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Abstract
The incidence of type 2 diabetes mellitus (T2DM) is increasing worldwide, including in developing countries, particularly in South Asia.
Intakes of foods generating a high postprandial glucose (PPG) response have been positively associated with T2DM. As part of efforts to
identify effective and feasible strategies to reduce the glycaemic impact of carbohydrate-rich staples, we previously found that addition of guar
gum (GG) and chickpea flour (CPF) to wheat flour could significantly reduce the PPG response to flatbread products. On the basis of the
results of an exploratory study with Caucasian subjects, we have now tested the effect of additions of specific combinations of CPF with low
doses of GG to a flatbread flour mix for their impacts on PPG and postprandial insulin (PPI) responses in a South-Asian population. In a
randomised, placebo-controlled full-cross-over design, fifty-six healthy Indian adults consumed flatbreads made with a commercial flatbread
mix (100% wheat flour) with no further additions (control) or incorporating 15% CPF in combination with 2, 3 or 4% GG. The flatbreads with
CPF and 3 or 4% GG significantly reduced PPG (both ≥15% reduction in positive incremental AUC, P< 0·01) and PPI (both ≥28% reduction in
total AUC, P< 0·0001) compared with flatbreads made from control flour. These results confirm the efficacy and feasibility of the addition of
CPF with GG to flatbread flour mixes to achieve significant reductions in both PPG and PPI in Indian subjects.
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There is a growing global epidemic of type 2 diabetes
mellitus (T2DM), especially in developing countries such as
India(1). Consequently, there is considerable public health and
consumer interest in taking steps to reduce this risk. Continuous
exposures to higher postprandial glucose (PPG) and post-
prandial insulin (PPI) responses are believed to be detrimental
to health, contributing towards an increased risk for (pre)dia-
betes(2). There is a wealth of literature showing that reducing
PPG (by slowing rates of digestion and reducing bioavail-
ability)(3) has benefits for reducing the progression from
pre-diabetes to T2DM(4–6) and the risk for CVD(7,8).
A lower PPI requirement may also be beneficial in the short

and longer term. Consistent with this, the European Food Safety
Authority has recognised that the reduction of postprandial
glycaemia may be a beneficial physiological effect, but only if
PPI is not disproportionally increased(9).
Because of their frequent and consistent use, carbohydrate-

rich staple foods are interesting candidates for reducing PPG
and PPI exposures(10). Wheat-based flatbreads and rice are the

two most common carbohydrate-rich staple foods in Southeast
Asia(11), making them important contributors to the daily
glycaemic load. Flatbreads are usually prepared at home from
a commercially made whole-wheat flour mix (‘atta’). Chickpea
flour (CPF) and bran-fibre flatbreads are especially advised for
subjects with T2DM for whom rice is considered less desirable
because of its high glycaemic index(12). Therefore, commer-
cially viable, efficacious routes to further reduce the PPG
response to flatbreads are of interest.

Soluble viscous fibres can lower PPG(13) by delaying gastric
emptying(14,15) and inhibiting the propulsive and mixing effects
in the intestine(16,17). In addition, legume flours such as CPF are
known to give a lower plasma glucose response than wheat
flours(18). Previous research has shown that soluble viscous
fibres (viz. β-glucan, psyllium and fenugreek) with or without
legume flour can lower the PPG(12,19,20) or PPI(12) of flatbreads.

The emphasis of this study was on commercially feasible
products. We(21) previously selected and tested various
additions of guar gum (GG), konjac or CPF to flatbreads in

