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Abstract
The attitude-tracking problem of hypersonic morphing vehicles (HMVs) is investigated in this research. After
introducing variable-span wings, the optimal aerodynamic shape is available throughout the entire flight mission.
However, the morphing wings cause significant changes in aerodynamic coefficients and mass distribution, chal-
lenging the attitude control. Therefore, a complete design procedure for the flight control system is proposed to
address the issue. Firstly, the original model and the control-oriented model of HMVs are built. Secondly, in order
to eliminate the influence caused by the multisource uncertainties, an adaptive fixed-time disturbance observer
combined with fuzzy control theory is established. Thirdly, the fixed-time control method is developed to stabilise
hypersonic morphing vehicles based on a multivariable sliding mode manifold. The control input can be obtained
directly. Finally, the effectiveness of the proposed method is proved with the help of the Lyapunov theory and
simulation results.

Nomenclature
HMV Hypersonic morphing vehicle
HFV Hypersonic flight vehicle
ADRC Active disturbance rejection control
FDO Fixed-time disturbance observer
AFFDO Adaptive fuzzy fixed-time disturbance observer
FTC Fixed-time control

1.0 Introduction
One of the strengths of hypersonic morphing vehicles (HMVs) is their adaptation to various flight mis-
sions and environments [1]. Compared with conventional hypersonic flight vehicles (HFVs), HMVs
constantly change their aerodynamic shape to obtain optimal aerodynamic characteristics [2, 3].
Further, the acquired aerodynamic forces and moments are conducive to enhancing flight efficiency
and manoeuverability [3].

However, it is frustrating that the design procedure of the control system is more difficult after
introducing the span morphing technology into HFVs [4]. The significant changes in aerodynamic char-
acteristics demand strong robustness and adaptation of the control system [5]. Moreover, the properties,
such as the mass distribution, the inertia of moment, and additional moments, vary rapidly, significantly
impacting the attitude control. When HMVs perform a flight mission with continuous span morphing,
the multisource uncertainties that consist of external disturbances, un-modelled aerodynamics, and
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aerodynamic perturbation may cause crucial control issues [6, 7]. Therefore, it is necessary to con-
sider the impact of the multisource uncertainties since the control failure may occur in the morphing
phase.

The anti-disturbance methods are long-term developed for robustness enhancement [8, 9]. Worldwide
researchers propose many disturbance compensation methods, such as active disturbance rejection
control (ADRC) and adaptive compensator [10, 11]. Some other researchers take full advantage of robust
controllers to passively suppress disturbances. The observers-based method is regarded as an active
way to compensate for the disturbance, which is popular in the controller design for HMVs [12, 13].
The commonly used methods are nonlinear disturbance observer and extended state observer [14]. Both
disturbance estimation strategies are introduced in the flight control system for disturbance compensation
[15]. Though the conventional nonlinear disturbance observer has achieved fruitful applications, there
still exists opportunities to enhance the performance [16]. The first point is combining the disturbance
observer with the fixed/finite-time control method to achieve a fast and high-accuracy anti-disturbance
attitude control system [17]. The other is introducing intelligent control methods, such as a fuzzy logic
system, neural network, and iterative learning method, to increase the intelligent level of flight control
[18, 19]. Such research motivates us to develop a novel fixed-time disturbance observer (FDO), named
adaptive fuzzy fixed-time disturbance observer (AFFDO) [20–23].

The most important work is to design a robust controller for attitude angle tracking, which is espe-
cially demanded in morphing phases. It is necessary to make deliberate choices, even though a large
selection of control methods is available for HFVs [24, 25]. The sliding mode control is always adopted
to develop robust controllers for hypersonic vehicles because of its robustness. In past decades, the
asymptotically stable system theory has always been chosen in sliding mode flight controllers. To
enhance the convergence performance, finite/fixed-time stability is developed [26]. The fixed-time con-
trol (FTC) method stands out because of its outstanding convergence rate and the scalable controller
structure [27]. Moreover, unlike the finite-time control method, the fixed-time controller forces the
closed-loop system to converge in the fixed time, which is related to some controller parameters instead
of the initial value of the HMV system [28, 29]. Therefore, combining the sliding mode control and
fixed-time control is a wise way to derive a robust controller [30].

Based on the above discussions, this paper focuses on proposing a fixed-time control technique inte-
grated with the anti-uncertainty technique for the hypersonic morphing vehicle. Strong robustness is
demanded to deal with the multisource uncertainties and the rapid aerodynamic characteristics variation
in the morphing phase. Therefore, a fixed-time controller combined with an adaptive fuzzy fixed-time
disturbance observer is presented for HMVs. Hypersonic flights in morphing phases is adopted to build
the test scenario since the aerodynamic changes are significant. The major contributions in this paper
are as follows.

