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Abstract. We consider an embedded modular curve in a locally symmetric space M attached
to an orthogonal group of signature (p, 2) and associate to it a nonholomorphic elliptic mod-
ular form by integrating a certain theta function over the modular curve. We compute the
Fourier expansion and identify the generating series of the (suitably defined) intersection num-
bers of the Heegner divisors in M with the modular curve as the holomorphic part of the mod-
ular form. This recovers and generalizes parts of work of Hirzebruch and Zagier.
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1. Introduction

In their celebrated paper, Hirzebruch and Zagier [7] show that the intersection num-
bers of certain algebraic cycles on a Hilbert modular surface S occur as the Fourier
coefficients of holomorphic modular forms on the upper half plane H. They expli-
citly compute the intersection numbers of certain curves 7T both in S and at the
resolution of the cusp singularities. By direct computation, they then show that these
numbers are Fourier coefficients of modular forms.

These results have inspired numerous other people to look at geodesic cycles in
other locally symmetric spaces and their relationship to modular forms. Here the case
SO(2, q) was of particular interest and was studied by Oda [19], Rallis and Schiffmann
[20], Kudla [9] and, recently, by Borcherds [1, 2] and Bruinier [3, 4].

Starting in the late 1970s and throughout the 1980s, Kudla and Millson (see, e.g.,
[14]) carried out an extensive program to explain the work of Hirzebruch—Zagier
from the point of view of Riemannian geometry and the theory of reductive dual
pairs and the theta correspondence. Under some restrictions, they vastly generalize
the results of [7] to orthogonal, unitary, and symplectic groups of arbitrary dimen-
sion and signature. Tong and Wang ([24]) ran a parallel program.
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Currently, Kudla, Rapoport and Yang undertake a major investigation of the
occurrence of arithmetic intersection numbers in certain moduli spaces as Fourier
coefficients of modular forms, see, e.g., [11].

This paper deals with the case of the real orthogonal group of signature (p, 2).

Before we state our results, we need to establish the basic notions of the paper. Let
(V(Q), g) be a rational quadratic space of dimension p + 2 and signature (p, 2) and
let (, ) be the associated nondegenerate symmetric bilinear form on V(Q). We have
(v, w) = g(v+ w) — q(v) — g(w). We let G = Spin(V(Q)) viewed as an algebraic group
over Q and write D = G(R)/K for the associated symmetric space, where K is a max-
imal compact subgroup of G(R). It is very well known that D is of Hermitian type of
complex dimension p; for example, for p =1, D ~ I, the upper half plane, and
D ~ T x H for p = 2. We identify D with the space of two-dimensional subspaces
of V(R) on which the bilinear form (,) is negative definite:

D>~{zc V(R):dimz=2 and(,)|, <0}. (1.1)

Let L C V(Q) be an integral Z-lattice of full rank, ie., L C L¥, the dual
lattice, and I" be a congruence subgroup of G preserving L (in the main body of
the paper we will allow a congruence condition as well). We write M =T'\D for
the attached locally symmetric space of finite volume. We construct special cycles
in M as follows. Let U C V be a positive definite subspace of V' of any dimension
0 <n<p. Weput

Dy={zeD:zc U'}; (1.2)

so Dy is a complex submanifold of the (same) orthogonal type O(p — n, 2) and codi-
mension n. We can naturally identify Spin(Ut) ~ Gy, where Gy is the pointwise sta-
bilizer of U in G. We put I'y = I' N Gy and define the special cycle

Cy =Ty\Dy. (1.3)

The map Cy — I'\D defines an algebraic cycle in M and is actually an embedding if
one passes to a suitable subgroup I'" C I' of finite index (see [14]). For x € V(Q)", we
denote by U(x) the subspace generated by x (of possibly lower dimension) and set
D, = Dy(y and C, = I',\D,. We will be mainly concerned with the case n = 1, when
the special cycles are divisors. For N € N, I' acts on Ly = {x € L : g(x) = N} with
finitely many orbits, and we define the composite cycle

Cv= ) C. (1.4)
xel'\Ly

We call Cy the Heegnerdivisor of discriminant N. For p = 1, Cy is the collection of

Heegner points of discriminant N in a modular (or Shimura) curve, while for p = 2,

Cy is a Hirzebruch-Zagier curve Tn([7]) in a Hilbert modular surface (if the Q-rank
of Gis 1).

Kudla and Millson explicitly construct (in much greater generality) a theta func-

tion 0y(t, L) =) .., @(x,7) (t = u+ iv € ) with values in the closed differential
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(1, 1)-forms of M attached to a certain Schwartz function ¢ = ¢, on V(R) (In Sec-
tion 2, we review this theta function in more detail). They then consider

IQ(T,C)=/C0¢,(T, L), (1.5)

the integral of 0,,(t, L) over a compact curve C. I,(t, C) turns out to be a holomorphic
modular form of weight (p + 2)/2, whose Nth Fourier coefficient is given as the
(cohomological) intersection number of C with the composite cycle Cy. This gives
analogues of the original results of Hirzebruch—Zagier in a much more general set-
ting, but actually does not contain their work as they consider the intersection num-
bers of (in general) noncompact cycles. It therefore seems quite naturally to study the
theta integral (1.5) for possibly noncompact curves C. We study the theta integral
1,(t, C) in the noncompact case, where we restrict our attention to the special curves
Cy, with U positive definite of dimension p — 1, i.e. to embedded quotients of mod-
ular curves in M. This leads to considerable complications because in [14] the
assumption that C be compactly supported is quite essential and needed at several
places; for example, to guarantee the convergence of the integral (1.5), to show
the holomorphicity in 7 € H, and to verify the vanishing of the negative Fourier
coefficients.

In Section 3 we consider the case p = 1 when M ~ I'\It] is itself a modular curve,
i.e., Vis isotropic, and study the integral I,(t, M) = fM 0,(t, L). Note that the cusps
of M correspond to the I'-equivalence classes of isotropic lines £ in V. Our main
result is then that the generating series P(t) = > n_,deg(Cn)g" of the degree of
Heegner points in M is the holomorphic part of a nonholomorphic modular form
of weight 3/2. Here

deg(Cy)= )

for N > 0,
xel"\LN| x|

while for N = 0 we put deg(Cy) = vol(M). More precisely:

THEOREM 1.1.
—1/2

4

v

/ 0y(t, L) = P(t) + > €. L)Y pdndi; N*v)g~ %
M

cusps ¢ NeZ,

is a nonholomorphic elliptic modular form of weight 3/2. Here (£, L, ') denotes the
‘width’ of the cusp £ of T (see Def. 3.2), d € N square-free, the discriminant of the
quadratic space V, kg the smallest k € N such that L_y2, =1{x€ L_go:x L £} is

nonempty, and B(y) = B3,,(y) = [ 173 dr.
For example, specializing to a certain lattice in the quadratic space of discriminant

1, we recover Zagier’s [25] well-known Eisenstein series F of weight 3/2 as a theta
integral. One has
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—1/2

v A2
4 2 —2niN-t 1.
= NE p(4nN-v)e : (1.6)

f(‘C) — Z H(N)eZninr +
N=0

where H(N) denotes the class number of positive definite binary quadratic forms of
discriminant —N?. From this perspective, we can consider Theorem 1.1 on one hand
as a special case of the Siegel-Weil formula expressing the theta integral as an Eisen-
stein series, and on the other hand as the generalization of Zagier’s function to arbi-
trary lattices of signature (1, 2).

COROLLARY 1.2. [, 0,(t,L)—4%", Vdkee(e, L, I')F(dk?t) is a holomorphic
modular form. Hence, #(I'\Ly) can be expressed in terms of class numbers and Fourier
coefficients of a holomorphic modular form.