Abbreviations: BF, barley flour; Cmax, maximum observed glucose response; CPF, chickpea flour; GG, guar gum; PPG, postprandial glucose; PPI, postprandial
insulin; +iAUC2h, positive incremental AUC2 h; tAUC, total AUC.
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Caucasian subjects. In that study, the composition with 4% GG
in combination with 15% CPF resulted in the largest absolute
reduction in PPG and could therefore be considered a ‘positive
control’ for future studies. However, GG is expensive, and
product development work showed that it created a poor
product with respect to sensory attributes (dough handling,
texture, aroma). Lower amounts of GG (2 or 3% GG) in com-
bination with 15% CPF and additions of 3 and 5% (respectively)
barley flour (BF) made more acceptable and affordable
products(22), and these have been used in this trial, alongside
the 4% GG and 15% CPF. The reason for including different
amounts of BF is that higher amounts of GG benefit from more
BF in helping to mask the GG flavour and make a more
consumer-acceptable product. The present study aims to con-
firm the efficacy of the combinations with 2 and 4% GG, which
were reported in the previous study (both with a significant
effect), and to further extend this work to the Indian population.
The level of added BF contains only small amounts of viscous
fibres ((≤250mg) of barley β-glucan) and is unlikely to influ-
ence efficacy(23). The control product was a market standard
commercial wheat flour-based product (8% dietary fibre),
whereas the test products were based on an alternative, com-
mercially available, high-fibre atta flour (with 5% wheat bran
included; 12% dietary fibre). In our previous study, we did not
see any effect on PPG between the market standard and high-
fibre atta products(21). For the present study, the higher fibre
atta was deemed a more appropriate (commercially realistic)
platform for further additions of fibre, and these complete
formulations were then compared with the usual, ‘standard’
atta product.
The objectives of this study were to identify one or more flour

compositions that give a significant reduction in PPG and PPI
after consumption, relative to the market standard product.
Exploratory objectives were to estimate the maximum observed
glucose response (Cmax), the time at which the Cmax was
reached (Tmax) and slope to Cmax and glucose and insulin
concentrations at 3 h. As soluble viscous fibres and CPF are also
claimed to increase satiety(24,25), an additional exploratory
objective was to assess possible effects on appetite-related and
mood parameters. To our knowledge, this is the first study
testing such commercially feasible combinations of soluble
viscous fibres and legume flour in flatbreads on the combined
PPG and PPI response in a Southeast Asian population.

Methods

Participants

A total of eighty-seven healthy South-Asian subjects were
recruited locally for screening from an existing database of
potential participants of Lambda Therapeutic Research,
which executed the study. Subjects who met all the inclusion
criteria and had none of the exclusion criteria were considered
for participation (online Supplementary Table S1). The study
was conducted according to the principles of Good Clinical
Practice, the Declaration of Helsinki (2008) and according to
applicable local laws and regulations concerning studies con-
ducted on human subjects. Ethical approval was obtained from

Ethical Committee-Aditya. Each participant provided written
informed consent for the study.

Experimental design

This study used a double-blind, randomised, controlled, full-
cross-over (within-subject) design. Treatment orders were
balanced according to a Williams-type design, and a rando-
mised schedule for allocation to treatment orders was generated
with SAS software (version 9.2; SAS Institute Inc.) by a statisti-
cian not involved with subject contact or subsequent data
analyses. All subjects involved in the study were blinded as to
the nature of the test products. Subjects attended the initial
screening day, followed by 4 d of test, at least 1 week apart.
Participants were instructed to minimise changes in their habi-
tual diet and activity during the study period. On the day prior
to each test day subjects were instructed to refrain from physical
activity and alcohol consumption and to consume a standard-
ised evening meal. All participants fasted overnight (from
20.00 hours until consumption of the test product) but were
allowed to drink water ad libitum. Participants were housed at
the test centre the evening before the study day. Between 07.30
and 10.00 hours on each test day, subjects consumed four
freshly made flatbreads (100 g flour total) with 250ml water as
breakfast, and completed this within a 15-min period at every
visit at the same time and day of the week. They were allowed
to drink up to 150ml water every subsequent hour, to be
consumed after venous blood drawings and self-reported
appetite and mood ratings. The volume of water consumed
was registered.

Test product and preparation

The three wheat flour-based test products constituted a total of
100 g (uncooked flour weight) of an existing commercial, fibre-
enriched flatbread high-fibre flour (Annapurna; Hindustan
Unilever Ltd), comprising whole-wheat flour plus 5% bran and
the incorporation of 15 g CPF, 2, 3 or 4 g GG and 3 or 5 g BF/
100 g in combinations shown in Table 1. A ‘market standard’,
Annapurna Atta (100% wheat flour), was used as the control.