1) A fixed-time flight control strategy is developed for HMVs. The designed procedure fully utilises
the multivariable sliding mode manifold and homogenous system theory. Unlike the traditional
fixed-time methods [37], the proposed controllers will lead to a more explicit settling time instead
of a complex expression with many parameters. Thus, one can pre-assign the settling time in the
controller design.

2) An adaptive fuzzy fixed-time disturbance observer is developed. The multisource uncertainty can
be exactly estimated. Unlike the super-twisting algorithm-based fixed-time disturbance observer
[37], the designed disturbance observer does not require the knowledge of disturbance deriva-
tives. Thus, the application of the AFFDO in actual hypersonic flights with unknown disturbances
could be promoted.

3) The proposed control design scheme gets rid of the decoupling issue, and the control input is
directly obtained instead of traditional inner-loop and outer-loop designs.

4) Since the aerodynamic changes are significant, hypersonic flights in the continuous morphing
stage are employed to build the simulation case. By using the simulations, the performance will
be analysed.
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2.0 Preparations and system transformation
2.1 Model of hypersonic morphing vehicle
This section introduces the hypersonic vehicle model with morphing-span wings. The effect of variable
span wings is included in the aerodynamics. Meanwhile, all the configurations can be found in [1].

2.1.1 Model of hypersonic morphing vehicle
The model of the hypersonic morphing vehicle is given below.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α̇ = −ωx cos α tan β +ωy sin α tan β

+ωz − L

mV cos β
+ g

V cos β
cos θ cos γV

β̇ =ωx sin α +ωy cos α + N

mV
+ g

V
cos θ sin γV

γ̇V =ωx cos α sec β −ωy sin α sec β

+ (tan β + tan θ sin γV) L + N tan θ cos γV

mV

+ g

V
cos θ tan β sin γV

(1)

⎧⎪⎨
⎪⎩
ω̇x = I−1

x (Mx + Msx)+ I−1
x

(
Iy − Iz

)
ωyωz − I−1

x İxωx

ω̇y = I−1
y

(
My + Msy

)+ I−1
z (Iz − Ix) ωzωx − I−1

y İyωy

ω̇z = I−1
z (Mz + Msz)+ I−1

z

(
Ix − Iy

)
ωxωy − I−1

z İzωz

(2)

where α, β and γV represent the attack angle, sideslip angle and bank angle, respectively. ωx,ωy and
ωz indicate the rolling angle rate, yawing angle rate and pitching angle rate, respectively. L, D and N
represent the lift force, the drag force and the lateral force. V , m and g denote the flight velocity, the
mass and the gravitational acceleration. Mx, My and Mz stand for the roll, yaw, pitch moment. Msx, Msy

and Msz are the additional moments directly caused by the span variant. Ix, Iy and Iz are roll, pitch and
yaw moment of inertia. The forces and moments can be described as follows.⎧⎪⎪⎨

⎪⎪⎩
L = qS0C̄L

D = qS0C̄D

N = qS0C̄N

(3)

⎧⎪⎨
⎪⎩

Mx = qS0L1m̄x

My = qS0L1m̄y

Mz = qS0L2m̄z

(4)

where m̄x, m̄y and m̄z represent the equivalent roll, yaw and pitch moment coefficient, respectively. C̄L, C̄N

and C̄D denote the equivalent aerodynamic force coefficients. q is dynamic pressure.
The aerodynamic parameters are listed as⎧⎪⎪⎨

⎪⎪⎩
C̄i(ξ)= S(ξ)Ci(ξ)

S0

, i = L, D, N

m̄i(ξ)= S(ξ)mi(ξ)

S0

, i = x, y, z

(5)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C̄L = Cδx
L,Ma,α · δx,L + C