We also would like to mention the results of [15], where it was shown that the gen-
erating series of the degree of certain O-cycles in an arithmetic curve (namely, the
moduli scheme of elliptic curves with complex multiplication over the ring of integers
of an imaginary quadratic field) is the holomorphic part of a non-holomorphic mod-
ular form of weight 1. Here the negative Fourier coefficients involve the function
L) = [, 1°° ~'e~dt. The similarities of the situation over C and over number fields
are quite striking. We also compute the Mellin transform A(s) of || w 0o(z, L). It turns
out to be closely related to certain Siegel zeta functions associated to (split) indefinite
quadratic forms of signature (1,2) which were previously studied by Shintani and
F. Sato (see [22, 21]). We have

THEOREM 1.3.

A(s) = Qr) " T(s)(a(s, L) + 27" 7 n T (s — 1) éF@, sos4+ 1, =1){(s, L),

where F = ,F| is the hypergeometric function, and the Siegel zeta functions are defined

by
1
L. D)= D 1gI™ and (s, L)= ) Tl
xelL xelL ¥
xt split q(x)>0

The proof of Theorem 1.1 is long and occupies Section 4. After showing the con-
vergence of [, 0,(t, L) using a Poisson summation argument, we are reduced to cal-
culating the orbital integrals

fr ’ %;\ry o) (1.7)

for elliptic, hyperbolic, and parabolic stabilizer I'. (In the parabolic case, I'y shall
mean here the stabilizer of the isotropic line generated by x, and one first has to
sum over all isotropic vectors before integrating.)
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We treat the theta integral (1.5) for general p and a modular curve C = Cy in
Section 5. The result is

THEOREM 1.4. Let U C V be positive definite of dimension p — 1 sothat Cy ~ I'y\IH.
Assume for simplicity L= LN U+ LN U Then fCu 0,,(t, L) is nonholomorphic for
Cy noncompact and

f 0(/’1/(‘[’ L) = 9(1’, LN U) / 9‘/’(,1 ('C, LN UJ_)a
Cy Cy ’

where 0(t, LN U) =" ;nu eZM4 is the standard theta series attached to the positive
definite lattice L N\ U and the second integral is the one considered in Th. 1.4 for the
space UL, which has signature (1,2). Moreover, the holomorphic Fourier coefficients
can be interpreted as the intersection numbers in (the interior of ) M of the curve Cy
and the divisor Cy.

This generalizes parts of the results of Hirzebruch—Zagier, namely the ones con-
cerning the intersection numbers of the curves Ty in the ‘interior’ of the Hilbert
modular surface. As an example for Theorem 1.2 we then explicitly derive these
parts. From there one can obtain the complete result of Hirzebruch—Zagier by
applying the holomorphic projection principle for modular forms to the theta
integral. This will then account for the contribution of the cusps to the intersec-
tion numbers (This is an idea of van der Geer and (independently) Zagier; see
[23].) However, when using this procedure, one still needs explicit formulas for
the intersection at the cusps. As this seems infeasible for the higher dimensional
case, a more conceptual approach for the cusps (similar to the treatment of the
‘interior’ presented here) is still needed. Our results should be closely related to
recent work of Borcherds [2] and Bruinier [3, 4]. They showed that the generating
series > v_o Cng" of Heegner divisors, when considered as elements in the so-
called ‘Heegner divisor class group’, is a holomorphic modular form of weight
(p +2)/2 with values in this group in the sense that application of a linear form
on this Heegner divisor class group gives a scalar-valued holomorphic modular
form. One should expect that for p > 2, an extension of the methods used here
to the cusps should yield the results of [2, 3, 4] (while it seems that the methods
used there will not imply our results). For p =1, the results actually
are independent of each other, as taking the degree is the zero map on the
‘Heegner divisor class group’.

2. Work of Kudla and Millson

Kudla and Millson explicitly construct for orthogonal, unitary, and symplectic
groups of arbitrary signature the Poincaré dual form of the cycles Cy ([12, 13]).
We denote by Q"*(D) the space of smooth differentials forms of type (r, s) on D.
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THEOREM 2.1 ([12, 13]). For each n with0 < n < p, there is a nonzero Schwartz form
" € [S(V(R)") @ Q""(D)]° 2.1)

such that

() de™ =0, i.e., for each x € V", "(x) is a closed (n, n)-form on D which is G-
invariant: g* @™ (x) = @")(x) for g € Gy, the stabilizer of xin G.

(i) Denote by ¢F(x) = e ™) with x € U™ and (x, x);; = (xi, X)) the standard Gaus-
sian on a positive definite subspace U of V(R). Then, under the pullback
it QY(D) — Q""(Dy) of differential forms, we have

o™ = of ® o\,

where (p(ﬁ is the nth Schwartz form for U* and Gy.
(iii)) Assume U = U(x) for a linear independent n-frame in U. Then the Poincaré dual of

T'y\Dy is given by

|:en(x,x) Z ,))*(p(n)(x):| )

yellv\I'

From now on we will restrict our attention to the case n = 1. For simplicity we will
write ¢ for the (1, 1)-form ¢".

Remark 2.2. We do not need the explicit general formula for the Schwartz form
right now; for an easily accessible construction see [9]. For signature (1, 2), we will
give the formula in the next section.

We denote by SLAz(/R) the two-fold cover of SL,(R). Recall that SIZ(/R) acts on the
Schwartz space S(V(R)) via the Weil representation w associated to the additive
character 1— exp(2mit), see for example [17]. Let K’ C SL,(R) be the inverse image
of the standard maximal subgroup SO(2) in SLy(R).

PROPOSITION 2.3 ([12]). The Schwartz form ¢ is an eigenfunction for K with
respect to the Weil representation i.e.,

o) = det(k)P+22. (2.6)

We associate to ¢ in the usual way a function on the upper half plane H. For
T =u+ive H we put

I u\/v'/? 0
gé:(o 1)( 0 u—‘/2)’ @7

and define

(1, x) = v (g o(x). (2.8)
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Fix a congruence condition 4 € L# and assume that I fixes the coset L + / under
the action on L#/L. Then the theta kernel

0p(1) = 0,(t. L.y = Y o(r.x) e Q"' (D) (2.9)

xeh+L

defines a closed (1, 1)-form in M = I'"\ D. By the usual theta machinery (Poisson sum-
mation) it is a nonholomorphic modular form for the congruence subgroup I'(N) of
SLy(7) (where N is the level of the lattice L), of weight (p + 2)/2 with values in
Q"'!(D)'. Slightly more general than in the introduction we put

Ln={xeL+h:q(x)=m} formeQ,

suppressing the dependence on /4. For m > 0, we again obtain a composite divisor
Cn =3 rer\s, Cxin M. Let n be a closed (p — 1, p — 1)-form on M and assume that
n is rapidly decreasing if M is noncompact. The main result of [14] (in much greater
generality) is that

Io(c.m) = /M 0,() A1 (2.10)

is a holomorphic modular form whose Fourier coefficients are periods of  over the
composite cycles C,, in M. If n now represents the Poincaré dual class of a compact
curve C in M, we obtain

1¢(T,Q:/C9¢,(f): (T, 1), (2.11)

and the Fourier coefficients are the (cohomological) intersection numbers of C with
C,,. In the following we consider (2.11) for modular curves C.

3. The Theta Integral Associated to SO (1, 2)

3.1. PRELIMINARIES

Now assume dim V" = 3; hence V" has signature (1, 2). Over R we fix an isomorphism

V(R) ~ {(’“ *2 ) c MZ(R)} (3.1)

X3 —X1
such that
q(X) =det(X) = —x] —xox3 and (X, Y) = —tr(XY).

So we can view V(IR) as the trace zero part By(R) of the indefinite quaternion algebra
B(R) = M»(R) over R. We have G = Spin(}) = SL; and the action on B, is the con-
jugation:

g - X:=gXxg! (3.2)
for X € By and g € G.
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Notation. In this section, we will write z = x + iy for an element in D >~ H (the
orthogonal variable) and T = u + iv € H for the symplectic variable. The upper case
letters X and Y we reserve for vectors in V(R) with coefficients x; and y;.

