these corpora is the fact that they represent speech as symbolic
phonemes. Not only could these transcripts be subject to translation error and bias, due to
the way they were automatically produced, but it is also unclear if infants have access to
phonetic categories at this stage in acquisition. There is increased awareness that infants
may not be forming phonetic categories until later in life (Feldman et al., 2021) and there
is mounting evidence that we do not fully collapse speech to discrete phonemic categories
for higher-level processing, as assumed by the “myth” of categorical perception (see
McMurray (2022) for a review). If infants do form categories, theymay even bemore fine-
grained and numerous than phonemes (Schatz et al., 2021).

In this study we used phonemes as our base unit, focusing on lexical and sub-lexical
cues, but it is clear that future work should consider incorporating sub-phoneme cues as
well. If a corpus containing continuous audio were used, these cues could be extracted,
providing allophonic variation and realistic stress information to the model. This was
attempted by Rytting et al. (2010), who used the raw audio associated with the Brent
corpus (which is not aligned with the phonemes in the BR corpus) to represent the input
stream as phone probability vectors, thus preserving phonetic variation. Unfortunately,
they do not make these vectors available, nor will their vectors necessarily align well with
the phonemes of the BR corpus (which were derived from the orthographic transcription
of the Brent corpus).

One child-directed speech corpus that does contain phonemic transcriptions aligned
with raw audio is the CAREGIVER corpus (Altosaar et al., 2010). However, the utterances
are scripted and the type-token ratio is only 0.002, much smaller than the 0.036 for the BR
corpus. In initial experiments we found that segmentation models that rely on seeing a
variety of phoneme combinations at boundaries struggle, resulting in very different
results than when run on actual child-directed utterances.
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Future work

Segmentation is a developmental process. English-learning infants display some ability to
segment words at 7.5 months of age and do not achieve adult-level performance until close
to 24months (Johnson& Jusczyk, 2001; Jusczyk, 1999). During this time, perceptual tuning
also occurs and infants’ sensitivity to the universal set of distributional cues narrows to a
native inventory (Liu & Kager, 2017). When we evaluate computational models of word
segmentation, it is important to note that we are not equating model performance with
infant performance. Instead, we treat such computationalmodels as idealised learners of the
distributional phonemic signal, with high performance indicating the utility of cues and
learning methods for segmentation, rather than directly predicting infant ability. If we had
proper corpora documenting the development of segmentation in infants over time, we
could use DYMULTI to create empirical predictions to test against this data.

There are many components of DYMULTI that could be expanded upon in future
work. One such component is the representation of utterances. Instead of individual
symbols, phonemes could be represented by features, such as the 11 phonetic features
used in the model of Christiansen et al. (1998). Language-specific, distributed represen-
tations could also replace phonemes, such as the learned acoustic embedding vectors used
in the models of Ma et al. (2016) and Kamper et al. (2016) or the probabilistic phone
vectors of Rytting et al. (2010).

Furthermore, as suitable corpora become available – such as the release of new ‘day long’
corpora in Homebank (VanDam et al., 2016), the number and quality of input cues can be
improved. Future work could also investigate semantic and multi-modal information that
parents may provide their children, such as deictic gestures towards images, joint attention
on entities in the environment or iconic gestures to demonstrate object shapes. It is likely
that with more cues available, performance would increase, improving our understanding
of language acquisition.With sufficient data, DYMULTI could even be used to explore how
statistical learning varies between individual children, rather than assuming learned
probabilities are similar across an entire population (Siegelman & Frost, 2015).

Future work should also seek to bridge the gap between models operating on phonemic
transcripts and those operating on raw speech signals. The latter continue to perform
significantly worse than the former — the top-performing model for the Zero Speech
Challenge (ZRC) series segmentation task achieves a token F1-score of only 19.2 on the
English portion of the TDE-17 test corpus, compared to 64.5 for the text-based topline
system provided by the task. In an effort to explain this gap in performance, Dunbar et al.
(2022) discuss how the higher granularity of analysis, the lack of invariant quantised
acoustic representations and the variability of speech rate all contribute. DYMULTI could
be run at a higher granularity of analysis, with features extracted directly from the speech
stream, to help bridge this gap. Many of the ZRC series models operate on 10ms frames,
which are much shorter than the average duration of a phoneme (about 70ms).

We also note that the ZRC series tasks evaluate their models on adult-directed speech
corpora, whereas traditional segmentationmodels have strictly required that the input data
be child-directed. Relaxing this requirement would help with the lack of suitable corpora,
help to bridge the gap between these two approaches and could lead to new revelations
about acquisition. Using hermodel, Fleck (2008) explored how infant speech segmentation
could be upgraded to adult speech segmentation. She did this by introducing a simple
syntactic process to prevent affixes from being segmented away from their stems, achieving
WF and LF scores of 80.3 and 41.5 respectively on the Buckeye corpus (Pitt et al., 2005). In
initial experiments, DYMULTI performs worse than Fleck’s model, withWF and LF scores
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of 69.9 and 40.6 respectively. Fleck hypothesised thatmodels for infant speech segmentation
may be segmenting morphemes, rather than words. Further work into DYMULTI could
implement a syntactic process such as Fleck’s to investigate this claim.

Conclusion

In this study, we presented the word segmentation problem and compared two state-of-
the-art models for speech segmentation; the PHOCUSmodels Venkataraman (2001) and
Blanchard et al. (2010), a language modelling approach to speech segmentation, and the
MULTICUE models of Çöltekin & Nerbonne (2014); Çöltekin (2017), a boundary-
finding approach. By re-implementing both models, we found that MULTICUE lacked
the ability to consider lexical-level processes and PHOCUS lacked the ability to combine
information from several cues. We created a new model, DYMULTI, which overcomes
both drawbacks by using the boundary decisions of MULTICUE and converting them to
scores that can be passed to the Viterbi algorithm of PHOCUS. In doing so, we achieved
state-of-the-art performance on the BR corpus. Evaluating the model cross-lingually, we
found that DYMULTI outperformed MULTICUE and PHOCUS on 15 of 26 child-
directed speech corpora from different languages, but also that all three models achieved
close to their best performance on English, suggesting possible research bias.

DYMULTI represents a flexible framework for exploring hypotheses related to the
word segmentation problem, efficiently combining lexical and sub-lexical cues. In this
study we have explored predictability, utterance and stress as sub-lexical cues, and a
syllabic nucleus constraint and lexical recognition as lexical cues. Such cues could be
enhanced with updated knowledge about infant speech cognition to produce a more
comprehensive model for speech segmentation. The framework can also be upgraded by
considering more nuanced representations of utterances, alternative cue-combination
algorithms and other cues for segmentation, once suitable corpora are available.

The impacts of DYMULTI and future research into child speech segmentation are
plentiful. UsingDYMULTI’s cue combination system, we can better our understanding of
which cues are relevant to segmentation, aiding segmentation in speech recognition
models. Adult speech segmentation could also be researched using DYMULTI, by
examining which cues are relevant by testing on adult-directed speech corpora and
adapting DYMULTI with new grammatical processes accordingly. Finally, this research
has contributed to the ever-growing understanding of language acquisition. By designing
segmentation models that perform well on child-directed speech, we can learn how
children first solve this task, thereby improving how we teach language to children in
the first place and how language disorders can be mitigated.
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