δy
L,Ma,α · δy,L + Cδz

L,Ma,α · δz,L + Cξ

L,Ma,α · ξ L

C̄D = Cδx
D,Ma,α · δx,D + C

δy
D,Ma,α · δy,D + Cδz

D,Ma,α · δz,D + Cξ

D,Ma,α · ξD

C̄N = Cβ

N,Ma,α · βN + C
δy
N,Ma,α · δy,N

m̄x = mβ

x,Ma,α · βmx + mδx
x,Ma,α · δx,mx

m̄y = mβ

y,Ma,α · βmy + m
δy
y,Ma,α · δy,my

m̄z = mδx
z,Ma,α · δx,mz + mδz

z,Ma,α · δz,mz + mξ

z,Ma,α · ξmz

(6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δx,L = [
1 δ2

x

]T
, δy,L = [

δy δ2
y δ3

y

]T
, δz,L = [

δz δ2
z

]T

δx,D = [
1 δ2

x

]T
, δy,D = [

βδy δ2
x

]T
, δz,D = [

δz δ2
z

]T

δy,N = δy, βN = β

δx,mx = δx, βmx = β

δy,my = δy, βmy = β

δx,mz = [
1 δ2

x δ4
x

]T
, δz,mz = [

δz δ2
z

]T

ξ L = [
1 ξ

]T
, ξD = [

ξ ξ 2
]T

, ξmz = [
ξ ξ 2 ξ 3 ξ 4 ξ 5

]T

(7)

where ξ and Ma denote the span morphing rate and Mach. δx, δy and δz represent the roll elevator
deflection, yaw elevator deflection and pitch elevator deflection.

In this paper, the aerodynamic forces and moments are simplified as⎧⎨
⎩

L = qS0C̄α
Lα +	L

N = qS0C̄β

N +	N

(8)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Mx = qS0L1

(
m̄β

xβmx + m̄δx
x δx

)+	Mx

My = qS0L1

(
m̄β

yβmx + cδy

)+	My

Mz = qS0L2m̄z

(
m̄α

z α + m̄δz
z δz

)+	Mz

(9)

where α = [ 1 α α3 ]T. C�α
L is the partial derivative vector of the lift coefficient for the attack angle.C̄β

N

is the partial derivative of the lateral coefficient for sideslip angle. m̄β
x , m̄β

y and m̄α

z stand for the partial
derivatives of three-axis moment coefficients. m̄δx

x , m̄
δy
y and m̄δz

z represent the partial derivatives of the
three-axis moment coefficients for the corresponding elevator deflections. 	L, 	N , 	Mx , 	My and 	Mz

represent the inaccuracies in building the model of lift force, drag force, roll moment, yaw moment and
pitch moment, respectively.

A scenario has revealed that a complete span morphing leads to a dramatic aerodynamic coefficient
change [1]. The results show that the hypersonic morphing vehicle is confident in obtaining much more
than 40% moment coefficient increasements in the designed test. The span morphing is a feature of
the model. The hypersonic morphing vehicle is able to obtain a great aerodynamic characteristic range,
leading to a significantly improved flight envelope. In order to design a robust controller, we should
carefully prepare the work.

2.2 Control-oriented model for hypersonic morphing vehicle
The model described by can be divided into two parts. One is the attitude angle subsystem, the other is
the angular rate subsystem. The control-oriented model is shown as follows.
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{
ẋ1 = f 1 + x2 + d1

ẋ2 = f 2 + g2u + d2

(10)

g1 =
⎡
⎢⎣

1 sin α tan β − cos α tan β

0 cos α sin α

0 − sin α sec β cos α sec β

⎤
⎥⎦

f 1(x1, x2)= 1

mV

⎡
⎢⎣

−L sec β + mg sec β cos θ cos γV

N + mg cos θ sin γV

(tan β + tan θ sin γV) L + N tan θ cos γV

⎤
⎥⎦+ 1

V

⎡
⎢⎣

0

0

g cos θ tan β sin γV

⎤
⎥⎦+ (

g1 − I
)

x2

g2 =

⎡
⎢⎢⎣

I−1
z QS0L2m̄δz

z

I−1
y QS0L1m̄

δy
y

I−1
x QS0L1m̄δx

x

⎤
⎥⎥⎦

f 2(x1, x2)=
⎡
⎢⎣

I−1
z QS0L2m̄α

z α+ I−1
z

(
Ix − Iy

)
ωxωy

I−1
y QS0L1m̄β

yβmx + I−1
y (Iz − Ix) ωxωz

I−1
x QS0L1m̄β

xβmx + I−1
x

(
Iy − Iz

)
ωyωz

⎤
⎥⎦

where x1 = [α β γV ]T, x2 = [ωz ωy ωx ]T, u = [ δz δy δx ]T. di, i = 1, 2 include the model inac-
curacies, external disturbances, the moment of inertia changes and the additional forces and moments.

Further, in order to make tracking error converge within fixed time, the following transformation is
introduced.