Here it is more convenient to consider the symmetric space D >~ Il not as the space
of negative two-planes in V(R) but rather as the space of positive lines. We give the
following identification with the upper half plane. Picking as base point of D the line
zo spanned by (91 é), we note that K = SO(2) is its stabilizer in G(R), and we have
the isomorphism:

H~GR)/K — D (3.3)
with
z—>gK+—g-zp =: £(2) (3.4)

(where g € G(R) such that gi = z; the action is the usual linear fractional transforma-
tion). We find that ¢(z) is generated by

l - -
X =yt T26FDF ) 3.5
o= (T A (5)
where z = x + iy. Note ¢(X(z)) = 1. Moreover, per construction
g X(z) = X(gz2). (3.6)
For X = (! ) € By(R) we compute

(X, X(2)) = =y (x32Z — x1(z + 2) — x2)
==y 1 (n(x” + ) = 2x1x — x2)

_ (ax —x1)’ +¢(X)

— X3y, (3.7)
—X3y
when x3 # 0.
The minimal majorant of (, ) associated to z € D is given by
] X X), if Xel(2),
(X, ). = { —(X, X), if Xet:)* (3.8)

A little calculation shows

(X. X), = (X. X(2))’ - (X, X)
_ (x3x2 — x5 — 2X1X)2

e + (x39)” + 2(x3x — x1)%. (3.9)

PROPOSITION 3.1 ([10]). The Schwartz function ¢ = ¢ on V(R) valued in the
(1, 1)-forms on D is explicitly given by

o(X, z) = ((X, X(2))* — %) e "N g, (3.10)
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Here

w_dxAdy_idzAdZ
o2

(3.11)

the standard G-invariant (1, 1)-form on D >~ .

We will write @(X) for its value at X. Then

g p(X) = p(g7' X); (3.12)
ie., (g X, gz) = ¢(X, z) for g € G(R), follows from (3.6); while Proposition 2.3

becomes an exercise using the explicit formulae of the Weil representation and redu-
ces to ¢ = —¢. Finally, we define

P°(X, 2) =" Vop(X, 2) (3.13)
= ((X, X)) — 21n> ¢TI 20D (3.14)
and
o1, X) = (U(X, X(2))? — %) ™Dz gy, (3.15)
where
(X, X). . = u(X, X) + iv(X, X)..
=1(X, X) + iv(X, X(2))*. (3.16)

3.2. THE THETA INTEGRAL

We put

1,(7) = f 0(t; L, h) = / > ot X). (3.17)
Do D xer+h

Thus, in the notation of the previous section, /,(t) = 0,(t, 1) where 7 is the constant
function 1. In particular, # is not rapidly decreasing. Alternatively we can interpret
(3.21) as the integral /,(t, Cy) in the case of signature (1, 2) with U = 0. We assume
the convergence of (3.17) for the moment. Then it is again clear that /(t) defines a (in
general nonholomorphic) modular form on the upper half plane of weight 3/2. For
X e L,,, we have

o(t. X) = ¢" " (VvX), (3.18)
where ¢" = €™ as usual. Define
On(m) = (. X) and 6)@©) =Y ¢"(VvX). (3.19)
XEL,,, XGLm
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We then — yet formally — have

I,(1) = /r > () = ( / 0° (v))q : (3.20)

D med meQ

which is the Fourier expansion of I,(t). Since I'\L,, is finite for m # 0, we can
simplify the inner integral in (3.20) in that case:

| o= [ Y ¥ ovirs

\D XeT\L,, yelx\I

-y fr 3 e (oX, 2) (3.21)
XeDl\L,,

\D »eTy\I*

For X =0, we simply have ¢(t, X) = —(1/2n)w and therefore

/ @(7,0) = w(I'\D), (3.22)
r\D

the hyperbolic volume of I'\ D, normalized such that pu(SLy(Z)\H) = — é In particu-
lar, we see that with this normalization (see, ¢.g., [18])

wI\D) € Q. (3.23)
If V is isotropic over Q, we can pick the isomorphism (3.1) such that
«/axl X2
Q) >~ x; € Qp =: By(d; Q .
Q) {( M _Jdx x; e Q o(d; Q) (3.24)

as quadratic (Q-vector spaces, where d is a square-free positive integer, the discrimi-
nant of the quadratic space V. The set of all isotropic lines in ¥ corresponds to the
cusps of G(Q) and I" acts on them with finitely many orbits. For the constant term in
the Fourier expansion of /,(t), we therefore have to proceed differently than in the
case m # 0: Let ¢;,...,¢, be a set of I'-representatives of isotropic lines and pick
X; € £; primitive in L. Define 6(¢;) = 6(¢;, L,h,I') =1 if £; intersects the coset
L+ h and 6(¢;) = 0 otherwise. Hence, ¢; N (L + h) = ZX; + h; for some h; € ¢; if
0(¢;) = 1. Denote by I'; the stabilizer of ¢; in I'. We then have

fr\Zq)(sz) /F\Di S O, o)

Xely =1 yer(e, ﬂ%LJrh))

Y0
zfr\DZ > ) 7' WX, 2)

=l YetO L+ yelAl

= 25(5) / y “"(VukX; + hy), z).  (3.25)

\D eI \T k=—00

Here Y indicates that we omit k = 0 in the sum in the case of the trivial coset. We
need to discuss the notion of the width of a cusp for our purposes. For Y e V

https://doi.org/10.1023/A:1020002121978 Published online by Cambridge University Press


https://doi.org/10.1023/A:1020002121978

HEEGNER DIVISORS AND NONHOLOMORPHIC MODULAR FORMS 299

isotropic (usually primitive in L), pick g€ G(R) such that gY =X, with
Xo = (8 (1)) and feR*. Put I"=glg™". Hence, I'y =glyg™" is equal to

{+ ((]) kl“) tkeZ} (if —1€T) for some o € Ry. Now we could call o the width
of the cusp ¢, however this is not well defined, since it depends on the choice of
g € G(R) and, hence, on 5. However, one easily checks that the ratio o/|f] is constant

and only depends on Y and T".

DEFINITION 3.2. (Width of a cusp). (i) For Y isotropic, we define ¢(Y,T") = o/|f],
where o and f are the quantities above. We call the pair (¥, I') a cusp and the number
(Y, I) its width.

(i) For a lattice L C V, h e L*¥/L and T" C I'(L), we define (with the above nota-
tion) the total width by e¢(L, h,T') = Z;Zl o(L)e(X;, IN).

Remark 3.3. (1) If T is a congruence subgroup of SL,(Z), then there is (up to sign)
a unique g € SLy(7) such that gY = X, = [3(8(1)). Then both numbers « and f3 are
intrinsic: o is simply the usual width of a cusp of a congruence subgroup of SL,(*7)
while  can be interpreted as the volume of the fundamental domain of RX,/Z X,
with respect to the Lebesgue measure on R.X.

(i) We can always arrange || = 1. Then we can interpret o = ¢(Y,T') as the
volume of the corresponding component of the Borel-Serre boundary of M.