All experimental flour mixes were formulated at the pilot
plant of Unilever R&D, Bangalore, India, and flatbreads were
prepared fresh at the test site. For each single test serving, 100 g
flour was kneaded to a soft and uniform consistency with the
addition of approximately 77ml water and allowed to rest for
30min, and then divided into four equal balls of 40 g each and
rolled to 2–3mm thickness. More water was added and absor-
bed when fibres or legume flour was incorporated (see
Table 1). The flatbreads were subsequently baked and kept
warm until consumption within 30min of cooking.

Blood collection and glucose and insulin measurements

Venous blood was collected in tubes containing sodium fluor-
ide for plasma glucose analysis and in plain tubes (without any
additive) for serum insulin samples. Baseline samples were
collected at −15min (two baseline measurements) prior to the
test meals, followed by samples at 15, 30, 45, 60, 90, 120 and
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180min postprandially. Two consecutive samples were
collected at each time-point for plasma glucose and serum
insulin analyses. All serum samples were centrifuged (192g for
10min at 4°C) prior to immediate analysis or storage at −20°C.
Plasma glucose concentrations were measured on VITROS®

5,1 FS, Ortho Clinical Diagnostics (Johnson & Johnson) (intra-
(within-) day %CV: 0·6% and between- (inter-) day %CV: 0·7%).
Insulin was measured using an immulite 1000® analyzer
(Siemens Diagnostics) (intra- (within-) day %CV: 2·6% and
between- (inter-) day %CV: 4·3%).

Measurement of appetite and mood

Self-ratings of appetite feelings and mood (‘are you feeling
hungry?’, ‘do you desire to eat?’, ‘are you feeling energetic?’ and
‘are you feeling happy and contented?’) were made at baseline
(before consumption) and 25, 40 and 135min postprandially.
The questions were asked in a language that the subjects
understood. These were scored on 100mm visual analogue
scales anchored at the low and high end with ‘not at all’ and
‘extremely’(26).

Statistical methods

The primary outcome variable was positive incremental AUC2h

(+iAUC2h): that is, the area of PPG response lying above the
baseline concentration. A power calculation indicated that a
minimum of forty-four subjects would be required to test for the
significance of a 40mmol×min/l difference in PPG+ iAUC2h

for each test product relative to the control. This assumed an SD

of 50 (based on a previous study in the UK(21) adjusted for
venous v. capillary blood), at α 0·05 and β 0·90, where α is
conserved over the three comparisons with the control by
Dunnett’s test. Considering the Williams design for four treat-
ments and the experience of dropouts at the test site, twelve
additional subjects were included to make the initial sample
size of n 56.
The +iAUC2h was calculated using the trapezium rule, and

linear interpolation was used between time points where PPG
crossed the baseline value to establish the time of crossing.
Statistical comparisons were made using a mixed-model
ANOVA, with subject as a random effect, product as a fixed
effect and baseline (fasting score) as a covariate. The order of
product testing, sex and body weight were all included as
covariates. Comparisons were only made between the control
and other test products, and Dunnett’s test was used to adjust

the multiple comparisons to an overall significance level of
0·05. All analyses were performed with SAS version 9.2. The
secondary variable was total AUC2h (tAUC2h) for serum
insulin. Exploratory variables included mean value at 3 h for
serum insulin, maximum post-meal plasma glucose concentra-
tion (Cmax), time when this was reached (Tmax), and mean
value at 3 h for plasma glucose, tAUC2h glucose and self-
reported scores on the two appetite- and two mood-related
measures. The AUC for appetite- and mood-rating scales
were calculated using the trapezium rule and expressed as
the original scale units by dividing with the length of time
measured. There were no pre-planned statistical analyses of
exploratory measures and therefore only descriptive statistics
are presented for these.

Results

Subject baseline characteristics

From an initial eighty-seven subjects screened for participation,
fifty-six were enrolled and fifty (twenty-five male and twenty-
five female) completed the study, with all dropouts occurring
prior to the start or after the first test session (Fig. 1).
The baseline characteristics of participants are shown in
Table 2(a) and separately by sex in Table 2(b). Differences
between results of the intention to treat (ITT) and per protocol
(PP) analysis were small regarding both effect sizes and
statistical significance. However, the PP results are shown
and discussed here, as the current study was a proof-
of-principle study (study of efficacy). For completeness
and transparency, the ITT data are available in the online
Supplementary material.