ż1 = ẋ1 − ẋ1c = f 1 + x2 + d1 − ẋ1c (11)

Defining z2 = f 1 + x2 − ẋ1c, and �1 = d1 yields

ż1 = z2 +�1 (12)

ż2 = ḟ 1 + f 2 + g2u + d21 + d22 − ẍ1c (13)

Let F = ḟ 1 + f 2 − ẍ1c, G = g2, �2 = d21 + d22, the model is given as{
ż1 = z2 +�1

ż2 = F + Gu(t)+�2

(14)

3.0 Controller design
Based on the previous discussion, the controller design work for such a nonlinear HMV system with mul-
tisource uncertainties is challenging. The hypersonic morphing vehicle can fully utilise the aerodynamic
characteristic adjustment caused by wingspan morphing according to the mission and environment.
However, the dramatic changes in aerodynamic characteristics demand a controller with outstanding
robustness. It is necessary to consider the influence of the multisource uncertainties in the morphing
phase because of the flight mission requirement.

The main work in this section is listed as:

1) The high-accuracy tracking performance and the closed-loop stability are ensured for the HMV
system with the help of the proposed controller method.
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Figure 1. Controller diagram.

2) The fuzzy fixed-time disturbance observer ensures the accurate estimation of the multisource
uncertainties.

The controller architecture is shown in Fig. 1.

3.1 Preparations for controller design
3.1.1 Assumptions for controller design
The following assumptions are proposed.

Assumption 1 ([31]). The disturbances are bounded, and the maximum value satisfies∣∣dij

∣∣≤ Dij (15)

Assumption 2 ([32]). The nonlinear functions fij, i = 1, 2 , j = 1, 2, 3 are smooth.

3.1.2 Definitions

Definition 1. Considering the following nonlinear system

ẋ(t)= f (x(t)) (16)

The system is said to be fixed-time stable, if for any x(0) ∈
, the solution of the system converges
to the origin within a finite time T , and the settling time is bounded T ≤ Tmax and independent of initial
conditions.

Definition 2 ((33)). A function or a vector field is said to be homogenous in the bi-limit if it is
homogenous in 0-limit and ∞ − limit simultaneously.

3.1.3 Lemmas

Lemma 1 ([31]). For the system (16) and a positive function V(x), if there exist some positive
parameters 1<m< 2, n = 2 − m, l = θ

(m−1)Tc
, such that

V̇

k
≤ − θ

(m − 1) Tc

V
1+m

2 − 1

(m − 1) Tc

V
1+n

1 (17)

then, the trajectory of the system is fixed time stable with a settling time T ≤ 2k−1Tc.
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Proof. The following transformation is employed.

V̇

k
≤ − θ

(m − 1) Tc

V

1 + m

2 − 1

(m − 1) Tc

V

1 + n

1

= − 1

(m − 1) Tc

⎛
⎝θV

1 + m

2 + V

3 − m

2

⎞
⎠

= − 1

(m − 1) Tc

(
θVm−1 + 1

)
V

3 − m

2

(18)

Defining V̄ = θ
1
2 V

m−1
2 leads to

dV

dt
≤ − k

(m − 1) Tc

(
V̄2 + 1

)
V

3−m
2 (19)

2Tc

kθ
1
2

V̄(t)∫
V̄(t=t0)

dV̄

V̄2 + 1
≤ t0 − t (20)

By introducing the function tan(x), one has

arctan
[
V̄(t)

]≤ arctan
[
V̄(t0)

]+ kθ
1
2

2Tc

(t0 − t) (21)

By using V̄(t)= 0, the settling time is given by

T ≤ 2Tc

kθ
1
2

arctan
[
V̄(t0)

]≤ πTc

kθ
1
2 1

= k−1θ− 1
2πTc (22)

Choosing parameter θ 1
2 ≥ π

2
discloses

T ≤ 2k−1Tc (23)

Therefore, the fixed-time convergence is revealed.

Lemma 2 ([33]). For system (16), suppose that the vector f (x) is homogeneous in the bi-limit with
associate triples

(
rp, dgp, fp

)
, p = 0 or p = ∞. If the origins of the system ẋ(t)= f (x(t)), ẋ0(t)= f0(x(t))

and ẋ∞(t)= f∞(x(t)) are global asymptotically stable, then the origin of the system is fixed-time stable
in the condition of dg∞ > 0> dg0.

