ON AN INVERSION FORMULA FOR THE LAPLACE TRANSFORMATION, II

P. G. ROONEY

In an earlier paper (3) we discussed at some length a certain inversion operator for the Laplace transformation. If

I
$$f(s) = \int_0^\infty e^{-st} \phi(t) dt = \mathcal{L}(\phi(t); s)$$

then the inversion operator is given by

II
$${}^{\nu}L_{k,\,t}[f(s)] = \frac{k^{3/2}e^{2k}}{t\pi^{\frac{1}{2}}} \int_{0}^{\infty} x^{\frac{1}{2}\nu} J_{\nu}(2kx^{\frac{1}{2}}) f\left(\frac{k(x+1)}{t}\right) dx,$$

and we showed that if $\nu > -1$, then under certain conditions

$$\lim_{k\to\infty} {}^{\nu}L_{k,\,t}[f(s)] = \phi(t).$$

It is our purpose here to discuss the behaviour of the operator for $\nu \leqslant -1$. It is clear that if $\nu \leqslant -1$ and ν is not an integer, the operator will not exist. For, by (2, §7.2.1, (2)),

$$x^{\frac{1}{2}\nu} J_{\nu}(2kx^{\frac{1}{2}}) = (kx)^{\nu}(1+o(1))/\Gamma(\nu+1), \qquad x \to 0+,$$

if ν is not a negative integer. However, if ν is a negative integer, $\nu = -n$, a different situation appears, for, by (2, §7.2.4, (24)), $J_{-n}(z) = (-1)^n J_n(z)$, and hence

$$x^{-\frac{1}{2}n}J_{-n}(2kx^{\frac{1}{2}}) = (-1)^n k^n (1+o(1))/n!$$
 $x \to 0+.$

Thus there is some prospect of the operator existing in this case.

It will transpire that the operator will exist if $\nu = -n$, under certain hypotheses on $\phi(t)$, and that a suitable modification of the operator will invert the transformation. The theory is contained in the following two theorems.

We make use of the notation

$$\int_0^{\infty} \phi(u) \ du$$

to denote the 'Improper' Lebesgue integral. That is,

$$\int_0^{\infty} \phi(u) \ du = \lim_{R \to \infty} \int_0^R \phi(u) \ du.$$

Also we define,

III
$${}^{\nu}\overrightarrow{L_{k,\,t}}[f(s)] = \frac{k^{3/2}e^{2k}}{t\pi^{\frac{3}{2}}} \int_{0}^{+\infty} x^{\frac{1}{2}\nu} J_{\nu}(2kx^{\frac{1}{2}}) f\left(\frac{k(x+1)}{t}\right) dx.$$

Received February 7, 1955. This paper is based on work done at the Summer Research Institute of the Canadian Mathematical Congress.

THEOREM 1. If $e^{-\gamma t}\phi(t) \in L(0, \infty)$, $\gamma > 0$, then

$${}^{-n}\overrightarrow{L_{k,t}}[f(s)]$$

exists for each t > 0 and all $k > \gamma t$, (n = 1, 2, ...), and

$${}^{-n}\overrightarrow{L_{k,\,t}}[f(s)] = (-t)^{-n} {}^{0}L_{k,\,t}[f^{(n)}(s)] - \frac{(-1)^{n-1}k^{n+\frac{1}{2}}e^{2k}}{\pi^{\frac{1}{2}}} \sum_{r=1}^{n} \frac{(kt)^{-r}}{(n-r)!} f^{(r-1)}\left(\frac{k}{t}\right).$$

Proof. By (1; ch. 3, §2), $f^{(n)}(s) = L((-t)^n \phi(t); s)$, $s > \gamma$, and thus, by (3, Theorem 2.1), ${}^{0}L_{k,l}[f^{(n)}(s)]$ exists for $k > \gamma t$ (n = 1, 2, ...).