(ii1) It does indeed happen that for a fixed space V" we can find two lattices with the
same stabilizer I" such that the ’cusp oo’ has different width. Consider the lattices

(b 4)iancez) aa (5 2)abcez)

Both have stabilizer I' = SL,(Z), hence « = 1, but f = 1 and 2, respectively. See also
Example 3.9.
We are now ready for the main result:

THEOREM 3.4. With the above notation we have

() 0,(x) € L'T\D),
(i) 0%,(0) € L'T\D),

forallm € Qand

_ 0 m
~/l"\D H(P(‘C) B Z <~/I:\D Hm(v)) T

meQ

For the Fourier coefficients, we get

(i) form > 0:

1
0° (v) = —
/r\D Xerz\ﬁm Il x|
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(iv) form =0:
/ 0y,(v) = u(T'\D) + ;—nv_l/ze(L, h,T),

where the volume term only occurs for h € L;
) form<O:

/ 0 (U) U_1/2 Z (/ t—3/2e4nvmtd[)'
1

Xel\Ly,
Xt isotropic

Note that for m < 0 we have
[o¢]
/ 1_3/264mmdl < O(e4nm) (326)
1

so that the negative part of the Fourier expansion has the same convergence
behavior as the positive part. The next section will deal with the proof of the
Theorem 3.4.

First we discuss the convergence of /,(t). Then we turn our attention to the com-
putation of the individual integrals which define the Fourier coefficients via the ana-
lysis (3.19) to (3.25). For m > 0, the composite 0-cycle C,, = ZXer\z:m Cy is the
collection of Heegner points of discriminant m, and we define its degree by

1
deg(Cn) = —_ (3.27)
Xel—z\ﬂm [T x|
We also put
[ w(@\D), if0eL+h,
deg(Co) = { 0. else. (3.28)

In any case we have deg(C,,) € Q. We define the generating series of the degree of the
Heegner points by

P@) =) deg(C)g". (3.29)

m=0

Then as a corollary we obtain the following generalization of the results of Kudla
and Millson to the noncompact case:

THEOREM 3.5. Let V be a quadratic space over Q of signature (1, 2).
(1) ([14)) If V is anisotropic, i.e., T\D compact, then the generating function P(7) is a

holomorphic modular form of weight 3/2 for a suitable congruence subgroup of
SLy(7).
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(1) If Visisotropic, i.e., T\ D noncompact, then P(t) is the holomorphic part of the non-
holomorphic modular form of weight 3 /2 given by

172 o172 -
Z:Odeg(Cm)q’”—i- 5L, FHX%—% T > Bdmom) g, (3.30)
m= m> Xel\L_,,

X+ isotropic

where we set, following Zagier [25] (up to a factor), p(s) = jloo t—32e51d.
The following lemma characterizes the values for which the negative Fourier coef-

ficients in the previous theorem are nonzero.

LEMMA 3.6. For X € V(Q) >~ By(d; Q) with g(X) < 0 the following two statements are
equivalent:

(1) X*issplitover Q
2) q(X) e —d(Q*).

Proof If q(X) = —dm? < 0 with m € Q, then by Witt’s Theorem we can map
Xr—)(’”‘/‘_! % _) € By(d; Q); hence X~ is split. Conversely, if X~ is split, we can

0 —mvd
assume X L (g (1)) (again by Witt’s Theorem moving an isotropic vector orthogonal
to Xto (; ) Thus X:(m;)/‘—l /) for some m € Q. O

Let X € £_,,2. Then X is orthogonal to two cusps. However, giving an orientation
to QX we can distinguish between these cusps (if they are not equivalent), since
switching the cusps by an element in G N SO(X™) switches X to —X. For a fixed cusp
£;, we write

L_gpiv ={Xe€L_gp: X LL; Xpos orient.}
and note that I'; acts on this set. We have

LEMMA 3.7.

t
HI\L gy = D HTAL g it
i=1
and
HTAL _gpeiq = 2mV/de(X;, T),

if L_gu2.;1 Is not empty.
Proof. The first assertion is clear. For the second, take X € L_g,2, say
X = (’”B/a _n? i ) So X is orthogonal to the cusps 0 and co. We distinguish them by

requiring that the left upper left entry of X is positive, since switching the cusps by

(701 (1)) maps X to —X. By our conventions about the cusps we can assume that

(g g ) is primitive in L with stabilizer
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roo(a)z{nk=i<é “{‘):kez} in T Gf —Iel)
Now

Ty - X = (’”B/a _Z_mm‘/fa?‘k>; (3.31)
hence

X—Ty -X= <g _2’”8/3“1‘) elL. (3.32)

Thus 2m~/dx € f7.. The assertion now follows from the observation that we have
showed that we have 2m+/de equivalence classes of vectors in L it O

Lemmata 3.6 and 3.7 enable us to rewrite Theorem 3.5(ii):

THEOREM 3.8. With the above notation we have

U_%
Ip(t, L.h) = ) deg(Co)g" + 5 > X D)x

m>0 cusps ¢

<o)+ Y péndm’vig

meQy

Eﬂlml,w #0

This implies Theorem 1.1 as follows: For the constant Fourier coefficient note
that for the trivial coset we have 6(¢;) = 1 and p(0) = 2. For the negative coeffi-

cients, take a nonisotropic vector X in ¢, primitive in L. We see ¢(X) = —dk%{
for some k;, € N. Now all other vectors in the sum for the cusp ¢; are integral mul-
tiples of X.

EXAMPLE 3.9 (Zagier’s Eisenstein series of weight 3/2). Let V' be the space of trace
0 elements of the (indefinite) split quaternion algebra AM,(Q) over Q; i.e.,
V =~ By(1, Q). (i). We first consider the isotropic lattice

b 2. .
L_{<20 _b>.a,b,ceZ}, (3.33)

so q(a, b, ¢) = —b*> — 4ac. L has level 4. As mentioned above, we have I' = T'(L) =
SL,(7) and one isomorphism class of cusps. The stabilizer of ¢y = Q(g 2) is

0
Iy = {:I:((l)’l’) :n € 7). Note that the width of this cusp (in the above sense) is
€= %! By Lemma 3.7 I' acts on L_,» with n orbits, and these X are precisely the
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vectors such that X* is split over Q. For N> 0 and X = (;L ) such that
q(X) = N, observe that the assignment

—2c¢c b
X)—)( b 2a> (3.34)

defines (for @ > 0) a binary positive definite quadratic form of discriminant —N. One
easily deduces that

#I'\Ly) = 2H(N), (3.35)

where H(N) denotes the class number of binary positive definite integral quadratic
forms of discriminant —N; we count the classes with nontrivial stabilizer with multi-
plicities 1/2 and 1/3, respectlvely The elements of the form k( 0) (corresponding
toie M)arefixedby (° ) and the stabilizer of the elements of the form k(! 5 f)
(correspondlng to (1 + z\/Il 3)/2) is generated by (i ) We set H(0) = —{5 =
3 L u("\D). Applying Theorem 1.1 we obtain

I(/,(‘E L)y=F(r)=

Zﬁ(4nn v) g (3.36)

16 nez

Zagier’s well known nonholomorphic Eisenstein series of weight 3/2 and level 4,
see [25,7]. (ii). This example we will need later to deduce a case of the results of
Hirzebruch and Zagier. We almost repeat (i) considering the trace zero elements
in the maximal order M»(Z) in M,(Q):

K:{(IZ _“b>:a,b,ce%}; (3.37)

so g(a, b, ¢) = —b> — ac. We set X| = ((1) _01) and define (the coset)
K zéxl + K (3.38)

for j=0, 1. Again we put I' = SL,(Z) = I'(K}). This time we have e =1 and 6 =0
for j = 1. As above we see that I' acts on the vectors of length —(n + 0/2)) with
2n+ j orbits. For N> 0 and X = ("2 “ ) such that ¢(X) = N — £ we assign

c —b—j/2
—2¢ 2b+j
X— (21) i 2a ) (3.39)
which defines a positive form of discriminant —4N + ;! We obtain
#I\(K))y_y) = 2H(@AN — ), (3.40)

hence

LI K) = 3 HAN =g+ Zﬂ(4"<”+ ) ) 34D

N=0 ne’z
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The example now implies Corollary 1.2.