Postprandial plasma glucose concentrations

The PPG response curves are shown in Fig. 2, percentage
differences in plasma glucose +iAUC2h v. control are shown in
Fig. 3, and the absolute values and percentage difference are
given in Table 3. All three test products resulted in a reduction
in the postprandial +iAUC2h, relative to the control market
standard flatbread, and this difference was statistically sig-
nificant for samples containing 3 and 4% GG (both P< 0·01).
The data suggest a general dose–response reduction in
+iAUC2h with 2, 3 and 4% GG relative to control; however,
this was not tested statistically as no comparisons between
treatments were made.

Table 1. Composition of test flatbreads + carbohydrates (carbs) and dietary fibre (g) and water (w/w%)

Compositions Total available carbs (g) Total dietary fibre (g) (AOAC 2009.8) Water (w/w%)

100 g market standard flour 65 8 37·2
80 g HFF+15g CPF* + 2g GG†+3 g BF‡ 56 16 40·6
77 g HFF+15g CPF+3g GG+5g BF 54 17 42·2
81 g HFF+15g CPF+4g GG 53 18 42·4

AOAC, Association of Official Analytical Chemists; HFF, high-fibre flour; CPF, chickpea flour; GG, guar gum; BF, barley flour.
* Chickpea flour (Avent Agro Pvt Ltd).
† Guar gum (Ace Gum Industries Pvt Ltd); viscosity cold 1% in water, measured by a Brookfield RVF viscometer 20-RPM Spindle no. 4 (Brookfield

Engineering Laboratories, Inc.), at 30min: 4500mPa s, at 2 h 5400CPS and 24h: 5500mPa s.
‡ BF (Cardin Healthcare Pvt Ltd).
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Postprandial serum insulin concentrations

Data for serum insulin (tAUC) can be found in Fig. 4 and 5 and
Table 4. All three test flatbreads significantly and markedly
lowered postprandial total PPI tAUC2h compared with the
control flatbread (P< 0·0001 for all). In addition, the data sug-
gest a dose–response effect, but this was not tested statistically.

Exploratory outcomes

tAUC, Cmax, Tmax, 3 h plasma glucose data and slope to Cmax

data are shown in the online Supplementary Tables S2(a)
and (b). All treatments resulted in lower mean Cmax and slope to
Cmax values compared with the control, whereas Tmax and
plasma glucose at 3 h were in general little different from that of
the control. Data for serum insulin (+iAUC) can be found in the

online Supplementary Fig. S1. Serum insulin concentrations at
3 h were consistently lower for all three experimental products
relative to the control (see online Supplementary Table S3).
No reliable effect of the experimental treatments could be
discerned for the appetite or mood measures (online Supple-
mentary Fig. S2(a) and (b), S3(a) and (b)).

Adverse events

One adverse event (AE) was reported during the conduct of the
study. A female subject vomited after consuming the product
with 4% GG and 15% CPF on her 1st test day. This AE was
resolved within 30min without requiring any medical treatment,
and the subject was excluded from the rest of the study.

Discussion

This study clearly shows that a commercially feasible, high-fibre
formulation including the addition of small amounts of GG in
combination with CPF lowers the PPG and PPI responses to
flatbreads in an Asian population, relative to a commercial
‘market standard’ flour mix. This finding builds on the outcome
of our initial exploratory study with Caucasian subjects(21) in
which four combinations of flour and fibre mixes decreased the
+iAUC by >30%. The composition with 4% GG and 15% CPF
from that study was carried along as ‘positive control’, as it
resulted in the largest absolute reduction in PPG(21). However,
this amount of GG has adverse impacts on cost, dough handling
and aroma, and therefore lower levels of GG were needed. Our
research is in line with reports demonstrating that other staple
flatbread foods in India (chapattis, naan, rotis) containing
dietary fibres and/or legume flours lower the PPG response
after a meal(12,19,20). A novel result is the demonstrated efficacy
both on PPG and PPI reduction of the combination of CPF with
lower levels of GG and BF in Asians, as efficacy of this
combination previously had been shown only in Caucasians
and only on PPG reduction(21). This suggests the potential for
affordable, efficacious formulations with lower levels of GG.