3.2 AFFDO design
Fuzzy logic system is introduced in the disturbance observer design. The fuzzy rules take the following
form [31]:

RULEj : IF x1 is Aj
1 and . . . and xn is Aj

n

THEN y is Bj

where Aj
1, . . . , Aj

n are the fuzzy sets and Bj is the output of the jth fuzzy rules. This research employs the
centre-of-gravity defuzzification method to build the output of the fuzzy system.

y =

m∑
j=1

Ej

(
�n

i=1
Aj
i
(xi)

)
m∑

j=1

(
�n

i=1
Aj
i
(xi)

) (24)
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where 
Aj
i
(xi) is the fuzzy membership function of variables xi and κj is a singleton fuzzy output value.

m is the number of fuzzy rules. Based on the discussion shown above, the output of the fuzzy system is
given by

y = κTψ(x) (25)

where κ = [
κ1 · · · κj · · · κm

]T is the adjustable parameter vector. ψ = [
ψ1 · · ·ψj · · ·ψm

]T is the fuzzy
basic function vector that is revealed as

ψj =
�n

i=1
Aj
i
(xi)

m∑
j=1

(
�n

i=1
Aj
i
(xi)

) (26)

Recalling the results of fuzzy control theory, any real continuous function f (x) defined in a compact
set Sc can be approximated by sup

x∈Sc

∣∣ηTψ(x)− f (x)
∣∣< ε after applying the fuzzy logic system, where

ε > 0 is a small constant.
Based on the above analysis, we employ a fixed-time technique-based adaptive fuzzy fixed-time

disturbance observer to estimate the multisource uncertainties and the terms that are difficult to obtain.
The scalar form is adopted to simplify the observer design procedure for z1 = [

z11 z12 z13

]T. The
state and disturbance observers are designed as

˙̂z1i =
(
z̃2

1i + 1
)

sgn(z̃1i)�1i + h1i (27)

�1i =
[
λ1,1|arctan(z̃1i)|p1 + λ1,2|arctan(z̃1i)|q1+λ1,3|sgn(z̃1i)|

]
(28)

where h1i = z2i + 	̂1i and 	̂1i is the i-th element of the disturbance estimation �1 in model (14).
According to the universal approximation feature of the fuzzy logic system, we get

	1i = 	̂1i

(
x
∣∣κ∗

1i

)+ ε1i (29)

where κ∗
1i represents the optimal value of κ1i. ε1i is the estimation errors of the fuzzy logic system. By

usingψ 1i(x) to indicate the fuzzy basic functions, the optimal and nominal estimation of the disturbance
can be expressed as

	̂1i

(
x
∣∣κ∗

1i

)= κ∗T
1i ψ1i(x) (30)

	̂1i

(
x
∣∣κ̂1i

)= κ̂
T
1iψ1i(x) (31)

where x in the function ψ1i(x) stands for the states in model (10).
Thus, the estimation error is defined as

z̃1i = z1i − ẑ1i (32)

Thus, the adaptive law is given by

˙̂κ1i = λ1,4

[
λ1,5|arctan(z̃1i)|μ1

sgn(z̃1i)

1 + z̃2
1i

ψ1i − λ1,6κ̂1i

]
(33)

where μ1 > 1.
The state and disturbance observer for z2 = [

z21z22z23

]T is developed as follows.
˙̂z2i =

(
z̃2

2i + 1
)

sgn(z̃2i)�2i + h2i (34)

�2i =
[
λ2,1|arctan(z̃2i)|p2 + λ2,2|arctan(z̃2i)|q2 + λ2,3|sgn(z̃2i)|

]
(35)

where h2i = Fi + (Gu)i + 	̂2i. 	̂2i is the i-th element of the disturbance estimation �2 in model (14).
Employing the fuzzy logic system leads to

	2i = 	̂2i

(
x
∣∣κ∗

2i

)+ ε2i (36)
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where κ∗
2i is the optimal value of κ2i. ε2i is the estimation error of the fuzzy logic system. The optimal

and nominal estimation of the disturbance can be expressed as

	̂2i

(
x
∣∣κ∗

2i

)= κ∗T
2i ψ2i(x) (37)

	̂2i

(
x
∣∣κ̂2i

)= κ̂
T
2iψ 2i(x) (38)

where ψ 2i(x) is the fuzzy basic functions.
Thus, the estimation error is indicated by

z̃2i = z2i − ẑ2i (39)

One can design the adaptive law as follows.

˙̂κ2i = λ2,4

[
λ2,5|arctan(z̃2i)|μ2

sgn(z̃2i)

1 + z̃2
2i

ψ 2i − λ2,6κ̂2i

]
(40)

where μ2 > 1.
Now, the fixed-time observers are successfully developed, where pi > 1, 1> qi > 0. λij, i = 1, 2.j =

1, 2, 3, 4, 5, 6 are positive.

3.3 Fuzzy sliding mode controller design
The fixed-time control theory is adopted since the expression of control input can be directly obtained,
and the convergence performance can be verified by the Lyapunov theory.