As a corollary to the example and as an illustration of Corollary 1.2 we obtain the
famous relationship between the representation numbers of integers as a sum of
three squares and the class numbers of binary quadratic forms:

COROLLARY 3.10. Denote by r;(N) the representation number of N as a sum of
three squares and write 3(t) =3, g2min’t for the classical Jacobi theta series. Then

(9(1))3: 12(%1(/1('5; Ko) — I(p(f; L)),

r3(N) = 12(H(4N) — 2H(N))

for all integers N.
Proof. The space of holomorphic modular forms for I'y(4) of weight 3/2 of
Nebentypus is one-dimensional, spanned by (9(1))’. O

We now compute the Mellin transform A(s) of /,(t), hence giving the proof of
Theorem 1.3: We write

AGs) = As(s)+ A_(s) (3.42)
with
% d
As(s) = /0 > ot 00 (3.43)
XeL+h
+4¢(X)>0

For the positive part, we obtain in the standard fashion via Theorem 3.4 (iii)

Ai(s)=Qm)°T(s) Y ﬁq(X) = 2n) " T($)als, L, h). (3.44)
XeL+h
4(X)>0

For the negative part, we have via Theorem 3.4 (v)

o0 dv
A_(s) = / ( / u—‘e—“”qm'"du)ez’f"/m'“u‘— (3.45)
XXL: Y 4n\/|q(X) v
Xt split
_ Z o3 /00 </oo e_zn\q(x)\(zu—l)va—% @)u—%du (3.46)
XeL+h Any/lg()1 )1 0 v
X+ split
= ¥ e T6-) [ emaiee- a6
2
XeLJr/ |q( !
Xt split
I ©Qu— 1)
=272 g2 F(S—%)CI(S, L, h)'/l %du (348)
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The integral in the last line is equal to

1 W:—l 1
V2 [ e = VAL s 1),
o (w+1)¥ N

see [16]. This concludes the proof of Theorem 1.3.

4. Proof of Theorem 3.4
4.1. CONVERGENCE OF THE THETA INTEGRAL

PROPOSITION 4.1 (Theorem 3.4 (i)). 0,(t; L, h) € L'(T'\D).

Proof. If T'\D is compact, i.e., V= V(Q) is anisotropic, then there is nothing to
show; the existence of the integral is immediate. On the other hand, if V is isotropic
then we can choose the isomorphism of V(R) >~ By(R) such that V(Q) >~ By(d; Q)
and X := (8(1)) primitive in L. We then can find reQ such that
L' :=rBy(d, 7.) C L. With this notation we see

Op(t: Loh)y = Y Op(t: L, ). (4.1)

W=h(L)
mod L'

So it is sufficient to show that each 0,(t; L', k') € L'(I'\D). Picking a fundamental

domain for I'\D we observe that via (3.12) it suffices to show that 0, is rapidly
decreasing as y — oo. For X € By(d; Q), we have

1 ' ~ .,
0000 = (A0 X = 5 ) e
T

1
= (%(nzé —2Vdx x — xz)2 - —) X
y 2n

X eXp<—7TJ%(X3ZE — 2V/dx)x — xz)z) X
X exp(—‘f(dx% + xp@))a). 4.2)

Write x, = x5 + /5 and let x}, run over rZ. We will apply Poisson summation to the
sum on x5. So consider in the above expression the coefficient of @ as a function
fof xy. For the Fourier transform of f, we see by changing variables to

—t= %(mi — 2Vdx1x — Xy — hb),
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Aw) = /; S(x5) exp (—2mixyw)dx),
= (W) exp(—Tdx}) exp(—[w + x3T][x32Z — 23/dx; x — My x

X /_0:0 <12 — %) exp(—nt?) exp (—t%(w + xﬁ))dt
2 2
= *(—1)(%(14} + xﬁ)) exp (—n(% (w+ xﬁ)) ), 4.3)

since the Fourier transform of (> — (1/2n))exp(—nt>) is —t> exp (—nt?). We obtain:

0(v; L', h)(z) = —r~! # Z (w + x37)* exp(—Tdx?) x

wer~17,
X eh; +r7,
X3 Eh3 +r7

2
x exp(—[w + x37][x3zZ — 2/dx x — 1)) exp (—n%(w + xﬁ)2>a).

All terms of this sum are exponentially decreasing as y+— oo except those for which
w = x3 = 0. But the coefficient (w + xﬁ)2 vanishes for such terms. So |0(t; L', /)| is
integrable and 0(t; L, /) is real analytic in 7. O

4.2. COMPUTATION OF THE INDIVIDUAL TERMS

We will compute for I" an arbitrary Fuchsian subgroup of SL,(R) the integrals

[ 3 e (4.4)

\D yel\I'

with any nonisotropic X € V(R) and I'y the stabilizer of X in I', and

Y. (X (4.5)
D yer 2 v+hy)
X0
where Y € V(R) isotropic such that QY = £ is a cusp of I, i.e., I'y is nontrivial, and
hy € £. Note that via (3.21) and (3.25) the calculation of these integrals yields the
Fourier expansion of /,(t) (Theorem 3.4).
There are several cases to consider:

(A) ¢(X) >0,

(B1) ¢(X) < 0, 'y nontrivial, infinite cyclic,
(B2) ¢(X) <0, I'y trivial,

(C) The integral (4.5).

According to the stabilizer I'y of X (I, of the isotropic line £) we call (A) the
elliptic, (B) the hyperbolic and (C) the parabolic case. Note that the cases are closely
related to each other:
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LEMMA 4.2. Let g(X) < 0for X € V(Q) so X* has signature (1, 1). Then T y is trivial if
X1 splits over Q. Conversely, if X* is nonsplit, i.e., anisotropic over O, then Ty is infinite
cyclic.

Proof Indeed, we can identify Gy(R) with Spin(X*) ~ R* which acts on the two
isotropic lines of X! as homotheties. Hence, I'y = I'(X") being a discrete subgroup
of R is either trivial or infinite cyclic. But for a possible isotropic line £ over Q, i.e.,
a cusp for I', we would also have a discrete unipotent subgroup in I stabilizing £.
This together with I'(X*) has an accumulation point, see [18], p. 16. On the other
hand, an indefinite anisotropic binary quadratic form over Q corresponds to the
norm form of a real quadratic field K over Q, and the units Oy act as isometries and
are infinite cyclic (up to torsion). O

So the cases (B2) and (C) occur together. Moreover, they occur if and only if I'\D
is noncompact. These two cases create the complications when extending the results
of Kudla and Millson to the noncompact case.

4.2.1(A). The Elliptic Case

Let X € V(R) such that g(X) > 0, hence RX € D. Therefore the stabilizer I'y of X in
G(R) = SLy(R) is conjugate to SO,(R), and is in particular compact. Since I'y is a
discrete subgroup, it is finite cyclic.

PROPOSITION 4.3 (Theorem 3.4 (iii)). Let ¢(X) > 0. Then

Y (X, o) € LIT\D);

yel'y\I

unfolding in (4.4) is allowed, and we have

Y e’ = | o'X, ) =1 (4.6)
) :

\D yell

Remark 4.4. This result is certainly already contained in [12,13]. In fact, it is one of
the corner stones of the theory. However, for the convenience of the reader we give a
brief sketch of the proof.

Proof Write X = (i; *2 ). Since g(X) > 0, we have x3 # 0. Hence by the explicit
2 —X1
formulae for ¢ we get

om0,
T

—X3)

2
x—x)2+4(X
y ein<“3\’ :»l‘;;rll( )7.’(3}’) dxdy

= (4.7)
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The integrand is rapidly decreasing for x — +o0 and y — 0, co. Note that here one
needs ¢(X) > 0. Hence unfolding is allowed and therefore ¢°(X,z) e L'(D). The
proof of fD ¢°(X, z) = 1 can be found in [13], p. 301-302. Note that the Schwartz
function considered there differs from ours by a factor of 1/2. O

4.2.2(B). The Hyperbolic Case

So let X € V(R) such that g(X) < 0, say ¢(X) = —d with d € R;. The stabilizer of

Xi(d) == (‘fl —Oﬁz) in G(R) = SLy(R)

Gy,@(R) = {(g aol) ‘ae RX}.