Table 2a. Subject baseline demographic characteristics
(Mean values and standard errors of the mean)

Mean SEM

Age (years) 29·16 0·71
Sex (% male) 53·57
Height (m) 1·59 0·01
Body weight (kg) 52·57 0·81
BMI (kg/m2) 20·77 0·20
Fasting blood glucose (mmol/l) 4·89 0·03

Assessed for eligibility (n 87)
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Randomised (n 56)

Excluded (n 31):

Decided not to participate (n 17)
Medical reason (n 2)
Required number of subjects needed met (n 12)

Dropped out before run-in (n 0)

Lost to follow up (n 0)
Discontinued intervention (n 6)

(reason: personal (n 2), alcohol positive (n 2),
not traceable after visit 1 (n 1), vomiting on visit
1 (n 1)

Control
(n 50)

15 % CPF + 2 % GG + 3 % BF
(n 50)

15 % CPF + 3 % GG + 5 % BF
(n 50)

15 % CPF + 4 % GG
(n 51)

Fig. 1. Flow diagram of participants throughout the study. CPF, chickpea flour; GG, guar gum; BF, barley flour.

Table 2b. Subject baseline demographic characteristics by sex
(Mean values and standard errors of the mean)

Male (n 30) Female (n 26)

Mean SEM Mean SEM

Age (years) 27·33 1·05 31·27 0·75
Height (m) 1·66 0·01 1·51 0·01
Body weight (kg) 56·21 0·94 48·36 0·76
BMI (kg/m2) 20·48 0·28 21·11 0·27
Fasting blood glucose (mmol/l) 4·87 0·05 4·90 0·04
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Although there was a trend for a dose–response effect
observed for the additions of 2, 3 and 4% of GG alone on PPG
(+iAUC2h), the effects were statistically significant only for
3 and 4% GG compared with the control product. It seems that
addition of 2% GG may be too low to have a consistently
meaningful effect related to the effect size on PPG in this
food format. Brennan(27) calculated that 2·5% GG lowered the
predicted glycaemic index (PGI) in bread by 4%, whereas 5%
GG reduced the PGI by 13%. There was also an indication of a
dose–response effect on the Cmax. Other studies have shown
the efficacy of GG (ranging from 3·8 to 14·8 g GG) incorporated
into bread for lowering PPG in Caucasians, and these showed a
greater reduction in PPG than the outcomes here(28–31).
GG has been found to exhibit viscous characteristics

throughout gastric and small intestinal simulation(27), leading to
reductions in the rate of gastric emptying and starch digestion
and absorption in the intestine, resulting in a lower PPG and
insulin response(13). GG and some other fibres can even directly
inhibit digestive enzymes(32,33). On the product level, viscous
fibres can also alter the rheological and/or microstructural
properties of the food, resulting in reduced ability of the starch
to gelatinise during cooking(34). Scanning electron microscopy
has shown that GG included in bread forms a dense,
continuous network in which protein, dietary fibre and starch

are embedded(27). This dense network was found to be
retained after 300min of in vitro digestion, while the majority of
the structure of a control bread (without GG) had been
degraded(27).

It is possible that the small amounts of added BF might
also have influenced the outcomes of this study. However, it
appears that 4 g of processed barley β-glucan is the minimum
required dosage to get a meaningful PPG-lowering effect
with respect to effect size(23). The dosages used in this study (3
and 5 g BF containing 5% (≤250mg) of barley β-glucan) are
therefore very unlikely to have meaningfully affected the
efficacy.

It is also possible that the addition of CPF contributed to the
lower PPG. Replacement of wheat flour by CPF can lower the
PPG because of its higher content of resistant starch(35) and high
concentration of slowly digestible starch(36). Zafar et al.(37)

showed that supplementation of whole-wheat bread with at
least 35% CPF significantly reduced the glycaemic response of
whole-wheat bread, whereas Johnson et al.(38) observed this in
white bread.

A lower PPI requirement may also be beneficial in the short
and longer term. In the short term, a lower insulin response
prevents hypoglycaemia and inappropriate increases of free
fatty acids and stress hormone concentrations(39–41), which are
often seen during the late postprandial period after consump-
tion of refined carbohydrates(42). Regular consumption of diets
with a low PPI response – for example, rye-pasta diets – may
also benefit individuals with impaired first-phase insulin secre-
tion (first 10–30min) by allowing β-cell function to recover,
leading to improved pancreatic β-cell function in the long
term(43). Higher PPI and fasting insulin concentrations are
positively associated with CVD risk factors such as blood
pressure, total cholesterol and LDL-cholesterol(44). In addition,
insulin resistance and postprandial hyperinsulinaemia are
related to impaired arterial relaxation, which is an independent
predictor of CVD(45).