The multivariable fuzzy sliding mode manifold is designed as

S(t)= z̄2 +
∫ t

0

σ 1dτ +
∫ t

0

σ 2dτ (41)

σ 1 = k1

[
sigp1(z1)+ sigq1(z1)

]
(42)

σ 2 = k2

[
sigp2(z̄2)+ sigq2(z̄2)

]
(43)

z̄2 = z2 + �̂1 (44)

where the parameters are chosen as {
p1 = p

p2 = ρ0

(45)

q1 = q

q2 = 2 − ρ0

(46)

with the designed coefficients satisfying ρ0 ∈ (0, 1), p ∈ (0, 1), q> 1.
Thus, pi ∈ (0, 1) and qi > 1, i = 1, 2 is obtained. In this paper, sigp(zi)=[

sigp(zi1) , sigp(zi2) , sigp(zi2)
]T and sigr(x)= sign(x) |x|r are defined.

The derivative of the sliding mode variable S is expressed as

Ṡ(t)= ż2 + ˙̂
�1 + σ 1 + σ 2 (47)

Substituting the control-oriented model yields

Ṡ(t)= [F + Gu(t)+�2] + ˙̂
�1 + σ 1 + σ 2 (48)

The controller is given as

u = G−1
[
F + σ 1 + σ 2 + υrob(t)+ υcomp(t)

]
(49)
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υrob(t)= l1S + l2sigm(S)+ l3sign(S)+ l4sgn(S) (50)

υcomp(t)= �̂2 + ˙̂
�1 (51)

where �̂2 is the output from the observers.
The robust controller is developed in this step.

4.0 Stability analysis
4.1 Convergence of the disturbance estimation

Theorem 1. For the control-oriented model and the designed AFFDO, the estimation error will con-
verge to the origin within fixed-time Ti ≤ 2Tic, if the key parameters satisfy μi > 1, 0< p0,i <

2
μi+1

,
λi,1 = θi

(μi+1)p0,iTic
and λi,2 = 1

(μi+1)p0,iTic
. The settling time is directly designed in the parameters.

Proof. The Lyapunov function for z̃2i and κ̃2i is selected as

W2 =
3∑

i=1

[
|arctan(z̃2i)|μ2+1 + 1

2λ2,4

κ̃
T
2iκ̃2i

]
(52)

where κ̃2i = κ∗
2i − κ̂2i, μ2 > 1.

The proof is divided into two stages.
Stage 1. The derivative of the function is represented by

Ẇ2 =
3∑

i=1

(μ2 + 1) |arctan(z̃2i)|μ2
sgn (z̃2i)

1 + z̃2
2i

(˙̃z2i

)

+
3∑

i=1

{
κ̃

T
2i

[
−λ2,5|arctan(z̃2i)|μ2

sgn(z̃2i)

1 + z̃2
2i

ψ2i + λ2,6κ̂2i

]}

=
3∑

i=1

(μ2 + 1) |arctan(z̃2i)|μ2
sgn(z̃2i)

1 + z̃2
2i

[
ż2i −

(
z̃2

2i + 1
)

sgn(z̃2i)�2i − h2i

]
(53)

+
3∑

i=1

{
κ̃

T
2i

[
−λ2,5|arctan(z̃2i)|μ2

sgn(z̃2i)

1 + z̃2
2i

ψ2i + λ2,6κ̂2i

]}

With the help of the fuzzy logic system, one gets

Ẇ2 =
3∑

i=1

(μ2 + 1) |arctan(z̃2i)|μ2
sgn(z̃2i)

1 + z̃2
2i

[
κ∗T

2i ψ2i(x)+ ε2i −
(
z̃2

2i + 1
)

sgn(z̃2i)�2i − κ̂
T
2iψ 2i(x)

]

+
3∑

i=1

{
κ̃

T
2i

[
−λ2,5|arctan(z̃2i)|μ2

sgn(z̃2i)

1 + z̃2
2i

ψ 2i + λ2,6κ̂2i

]}
(54)

Ẇ2 =
3∑

i=1

(μ2 + 1) |arctan(z̃2i)|μ2
sgn(z̃2i)

1 + z̃2
2i

[
κ̃

T
2iψ2i(x)+ ε2i −

(
z̃2

2i + 1
)

sgn(z̃2i)�2i

]

+
3∑

i=1

{
κ̃

T
2i

[
−λ2,5|arctan(z̃2i)|μ2

sgn(z̃2i)

1 + z̃2
2i

ψ 2i + λ2,6κ̂2i

]}
(55)
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Choosing parameter λ2,5 =μ2 + 1 results in

Ẇ2 =
3∑

i=1

(μ2 + 1) |arctan(z̃2i)|μ2
sgn(z̃2i)