So I'y is conjugate to a discrete subgroup I'y of Gy, (4, hence either infinite cyclic or
trivial.

is

Case (B1). With the above notation assume that I'y is infinite cyclic, say
g-X=X(d) and glyg™" =Ty = ((; £91)> with some ¢ > 1 (can assume ¢ > 0,
since —/ acts trivially on D).

PROPOSITION 4.5 (Theorem 3.4(v)). Let X € V(R) such that ¢(X) <0 and T'y
infinite cyclic. Then

> e’ (X o)l e L'(T\D);
yelly\I

unfolding in (4.4) is valid and

fr > (X o) = /r » @’(X,z) = 0. (4.8)

\D yel\I'

Remark 4.6. This orbital integral also appears in the compact quotient case. Since
in that case all negative Fourier coefficients vanish, the above proposition also fol-
lows from the work of Kudla and Millson. However, as they only sketch the
argument in this particular case ([14], p. 138), it seems desirable to give a direct
proof.

Proof. We have

/ > 7*(00()(,2):/ > ¢'g-X.gg'2)
r g

\D el AT Tg™\D yer\r

= [, X retw. (49)

yel \I”
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where I := gl'g~!. We will now show the validity of the unfolding which then
proves the existence of the original integral as well.

»* 0 7) — 0 -
fr,\D Y 7', 2) /l_,\Dq)(Xl(d),)

yel\I’ x ,
1\ _4zg>dxd
con [ (WS e
rap\  y° 2m y

(8 (?1) acts on z€ D as z — ¢’z. So a fundamental domain F of I',\D is the

domain bounded by the semi arcs |z| = 1 and |z| = €2 > 1 in the upper half plane:
F={zeD:1<z| <&} 4.11)

But in this domain ¢°(Xi(d), z) is clearly rapidly decreasing as z approaches the
boundary of D. So all considered integrals actually exist and unfolding is allowed.
Changing to polar coordinates we compute

2 2
I
F 2n ¥

y
= f <4d cot’(0) — L) g 4mdeot’(®) lcscz((?)d(?dr
1 0 2n r

o0 1
= log(c?) f <47qu2 — E)e“‘“dﬂdt (1 = cot 0)

=0, (4.12)
since
2 1 —n? 1 —n?
tr—— e "dt=—te"" 4+ C. (4.13)
2n 2n
O
Case (B2).

PROPOSITION 4.7 (Theorem 3.4(v)). Let q(X) be negative and assume that Ty is
trivial. Then

> 7o’ (X, 2) e L'(T\D) (4.14)
vell

and
1 00
* 0 _ —3/2 4nq(X)t
E Yo (X, z2) _7/ 1 '%e dz. (4.15)
/F\D 4n/1g(X)| 11

yell
Proof. Let q(X) = —d and suppose that I'y is trivial. Recall that we chose g € G(R)
such that

g.XzXl(d):<‘{)a —(\)/2) and gl'g™ ' =T".
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As above we have

/F S (X, 2) = / S X (), 2). (4.16)

\D yer yel”

Unfolding in this situation will be not possible since

(4.17)

@’ (X1(d), z) = e <4d - 1 ) s dxdy

2r »?

is not integrable over D. So we have to proceed more carefully. I'y is trivial. Hence
X+, having signature (1, 1), is split. Therefore the stabilizers in I of the isotropic lines
in X* are nontrivial by Lemma 4.2. By conjugation we consider the isotropic lines in
X\(d)*. They are generated by

0 1 = 0 0
XO:(O 0) and X():(_l 0)
We put J = ( | 0) Note that J switches the isotropic lines (i.e. the cusps) orthogonal

to Xi(d): JXo = Xo. Hence, I'y = (T;) with T, = ((])T) for some « € R, and
= (JT/;J“) for some f € R,. We write 1"/;(0 = (Tp). Note that o and f are not
intrinsic to the situation since they depend on the choice of g such that

g - X = Xi(d). Define a subset G of D = Il by
={zeD:|z| = 1}. (4.18)

Note JG = Q := D — G (up to measure zero). Fundamental for us is the fact that J
essentially fixes X(d): J.X1(d) = —X1(d); hence, for any z € D,

" (X1(d), 2) = ¢"(J.X1(d), 2) (4.19)
and therefore (up to measure zero)
" (X1(d), 2) = 15(2) 9*(X1(d), 2) + T * (16(2) 9" (X1 (d), 2)). (4.20)

Here y; denotes the characteristic function of G. We have

fF\D‘ZV*wo(X 5|

= / ‘Z%g (20" (X1(d), y2) + 16(Jy2) 9°(X1(d), Jyz)‘
/ > Zyg(T"/Z)qo X1(d), T yz)‘+
T\D ey \I ke
+ fr > ’Z 16WITET '92) @*(X1(d), JITG T yz)(. (4.21)

\D, yel\I" keZ
%o
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Now we are in position to unfold and obtain

- [ @ ria)+
o\ ke,

/ 1; 16(TgT~"2) (X1 (d), TgJ—lz)’

-/ - k;/g(T"z) P, TED)| +

/ . 1) @22)

by changing variables z+—— Jz in the second integral. It is sufficient to show
the convergence of the first integral. So let F,, be a fundamental domain for
Iy \D and split Foo = F) LI Fy, where F| = {z € Foo : Im(z) > 1}. For Fy, we
have

/f ‘ZVQ(T*Z)w (X1(d), T*z)’

1 ke

= [ [ otcxian. =+ o)

1 keZ,

2 2

1 _4n (x+ak)

_ e—4nd/ ’Z(‘tdw _ —)e dmd =5
Fi ' keZ, y 2n

1 f 2,2 i dxdy
— —4nd 3. 2 —mytwe 2mixw
= € yw'e (& —
d3? ) Z 2
8 & T ywea 17, y

dxdy
32

(4.23)

by Poisson summation (see Section’4.1.). But the integrand is clearly exponentially
decreasing for y — oo. This shows the existence of this part of the integral. M More-
over, removing the absolute value signs, we see that the integral (4.23) vanishes, as
we easily conclude by interchanging the summation and the integration w.r.t. x in
the last line of (4.23). However, note that

2 dn (x+ok)?
Z<4d7(x+2°‘k) —L)e md3 dley (4.24)
k<7, y 2n y

is not termwise integrable over F.
For F,, we can unfold even further and get

2 1 s
/ iQDO(Xl(d),Z){ =674nd/ ‘<4dx2—)e 4 dj.z
(zeGy < 1} (zeGy < 1} y 2n

which is clearly finite since the integrand is rapidly decreasing at the boundary of the
domain of integration. Note that the last expression does not depend on o. This

dxdy

- (4.25)
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shows integrability for the first summand in (4.22); the second summand is handled
in the same manner! These considerations give us

* 0 _ 0
/F \DZV o°(X.2) =2 /Zegw}q) (X1(d). 2) (4.26)

= 2e‘4’”’/ (4dx_2 _ L)e—4nd;—§ dxdy w27
regy<n\ ¥ 2m 32

Using (4.13) we get

2/2€g1<1 o "(X1(d), 2)

—2 / / (g 1)t dxdy
V1= y2 2n 32

—4nd/V1_ Ba 24y

= —f w— le™ =Ty (w=y72)
1

T

00
— l/ w%(w + 1) lem4rdrtD gy,
T Jo

—4nd
= ‘I’<3 3 4nd)
PN

where W(«, y; z) is the confluent hypergeometric function of the second kind which
has for Re(x), Re(z) > 0 the integral representation

1 oe]
Y(a, y;z) = 7/ AN+ 1)y e ds 4.29)
=g ) (
([16], 9.11.6). Further note the functional equation

Y,y z) =21 40— 9,2 — 9; 2) (4.30)
for |arg(z)| < = ([16], 9.10.8). Thus

et (33 1 1
v - 4nd e4"‘“P<1, —: 4nd>
2Jm < > 4«/5171 2

/ (l+ 1) 3/2 74ncl(f+l)dt

4«/2177:
1 % 32 —and
= 3/ 2e4m gy, 4.31
4/dn fl (30
This proves the proposition. O
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4.2.3(C). The Parabolic Case

Now let £ be an isotropic line in V(R) such that its (pointwise) stabilizer I', is non-
trivial. Pick a point Y € £. Choose g € G(R) = SL,(R) such that g.Y = X, with
Xo = (0(1)) and feR*. Put I"=gl'g"". Hence I’y :=glyg™' is equal to
{:t( Ve ke 7} (if =7 € T') for some o € R,. Recall that we defined the width of
the cusp (Y, I) by (Y, T') = a/|f| = (Y, T).