We found that all three test flatbread flour mixes significantly
and markedly reduced PPI levels relative to the control. The
reason for the lower PPI response of the test flatbreads with
fibre and flour mix is probably a slower glucose absorption in
the blood, resulting in a reduced stimulation of the entero-
insular axis, notably the incretin gastric inhibitory polypeptide
(GIP), the secretion of which is directly related to the rate and
site of absorption of glucose(46–48). It has also been observed
that GG in bread directly lowered the GIP response(29).
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Fig. 2. Effect of flatbread consumption with different amounts of guar gum
(GG) (2–4%) and 15% chickpea flour (CPF) on postprandial plasma glucose.
Values are means and standard errors of the mean. , Market standard; ,
high-fibre flour (HFF) + 15 g CPF+2 g GG+3g barley flour (BF); , HFF+15 g
CPF+3g GG+5g BF; , HFF+ 15g CPF+4 g GG.

HFF + 15 g CPF + 2 g GG + 3 g BF

HFF + 15 g CPF + 3 g GG + 5 g BF

HFF + 15 g CPF + 4 g GG

–30 –25 –20 –15 –10 P

–30 –25 –20 –15 –10

0.0676

0.0092

0.0007

Fig. 3. Percentage change (mean values and standard errors of the mean) in postprandial glucose (positive incremental AUC2h (+iAUC2h)) of flatbreads with different
amounts of guar gum (GG) (2–4%) and 15% chickpea flour (CPF) and P value relative to the control. HFF, high-fibre flour; BF, barley flour.
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Khawaja et al.(12) showed that flatbread containing bran
resulted in a lower PPI response than flatbread without bran
(19·3 and 8·6 g dietary fibre, respectively) in healthy Asians as
well as in Asians with T2DM, but our products did contain
lower amounts of bran (8 and 12 g for the market standard and
high fibre, respectively). Previous reports have demonstrated
that supplementation of bread with GG results in a substantially
lower PPI(28–30,49).

The contribution of CPF to the reduced PPI is not clear, as
studies on the effect of chickpeas on PPI have yielded mixed
results. Nestel et al.(36) showed in healthy subjects a serum
insulin reduction of 55% at 30 and 60min after consumption of
mashed chickpeas compared with a wheat-based meal(36),
whereas Johnson et al.(38) reported an insulin increase of
+iAUC of 32% when 24% of the wheat flour was replaced by
CPF(38). This discrepancy can be explained by the fact that fine
grinding of legumes (as is the case for CPF) disrupts the
cell structure and renders starch more readily accessible for
digestion(50).
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Fig. 4. Effect of flatbread consumption with different amounts of guar gum
(GG) (2–4%) and 15% chickpea flour (CPF) on postprandial serum insulin.
Values are means and standard errors of the mean. , Market standard; ,
high-fibre flour (HFF) + 15g CPF+2 g GG+3g barley flour (BF); , HFF+15 g
CPF+3g GG+5g BF; , HFF+15 g CPF+4g GG.

–45 –40 –35 –30 –25 P

–45 –40 –35 –30 –25

HFF + 15 g CPF + 2 g GG + 3 g BF

HFF + 15 g CPF + 3 g GG + 5 g BF

HFF + 15 g CPF + 4 g GG

<0.0001

<0.0001

<0.0001

Fig. 5. Percentage change (mean values and standard errors of the mean) in postprandial insulin (total AUC2h (tAUC2h)) of flatbreads with different amounts of guar
gum (GG) (2–4%) and 15% chickpea flour (CPF) and P value relative to the control. HFF, high-fibre flour; BF, barley flour.