1 + z̃2
2i

[
ε2i −

(
z̃2

2i + 1
)

sgn(z̃2i)�2i

]+
3∑

i=1

[
κ̃

T
2iλ2,6κ̂2i

]

≤
3∑

i=1

(μ2 + 1) |arctan(z̃2i)|μ2
sgn(z̃2i)

1 + z̃2
2i

ε2i −
3∑

i=1

(μ2 + 1) |arctan(z̃2i)|μ2�2i +
3∑

i=1

[
κ̃

T
2iλ2,6κ̂2i

]

≤
3∑

i=1

(μ2 + 1) |arctan(z̃2i)|μ2 sgn(z̃2i) ε2i −
3∑

i=1

(μ2 + 1) |arctan(z̃2i)|μ2�2i (56)

+ 1

2

3∑
i=1

(−λ2,6κ̃
T
2iκ̃2i + λ2,6κ

∗
2iκ

∗
2i

)
Introducing the expression of �2i discloses

Ẇ2 ≤
3∑

i=1

(μ2 + 1) |arctan(z̃2i)|μ2 sgn(z̃2i) ε2i −
3∑

i=1

(μ2 + 1) λ2,1|arctan(z̃2i)|μ2+p2

−
3∑

i=1

(μ2 + 1) λ2,2|arctan(z̃2i)|μ2+q2 −
3∑

i=1

(μ2 + 1) λ2,3|arctan(z̃2i)|μ2 |sgn(z̃2i)| (57)

+ 1

2

3∑
i=1

(−λ2,6κ̃
T
2iκ̃2i + λ2,6κ

∗
2iκ

∗
2i

)
The following parameter is employed

λ2,3 >max(|ε2i|) (58)

It can be further obtained that

Ẇ2 ≤ −
3∑

i=1

(μ2 + 1) λ2,1|arctan(z̃2i)|μ2+p2 −
3∑

i=1

(μ2 + 1) λ2,2|arctan(z̃2i)|μ2+q2

+ 1

2

3∑
i=1

(−λ2,6κ̃
T
2iκ̃2i + λ2,6κ

∗T
2i κ

∗
2i

)
(59)

The parameters are transformed to

p2 = 1 + μ2p0,2 + p0,2

2
(60)

q2 = 1 − μ2p0,2 + p0,2

2
(61)

1>
2

μ2 + 1
> p0,2 > 0 (62)

The derivative of the Lyapunov function is rewritten as

Ẇ2 ≤ −
3∑

i=1

(μ2 + 1) λ2,1

[|arctan(z̃2i)|μ2+1]1+ p0,2
2 −

3∑
i=1

(μ2 + 1) λ2,2

[|arctan(z̃2i)|μ2+1]1− p0,2
2

+ 1

2

3∑
i=1

(−λ2,6κ̃
T
2iκ̃2i + λ2,6κ

∗T
2i κ

∗
2i

)
(63)
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Considering the following expression

x ≤ xa + xb (64)

where 1> a> 0, b> 1.
Therefore

Ẇ2 ≤ −
3∑

i=1

(μ2 + 1) λ2,1|arctan(z̃2i)|μ2+1+1

2

3∑
i=1

(−λ2,6κ̃
T
2iκ̃2i + λ2,6κ

∗T
2i κ

∗
2i

)
(65)

where λ2,1 = min
{
λ2,1, λ2,2

}
. Introducing m0,2 to indicate 1

2

3∑
i=1

λ2,6κ
∗T
2i κ

∗
2i shows

Ẇ2 ≤ −
3∑

i=1

(μ2 + 1) λ2,1|arctan(z̃2i)|μ2+1 − 1

2

3∑
i=1

(
λ2,6κ̃

T
2iκ̃2i

)+ m0,2 (66)

Using λ2,2 = min
{
(μ2 + 1) λ2,1, λ2,4λ2,6

}
leads to

Ẇ2 ≤ −λ2,2W2 + m0,2 (67)

Thus, W2, z̃2i and κ̃2i are bounded. The full estimation errors ε̄2i = κ̃T
2iψ 2i(x)+ ε2i are also bounded.

Stage 2. The Lyapunov function for z̃2i is designed as follows.