PROPOSITION 4.8 (Theorem 3.4(iv)). Let £ € V(R) isotropic be a cusp of T as
above, Y € £, hy € QY andr € R*. Then

> 9'tx.0)= «r.) (4.32)

27|r|
Xe[(ZY+hy)
X0

D

where ¢(Y, ') is the width of the cusp (Y,T) (Def. 3.2).
Proof. We can assume f§ = +1 and by abuse of notation hy = h = hX, with
h €10, 1). We are interested in

/F\ > e'(x.2)

Xe[(ZY+h)
X0
-[ ¥ Z kY +h,2)
\D e \I k=—

-/ ¥ Z (g (kY + h), grg™')

glg™"\D yeT AT k=

_ / )3 iy*(po(:tho—i-h,z), (4.33)
I

"\D e[ \T” k=
/el'X(]\l"k 0o

where >°;° _ omits k = 0 in the case of the trivial coset. Now

k+hr)? 1 _nllesin? d xd
o+ . 2) = (DT LYoy (434
y n y
We unfold and get
/ > Z 7o (Fr(k + h)Xo, 2)
T\D el \I" k=—00
_ / Z/ (((k+h)r)2 1 >e““2” dxdy
i \D kst y? 2n »?
k + h)r 1\ _nlesi?
=«Y,T) / Z <(( "’ E)e 2 2y, (4.35)
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The validity of the unfolding in (4.35) (and therefore the existence of the original
integral) follows by looking at the last integral: For y — 0 we have exponential
decay and for y — oo one sees-adding the constant term k& = 0 into the summation
if 1 = 0-by Poisson summation (see Section 4.1.)

S ((kr)? 1) —ato? dxdy
Eaiab e L
k=

y
1 X Loz} dxd
= (%_ 13 Z (w/r)ze—”(}'”'/')> ;izy (4.36)
w=—00

which is O(y~2) as y — oo. (The same argument works for / # 0.) Now in the last
expression of (4.35) interchanging summation and integration is not allowed in gen-

eral since
(kr)2 R S
Z =Y ¢ =00 (y— o0 (4.37)
k=—00 k=—00 2n

However, we can modify the integrand defining

((k + h)r) 1 ((A+mr _2
F - ’d 4.38
)= | ij ( ) y. (4.38)
for s € C. Fis holomorphic for Re(s) > —1 and for Re(s) > 0 interchanging summa-
tion and integration is valid. We obtain

_ SN[y 1 e o
F(S)_k;,o/ (y—z_ﬂ>e dy (4.39)

%nﬁ‘zlfi_ool(k—i—h)ﬂ I=s

~ I\ w6H+D/2 4y 2
x / <u - _> W dw <W _ ik + th)’ ) (4.40)
0 2 e w y

| _=3=

=2
x (1“(3;3) —%F(S—; 1)) (4.41)
L5 h)+ (145, 1= h)x
Ky s+ 1 1
x§F< . ) > Sa’ (4.42)

as s — 0. Here {(s,x) = > o2 (x+n)~" is the Hurwitz zeta function which has a
simple pole of residue 1 at s = 1.
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5. General Signature (p, 2)
5.1. THETA INTEGRAL FOR SO(p, 2)

Now we assume that V" has signature (p, 2). Let U C V be a positive definite subspace
of dimension p — 1 so that Cy = I'y\Dy is a quotient of I in M. We consider the
period integral

I, (1, L, Cp) = /C 0,,(x, L), (5.1)

Here we write ¢, for ¢ to emphasize the domain ¢ is associated to. For p = 1 and
U = (0), this is the theta integral considered in the previous sections. We write
Ly=LNU and Ly = LN U (5.2)

We can split the lattice L as follows:

L=>"Ci+Lo) L (u+ Lo (5.3)

r
i=1

with /; € L}, and y; € LY.
THEOREM 5.1.

Ip(t. L, Cp) =Y 9(t, i+ Loy, (t. t;+ Ly).
i=1
Here (t, 2i + Ly) = Y o) p, €17 is the standard theta function of a coset of the posi-
tive definite lattice Ly. In particular, the period integral 1, (t, L, Cy)is a nonholomorphic
(if Cy is noncompact) modular form of weight (p + 2)/2.
Proof. By Theorem 2.1 (ii), we have that under the pullback i} : QYD) —
Q'Y(Dy) of differential forms,

Loy =0 ® @i, (5.4)
where ¢7; is just the Gaussian on U. Then
0p,(t, L) =Y @y(X, 1) (5.5)
xelL
=Y > o Y en(n. (5.6)
i=1 xeli+Ly yew+Ly1

integrating over Cy together with the results on the theta integral for signature (1, 2)
(Theorem 3.4) now gives the theorem. OJ
5.2. INTERSECTION NUMBERS

We will now show how one can interpret the Fourier coefficients of 0,,,(z, L) as inter-
section numbers. For a special curve C = Cy (dim U = p — 1) and a divisor C' = Cy
(dim U’ = 1), we define the intersection number in (the interior of) M:
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[C-Cy:=[C-CT" +vol(CN C), (5.7)

the sum of the transversal intersection and the (hyperbolic) volume of the one-
dimensional intersection of C and C'. For p = 2, the Hilbert modular surface case,
this follows Hirzebruch and Zagier ([7]). One easily sees that Cy and Cy intersect
transversally if and only if U + U’ is positive definite of (maximal) dimension p, while
Cyp and Cyr have a one-dimensional intersection if and only if Cyy € Cyr,i.e., U C U.

THEOREM 5.2. Assume for simplicity that L = Ly + Ly:. Also assume that T is tor-
sion-free so that M has no quotient singularities. For a composite special divisor Cy
(N € N), we have

@) [Cu-CN" =32y 2 oo "1 Lu) deg(N2, Cp);
Ni+N,=N
(i) vol(Cy N Cy)! = KN, Ly)vol(Cyp).

Here
r(N, Ly) =#{x € Ly : g(x) = N}
and
deg(N, Cy) = #I'y\{x € Ly : g(x) = N},

the degree of the Heegner divisor in the modular curve Cy.

Proof. We write Cy = err\LN C,. We decompose x = x| + x; with x| € Ly and
x3 € Lyi. We have Cy C Cy if and only if x; = 0. In the sum defining Cy therefore
exactly the x = x; € Ly of length N contribute to the one-dimensional intersection.
This proves (ii). For (i), each x with g(x;) = N, > 0 contributes. Taking into account
the action of 'y on Ly gives the assertion. |

We certainly have a similar theorem if L does not split along U. If I is not torsion-
free, then we can always pass to a torsion-free subgroup I'” of finite index to obtain
intersection numbers on I"\D. The intersection numbers on I'\D (in the sense of
rational homology manifolds) are then obtained by dividing by the degree of the
covering I'\D — '\ D.