Let $k > \gamma t$. Then, since

$$\frac{d}{dz} J_0(z) = - J_1(z) = J_{-1}(z),$$

and since $J_0(z)$ and $f(z) \to 0$ as $z \to \infty$, we obtain on integrating by parts,

$$^{0}L_{k,t}[f'(s)] = \frac{k^{3/2}e^{2k}}{t\pi^{\frac{1}{3}}} \int_{0}^{\infty} J_{0}(2kx^{\frac{1}{2}}) f'\left(\frac{k(x+1)}{t}\right) dx
= \frac{k^{3/2}e^{2k}}{t\pi^{\frac{3}{2}}} \left\{ \frac{t}{k} J_{0}(2kx^{\frac{1}{2}}) f\left(\frac{k(x+1)}{t}\right) \Big|_{0}^{\infty} - t \int_{0}^{+\infty} x^{-\frac{1}{2}} J_{-1}(2kx^{\frac{1}{2}}) f\left(\frac{k(x+1)}{t}\right) dx \right\}
= -\frac{k^{\frac{1}{2}}e^{2k}}{\pi^{\frac{1}{2}}} f\left(\frac{k}{t}\right) - t \cdot {}^{-1}\overrightarrow{L}_{k,t}[f(s)],$$

which is the stated result for n = 1.

We now proceed by induction. Assuming the result true for n, we have, since $f'(s) = \mathcal{L}(-t \phi(t); s)$ for $s > \gamma$, that

$${}^{-n}\overrightarrow{L_{k,t}}[f'(s)]$$

exists for $k > \gamma t$ and equals

$$(-t)^{-n} {}^{0}L_{k,t}[f^{(n+1)}(s)] - \frac{(-1)^{n-1}k^{n+\frac{1}{2}}}{\pi^{\frac{1}{2}}} \sum_{r=1}^{n} \frac{(kt)^{-r}}{(n-r)!} f^{(r)}\left(\frac{k}{t}\right).$$

Then, for $k > \gamma t$, since, by (2, §7.2.8, (51))

$$\frac{d}{dz}z^{-n}J_{-n}(z) = z^{-n}J_{-(n+1)}(z)$$

and $J_{-n}(z)$ and $f(z) \to 0$ as $z \to \infty$, we have, on integration by parts, that

$$\begin{array}{l}
^{-n}\overrightarrow{L}_{k,\,t}[f'(s)] &= \frac{k^{3/2}e^{2k}}{t\,\pi^{\frac{1}{2}}} \int_{0}^{\infty} x^{-\frac{1}{2}n} J_{-n}(2kx^{\frac{1}{2}}) f'\left(\frac{k(x+1)}{t}\right) dx \\
&= \frac{k^{3/2}e^{2k}}{t\,\pi^{\frac{1}{2}}} \left\{ \frac{t}{k} \, x^{-\frac{1}{2}n} J_{-n}(2kx^{\frac{1}{2}}) f\left(\frac{k(x+1)}{t}\right) \right|_{0}^{\infty} - t \int_{0}^{\infty} x^{-\frac{1}{2}(n+1)} J_{-(n+1)}(2kx^{\frac{1}{2}}) \\
&= -\frac{(-1)^{n}k^{n+\frac{1}{2}}e^{2k}}{t^{\frac{1}{2}n!}} - t \cdot \frac{-(n+1)}{L_{k,\,t}} [f(s)].
\end{array}$$

Hence,

$$\begin{array}{l}
\stackrel{-(n+1)}{\overrightarrow{L}_{k,\,t}}[f(s)] = -t^{-1} \cdot \stackrel{-n}{\overrightarrow{L}_{k,\,t}}[f'(s)] - \frac{(-1)^{n}k^{n+\frac{1}{2}}e^{2k}}{t\pi^{\frac{1}{2}}n!}f\left(\frac{k}{t}\right) \\
= (-t)^{-(n+1)} {}^{0}L_{k,\,t}[f^{(n+1)}(s)] + \frac{(-1)^{n-1}k^{n+\frac{1}{2}}e^{2k}}{t\pi^{\frac{1}{2}}}\sum_{r=1}^{n}\frac{(kt)^{-r}}{(n-r)!}f^{(r)}\left(\frac{k}{t}\right) \\
- \frac{(-1)^{n}k^{n+\frac{1}{2}}e^{2k}}{t\pi^{\frac{1}{2}}n!}f\left(\frac{k}{t}\right) \\
= (-t)^{-(n+1)} {}^{0}L_{k,\,t}[f^{(n+1)}(s)] - \frac{(-1)^{n}k^{n+3/2}e^{2k}}{\pi^{\frac{1}{2}}}\sum_{r=1}^{n+1}\frac{(kt)^{-r}}{(n+1-r)!}f^{(r-1)}\left(\frac{k}{t}\right).
\end{array}$$

Hence the formula is true for all n.

