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Abstract. This paper concerns estimates for periodic solutions of a very general class
of Hamiltonian systems of prescribed energy. The estimtes are a priori upper and
lower bounds for the action integral in terms of the period.

During the past few years, several papers have studied the existence and multiplicity
of periodic solutions of a Hamiltonian system on a prescribed energy surface (see
[l]-[10] and [12]-[17]). One of the difficulties in treating this question is that the
period of such a solution is not known a priori. This note contains simple upper
and lower a priori bounds for the period for a class of such problems which contains
in particular most of the cases considered in [l]-[10] and [12]-[17]. (The remaining
cases such as in [12] can be treated even more easily.)

To state these estimates more precisely, let H eC^R2", R) and p,qeR". The
corresponding Hamiltonian system is

(i) p = -Hq(p,q), (ii) q = Hp{p,q). (1)

To normalize matters, suppose we are interested in periodic solutions of (1) of
energy 1, i.e. the solutions lie on 3) = H~l{\). Assume there exists such a solution
whose period is T( > 0). It is convenient to make the dependence of the equation
on the period explicit. Therefore rescaling the time variable by t^2irT~xt = k~xt,
the period becomes 2ir and (1) transforms to

(i) p = -\Hq(p,q), (ii) q = \Hp(p,q). (2)

Let z = (p, q). The action integral associated with (2J is
f2"A{z) = pqdt.

Our main result is the following:

THEOREM. Suppose H e Cl(R2", R) and satisfies (H,) 2 is the boundary of a compact
neighbourhood of 0 in R2n and Hz( = (Hp, Hq)) * 0 on 2>, (H2) p • Hp(z) > 0 for all
(p, q) eR", p* 0. If'z = (p, q) is a 2v periodic solution of (2) on 2, then there exist
constants a,a>0 and independent of z such that

0<aA(z)<\^aA(z). (3)

Remarks, (i) Note that if H(p, q) = K(p, q)+ V(q), where the potential energy V
satisfies & = {qe R"\V(q)sl} is compact and Vq(q)9i0 on d0l, and the kinetic
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energy K satisfies K(0, q) = 0, p- Kp(p,q)>0 if (p,q)eR" and p*Q, and e.g.
K(ap, q)-><x> as |a|-»oo uniformly for qe9t andpe S"~\ then H satisfies (H,) and
(H2). This special case contains the situations studied e.g. in [2], [7], [9], [13] and

(ii) The upper and lower bounds for A involve the action integral. Experience
has shown that such estimates are intimately related to corresponding existence
results for (1). We conjecture that if (H^ and (H2) hold, there exists a periodic
solution of (1) on 3).

Proof of the theorem. We will first prove (3) for the technically simpler case of
H e C2{R2n, R) and then show how the argument can be modified if H e C1. Note
first that if z(t) is a solution of (2), p(t) cannot vanish identically on any open
interval ^ , for then by (H2) Hp(0, q(t)) = 0 for t e ̂  and (0, q(t)) e 3. Consequently
Hq(0, q(t))*O for teJ by (H,) contrary to (2)(i). It follows that

p(t)-Hp(z{t))dt>0.
Jo

Taking the scalar product of (2)(ii) with p and integrating yields

p-Hp{z)dt. (4)

i:
-if

Jo

Hence A(z)>0 and

J4(Z)<2TTA max £•/*,(£ ij). (5)
U ) e 3

The lower bound for A now follows from (5) and (H2).
Next, taking the scalar product of (2)(i) with Hq(z) shows

r2Ti r2ir

-A \Hq\
2dt=\ p-Hqdt

Jo Jo

f2

= -
Jor= -A p-(HqqHp-HqpHq)dt

J

or

0 = A [ [\Hq\
2 + p • (HqpHq - HqqHp)] dt. (6)

Jo
Multiplying (6) by a parameter b to be chosen later and adding to (4) gives

f2]r

A(z) = \ [p-Hp + b\Hq\
2+bp(HqpHq-HqqHp)dt. (7)

Jo
By (H,) and (H2) again, there is a constant -y>0 such that

Therefore, by the continuity of Hq, there is a constant o->0 such that

|s«r. (8)
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Decreasing a if necessary, it can also be assumed that

If- (Hv({)Hq({)-Hn({)H,({))\*y2/S (9)

if f = (f,i,)eS and |f|scr. Let T^U e t O ^ H ^ ) ! ^ } , T2-[0,27r]\r, and
/ = |T,|, where |B| denotes the Lebesgue measure of the set B. By (H2), (8) and (9),

/, - [ [p • Hp + b\Hq\
2+bp • (HqpHq -HqqHp)] dt- | Wdt

JT, JT,

Letting

M) = max

and

w = (2M,)~1 min £• Hp(£),

it follows that

72= S€ dt > (2v -1) M,(2w -ft). (11)

Choosing ft = «J yields

(12)

Since

A"1A(z) = 71 + /2 , (13)

(10) and (12) imply

and the upper bound for A in (3) follows from (14). Thus (3) is proved for He C2.
An examination of the above argument shows a depends on C1 bounds for H

on 2 while a depends on M, and therefore on C2 bounds for H on 3). Consequently
a better upper bound for A is needed to establish the C1 version of (3). Let W(z)
be a C1 function in a neighbourhood of 3) with values in R". Taking the scalar
product of (l)(i) with W and arguing as in (6) yields

0 = A
Jo

[H,(z) • W(z)+/»- (Wp(z)Hq(z)- Wq(z)Hp(z))] dt. (15)

Suppose W satisfies

HqU)>y2 (16)

if £ = (0, 7}) e 2>. Then choosing a so that

if £ = (i, TJ) e 3) and |£| < o- and arguing as in (9)-(14) gives

r2/8,M1), (17)
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where

M,-f_max9 \t-(Wp(£)HqU)-WqU)Hp(tf)\

and

(S = (2M,)"1 min tj-Hp(£).

Thus (3) is established for this case provided that there exists a C1 function W
satisfying (16).

A simple way to obtain W is to use a notion due to Palais [11]. If £ is a real
Banach space, €<^E is open and ®&C\C, R), then weE is said to be a
pseudogradient vector for 4> at e e 6 if

(i) H|E:s2| |* '(e)IU., (ii) <*'(*), w>£.,E>||<I>'(e)Ills (18)

where (•,•) denotes the pairing between E* and E. If ®eC\E, R),
E = {ee E\&'(e) — 0}, W(e) is a pseudogradient vector for <I> for all ee E and W
is locally Lipschitz continuous on E, then W( •) is called a pseudogradient vector
field on E. Palais proved [11]:

LEMMA. If <S>e C1(E, R), there exists a pseudogradient vector field Wfor $ on E.

Choosing E = R" and <I> = H(0, q), this lemma implies there is a pseudogradient
vector field W(q) for H(0, q) on E. By (H,), |H,(£) | s y > 0 for £ = (0,77) e ®. Hence
£ n {9 e R" I (0, 9) e 2)} = 0 and by (18)(ii)

for (0, 7j)e3) so (16) holds. Finally the proof of the lemma shows that if one uses
a smooth partition of unity in the construction given there, W is smooth and in
particular can be assumed to be C1.
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