COROLLARY 5.3. Write

o0 o0
I (t,L,Cy) =) e(Ng™ + Y e(N,v)g"
N=0 N=-00

for the Fourier expansion of the above theta integral. Then

c(N) =[Cy - Cnlpp

i.e., the intersection numbers are exactly the Fourier coefficients of the holomorphic part of

I(pV(T’ L’ CU)
Proof. Just write down the Fourier expansion of I, (t, L, Cy) using Theorem 3.5
and 5.1. [
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5.3. HIRZEBRUCH-ZAGIER CASE

As an example we will derive the basic case of the results of Hirzebruch and
Zagier [7] and its (mild) extensions by Franke [5], Hausmann [6] and van der
Geer [23].

Let D > 0 be the discriminant of the real quadratic field K = Q(+/D) over Q, Og
its ring of integers. We denote by x+— x’ the Galois involution on K. We let
V' C M>(K) be the space of skew-Hermitian matrices in M;(K), i.e., which satisfy

the relation ‘X’ = —X. V is a vector space over Q of dimension 4. We let LC V
be the integral skew-Hermitian matrices; that is
D A
L=lx= (2D ca,be’, Je Okt 5.8
{ ( —)  bJD ) a K (5.8)

As usual, the determinant defines a quadratic form on L; we have Q(X) = abD + /1,
which is of signature (2, 2) and has Q-rank 1, i.e., it splits over Q into a hyperbolic
plane and into an anisotropic part of rank 2. SL,(Ok) acts on L by y- X = yX"y’ as
isometries. We let I' be the Hurwitz—Maass extension of SL,(Ok) which is the maxi-
mal discrete subgroup of PGL;F(R)2 containing SL,(Ok) (for a brief discussion of its
definition and properties, see [23]; for example, if D =1 mod4 is a prime, then
I' = SL,(Ok) . This is actually the case Hirzebruch and Zagier considered). Slightly
changing our notation we write S =TI'\D for the Hilbert modular surface. The
Hirzebruch-Zagier cycles T are nothing but our special cycles Cy =" . Ly Cx-
Ty has finitely many components, is nonempty if (N/p) # —1 and is compact if N
is not the norm of an ideal in Og. We can compactify S by adding the cusps and
resolving the singularities thus created. We call this (up to quotient singularities)
nonsingular compact surface S. Now Hz(S') decomposes canonically into as the
direct sum of the image of H,(S) and the subspace generated by the homology cycles
of the curves of the cusp resolution. We denote by T’y the component in the first fac-
tor of Ty. Hirzebruch and Zagier compute the intersection numbers [T5, - T/]
(N, M € IN) and by a direct computation they show that these numbers are the Four-
ier coefficients of a holomorphic modular form of weight 2. In fact, [T, - Ta] is the
sum of the intersection numbers [Ty - T)s]g in the interior and the contribution of
the cusp resolution, and these numbers individually occur as Fourier coefficients
of two nonholomorphic modular forms. For M = 1, one has

_2
(T - Tn)s = Hp(N) = Z H<4N S), (5.9)

D
2 <4N
s*=4Nmod D

where H(N) denotes the class number of positive definite binary quadratic forms, see
Example 3.9. We now recover these results: We consider the curve 77 = C; in our
setting. I' acts transitively on L, the vectors of length 1, see [6,23]. So T} = Cyx,
for any X, € L;. We pick X, = (701 (1)) elL.
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THEOREM 5.4.

1 o 20112 =N\ L
E/T, 0,,(z, L):};)HD(N)qN + i/ﬁ Zﬁ(%(” 5 ) v) 7.

1e0

So the Fourier coefficients of the holomorphic part of the period integral | T, 0p,(z, L) are
the intersection numbers of the cycles Ty and Ty in the ‘interior’of T'\ D.

Proof. First we assume D = 0mod 4, so K = Q(+/d) with d = D/4 square free. In
this case L splits orthogonally:

L=7XyL(LNXy) (5.10)

and

L,]L:Lrw)(éz{\/ﬁ(i‘l’7 Zbc): a,b,ceZ}, (5.11)

which is—up to the scaling—exactly the lattice considered in Example 3.9(i) which
gave rise to Zagier’s Eisenstein series F!. Hence by Theorem 5.1 and Example
3.9(1) we find

Uy(x, L, Ty) = (), (z, L) (5.12)
= 9(v)F(dr) (5.13)

<Z qmz> «
me7,

x <i H(N)g™ + (dv)™"* " p(4nn’dv) q‘l"2> (5.14)
N=0

nez,
N — 52
> (M)
s <N

s*=N(d)

12 @

7 > ) péndn*v) ¢V (5.15)
N=—00

+

n,mez

m?—dn*=N

4N — (29)%\ &
= Hl——
> (e
(25)> <4N
(25)°=4N (4d)

21)_1/2 A— }», 2 297
4 AA .1
+ —_4 ;LEE /3( T (—2 ) U) q (5 6)
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since O ={m+nvd:mne?7). Noting D=4d, the theorem follows for
D =0mod4. The case D = 1 mod4 is slightly more complicated since L does not
split orthogonally so that one has to deal with cosets. We have

LUL:LmXoi:{\/B<_ab i) a,b,ceZ} (5.17)
which is the lattice from Example 3.9(ii)! We set X; = (;5 *{)5) and obtain
L=(ZXy L Ly) & %(Xg—i—X])—{-(ZXO 1L Lyo). (5.18)

The holomorphic part is given by
I o
m n— >k -
(e ) (S ) =33 3 st (519
j=0 \meZ, Jj=0 N=0 m,ne?7,

where the inner summation extends over all integers m and n such that

N 2 .
J J
Y apln_?l)=
(m + 2) + (n 4> N
or, equivalently,

4N — Q2m +j)

dn—j= D

So (5.19) becomes

1 oo ~2
4N — (2
3 D S
J=0 N=0 (21 4/)> < 4N
(2m+)*=4N (D)

-y H(4N = ) e (5.20)

N=0 2 <uan
S2=4N (D)

For the nonholomorphic part, we first note

14++D
2

(’):{m+n :m,ne%}.

For Al=m+n we write A ~ (m, n). Then

1 M\ 2 N
Z(Z q(m-h > (Z(UD)_1/2 Zﬁ(4n<n +%> UD) q_D('H'é) ) (5.21)

=0 \meZ nez

—1/2 1 00
235 ZZ 3 *ﬂ(4n<n+2> Dv) 7, (5.22)
Jj=

0 N=0 m,ne’7
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where the inner sum goes over all m, n such that (m + (j/2))* — D(n — (j/4)) = N.
207112 A=\’
= ﬁ<4n( ) A (5.23)
vD ,ZO: 2 2 2

NEZ jndn—m,2n+j)
IN=N

_ a1\ 2
2315/2 3 ﬂ(4n (J - - ) v) 7, (5.24)
2€e0

as desired. ]

The factor % in the previous theorem occurs as —1 € I', which acts trivially on
D ~ H x H. To obtain the intersection numbers [7Y.Ty] and the holomorphic modu-
lar form of weight 2, one can now apply the holomorphic projection principle onto
le 04, (t, L). This is an idea of van der Geer and (independently) Zagier, which has
been carried out in [23].

Remark 5.5. We see that Theorem 5.1 is the exact generalization of a part of the
results of Hirzebruch—Zagier. One is certainly very interested to obtain complete
analogues of these results. Applying holomorphic projection onto the function
fCu 04, (z, L) in Theorem 5.1 for p > 2 is certainly possible, but this does not have a
priori a geometric interpretation. More promising seems to be an analysis of the
boundary along the lines of the theory of Kudla and Millson. It seems likely that
Eisenstein cohomology will enter the picture at this stage. We hope to come back to
this issue.
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