Table 4. Insulin total AUC0-2h (tAUC0-2h) (per protocol data)
(Mean absolute and percentage difference from control; mean values + /− SEM)

Insulin tAUC0-2h (control: 3143.02 μIU/l.min)

Absolute (μIU/l.min) Difference (%)

Mean SEM Mean SEM

Flatbread compositions
80 g HFF+15 g CPF+2g GG+3g BF −875.42** 143.91 −27.85** 4.58
77 g HFF+15 g CPF+3g GG+5g BF −1117.30** 143.73 −35.55** 4.57
81 g HFF+15 g CPF+4g GG −1398.20** 141.79 −44.48** 4.51

HFF, high fibre; CPF, chickpea flour; GG, guar gum; BF, barley flour.
Statistically significant: **P≤0.0001.

Table 3. Glucose positive incremental AUC0-2h ( + iAUC0-2h) (per protocol data)
(Mean absolute and percentage difference from control; mean values + /− SEM)

Glucose + iAUC0-2h (control: 104.9 mmol/l.min)

Absolute (mmol/l.min) Difference (%)

Mean SEM Mean SEM

Flatbread compositions
80 g HFF+15g CPF+2g GG+3g BF −17.21 7.66 −16.4 7.30
77 g HFF+15g CPF+3g GG+5g BF −22.54* 7.53 −21.5* 7.18
81 g HFF+15g CPF+4g GG −28.33* 7.49 −27.0* 7.13

HFF, high fibre; CPF, chickpea flour; GG, guar gum; BF, barley flour.
Statistically significant: *P<0.01.
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No reliable effect on self-reported appetite ratings was
apparent for the fibre and CPF mixes used here or in our previous
study(21). Other research suggests that changes in plasma
glucose(51,52) or insulin per se(52,53) may have limited effects on
appetite. In addition, Clark & Slavin(54) concluded in a systematic
review that most fibres do not reduce appetite in acute study
designs. Nevertheless, there are several reports of enhanced
satiety effects associated with the addition of legumes or specific
fibres to foods and beverages(24,25). Unfortunately, the levels of
viscous fibres needed to influence appetite may be incompatible
with desired sensory attributes of many products(55).
Comparison of the PPG results with those from our previous

study(21) shows that the addition of CPF + 4% GG reduced PPG
by approximately 28% in this study and by approximately 35%
in the previous study against slightly different control products;
however, the effect here for addition of 2% GG (approxi-
mately 16%) was much lower than previously observed
(approximately 33%). One of the key differences between the
two studies is the use of venous blood here, in contrast to
capillary blood in the previous study. Venous blood gives
a lower PPG response compared with capillary blood (factor
0·67)(56,57) and this was reflected in the absolute effect size for
which the study was powered. The lower PPG values in this
study could also be due to a better handling of the glycaemic
carbohydrate load in this Indian population (e.g. higher insulin
sensitivity), possibly related to the rather low BMI and age
range of the subjects. Nevertheless, all the test mixes in the
current study gave at least 15% reduction in PPG+ iAUC, an
effect size that we believe to be a reasonable benchmark for
a physiologically meaningful effect in a general population.
Although this is a subjective judgement, there does not seem to
be any threshold for beneficial effects of lowering PPG in
reducing CVD risk(58). Furthermore, there are intervention
studies with the PPG-lowering drug acarbose indicating that this
level of reduction is possible and linked to a more effective
endogenous insulin secretion effect(59).
While this research confirms the effect of specific, commercially

feasible flour/fibre mixes in decreasing the PPG and PPI
responses, further research should focus on the mechanism of
action (MoA). One of the supposed MoA is a delayed entry of
glucose in the systemic circulation originating from starch, largely
due to the viscosity generated by GG in the gastrointestinal tract.
However, the slow influx of glucose can only be determined by
the dual(60) or triple stable isotope technique(61). In addition,
incretin and glucagon measurements should be included in future
studies to better characterise the overall nature of the physio-
logical responses to these kinds of fibre and flour mixes.

Conclusions

Together with our previous research(21) we have demonstrated
that flatbread flour mixes incorporating a combination of GG
and CPF can produce statistically significant reductions in PPG
and PPI responses. The data suggest a dose–response effect at
low levels of GG addition, although this would need to be
confirmed. However, these additions do not appear to influ-
ence postprandial appetite or mood-related parameters. The
results suggest that these additions to commercial flatbread

flour mixes could be an efficacious and feasible approach to
achieve reduced PPG and PPI responses to such starchy staples
in both Caucasian and Southeast Asian populations.
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