COROLLARY. If $e^{-\gamma t} \phi(t) \in L(0, \infty)$, $\gamma > 0$, and if $t^{-\frac{1}{4}} \phi(t) \in L(0, \delta)$, then $-{}^{-1}L_{k,t}[f(s)]$ exists and

$${}^{-1}L_{k,\,t}[f(s)] = -t^{-1}{}^{0}L_{k,\,t}[f'(s)] - \frac{k^{\frac{1}{2}}e^{2k}}{\pi^{\frac{1}{2}}t}f\left(\frac{k}{t}\right).$$

If $e^{-\gamma t}\phi(t) \in L(0, \infty)$, $\gamma > 0$, then ${}^{-n}L_{k,t}[f(s)]$ exists for $n = 2, 3, \ldots$, and

$${}^{-n}L_{k,\,t}[f(s)] = (-t)^{-n} {}^{0}L_{k,\,t}[f^{(n)}(s)] - \frac{(-1)^{n-1}k^{n+\frac{1}{2}}e^{2k}}{\pi^{\frac{1}{2}}} \sum_{r=1}^{n} \frac{(kt)^{-r}}{(n-r)!} f^{(r-1)}\left(\frac{k}{t}\right).$$

Proof. The existence of ${}^{-n}L_{k,t}[f(s)]$ under the various hypotheses follows exactly as in (3, Theorem 2.1). The stated relations now follow from Theorem 1, since

$$\stackrel{-n}{\overrightarrow{L_{k,t}}}[f(s)] = \stackrel{-n}{\overrightarrow{L_{k,t}}}[f(s)]$$

when both exist.

THEOREM 2. If $e^{-\gamma t}\phi(t) \in L(0, \infty)$, $\gamma > 0$, then at each point t > 0 of the Lebesgue set of ϕ ,

$$\lim_{k \to \infty} \left\{ -n \overrightarrow{L}_{k, t}[f(s)] + \frac{(-1)^{n-1} k^{n+\frac{1}{2}} e^{2k}}{\pi^{\frac{1}{2}}} \sum_{r=1}^{n} \frac{(kt)^{-r}}{(n-r)!} f^{(r-1)} \left(\frac{k}{t}\right) \right\} = \phi(t).$$

Proof. This now follows from Theorem 1, and Theorem 3.1 of (3).

COROLLARY. If $e^{-\gamma t}\phi(t) \in L(0, \infty)$, $\gamma > 0$, and if $t^{-\frac{1}{2}}\phi(t) \in L(0, \delta)$, for some $\delta > 0$, then at each point t > 0 of the Lebesgue set of ϕ ,

$$\lim_{k \to \infty} \left\{ ^{-1} L_{k, t}[f(s)] + \frac{k^{3/2} e^{2k}}{\pi^{\frac{1}{2}} t k} f\left(\frac{k}{t}\right) \right\} = \phi(t).$$

If $e^{-\gamma t}\phi(t)\in L(0,\,\infty),\,\gamma>0$, then at each point t>0 of the Lebesgue set of ϕ ,

$$\lim_{k\to\infty}\left\{{}^{-n}L_{k,\,t}[f(s)] + \frac{(-1)^{n-1}k^{n+\frac{1}{2}}e^{2k}}{\pi^{\frac{1}{2}}}\sum_{r=1}^{n}\frac{(kt)^{-r}}{(n-r)!}f^{(r-1)}\left(\frac{k}{t}\right)\right\} = \phi(t)$$

for n = 2, 3, ...

Proof. This now follows from the corollary to Theorem 1, and Theorem 3.1 of (3).

REFERENCES

- 1. G. Doetsch, Handbuch der Laplace-Transformation, vol. 1 (Basel, 1950).
- 2. A. Erdélyi, *Higher transcendental functions* (Bateman Manuscript Project, Vol. 2, New York, 1954).
- 3. P. G. Rooney, On an inversion formula for the Laplace transformation, Can. J. Math., 7 (1955), 101-115.

University of Toronto