V2 =
3∑

i=1

[|arctan(z̃2i)|μ2+1] (68)

The derivative of V2 is given by

V2 = (μ2 + 1)
3∑

i=1

[
|arctan(z̃2i)|μ2

sgn (z̃2i)

1 + z̃2
2i

˙̃z2i

]

= (μ2 + 1)
3∑

i=1

[|arctan(z̃2i)|μ2�2i

]+ (μ2 + 1)
3∑

i=1

|arctan(z̃2i)|μ2
sgn(z̃2i)

1 + z̃2
2i

(
	2i − 	̂2i

)
(69)

By introducing the fuzzy logic system, one gets

V̇2 = (μ2 + 1)
3∑

i=1

[
|arctan(z̃2i)|μ2

sgn(z̃2i)

1 + z̃2
2i

˙̃z2i

]

= (μ2 + 1)
3∑

i=1

[|arctan(z̃2i)|μ2�2i

]+ (μ2 + 1)
3∑

i=1

|arctan(z̃2i)|μ2
sgn(z̃2i)

1 + z̃2
2i

(
κ̃T

2iψ2i(x)+ ε2i

)
(70)

Substituting the expression �2i into V̇2 reveals

V̇2 = (μ2 + 1)
3∑

i=1

[
|arctan(z̃2i)|μ2

sgn(z̃2i)

1 + z̃2
2i

˙̃z2i

]

≤ −
3∑

i=1

(μ2 + 1) λ2,1|arctan(z̃2i)|μ2+p2 −
3∑

i=1

(μ2 + 1) λ2,2|arctan(z̃2i)|μ2+q2

−
3∑

i=1

(μ2 + 1) λ2,3|arctan(z̃2i)|μ2 |sgn(z̃2i)| + (μ2 + 1)
3∑

i=1

|arctan(z̃2i)|μ2 sgn(z̃2i)
(
κ̃T

2iψ 2i(x)+ ε2i

)
(71)

Then, the following condition for λ2,3 is adopted

λ2,3 >max{max(|ε2i|) , max(|ε̄2i|)} (72)
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It leads to

V̇2 ≤ −
3∑

i=1

(μ2 + 1) λ2,1|arctan(z̃2i)|μ2+p2 −
3∑

i=1

(μ2 + 1) λ2,2|arctan(z̃2i)|μ2+q2 (73)

Choosing the following parameters

λ2,1 = θ2

(μ2 + 1) p0,2T2c

(74)

λ2,2 = 1

(μ2 + 1) p0,2T2c

(75)

The derivative of the Lyapunov function is rewritten

V̇2 ≤ − 1

p0,2T2c

3∑
i=1

θ2

[|arctan(z̃2i)|μ2+1]1+ p0,2
2 − 1

p0,2T2c

3∑
i=1

[|arctan(z̃2i)|μ2+1]1− p0,2
2

≤ − θ2

p0,2T2c

3− p0,2
2 V2

1+ p0,2
2 − 1

p0,2T2c

V2
1− p0,2

2 (76)

Introducing θ̄ 2
2 = θ23− p0,2

2 , V2
2,θ̄2

= θ̄ 2
2

(
V

p0,2
2

2

)2

and lemma 1, it is obvious that the estimation error will
converge to the origin within fixed time. The settling time is estimated by

T2 ≤ 2T2c (77)

Therefore, ẑ2 tracks z2 for any time t ≥ T2. Note that the disturbance observers have a similar structure.
Using the same method, it is easy to demonstrate the fixed time convergence of z̃1. For sake of saving
space, the details are omitted.

Since the state estimation error will converge to origin within fixed time Ti for any state zij,
the following expression is established according to the control-oriented model and the disturbance
observer.

˙̃zij = zij −
(
z̃2

ij + 1
)

sgn(z̃ij)�ij − hij =	ij − 	̂ij = 0 (78)

Therefore, we can conclude the disturbance estimation tracks the actual disturbance in the fixed
time Ti.

The convergence of the adaptive fuzzy fixed-time disturbance observer is illustrated via Lyapunov
theory. It is feasible to achieve disturbance compensation.

Remark 1. In research [34], a fixed time controller is successfully proposed, achieving the significant
development. This method has been successfully applied to hypersonic vehicles in [37]. The settling
time is estimated by

Tf ≤
⎛
⎝ 1

λ2(p − 1) εp−1
+ 2

(√
nε

) 1
2

λ1

⎞
⎠

⎛
⎝1 + M

m
(

1 − √
2α
λ1

)
⎞
⎠ (79)

It is clear that the method in this paper leads to a more explicit settling time compared to the result in
[34] since the latter is composed of several parameters. These parameters contribute to converge rate. If
a specific convergence time is demanded in the design procedure, it is complicated to finish the work.
Thus, one can conclude the convergence time of disturbance observer and the sliding mode variable
can be directly specified in the design procedure. The stability of the sliding mode variable will be
demonstrated later.
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4.2 Convergence of the tracking error

Theorem 2. For the control-oriented model, the sliding mode variable will converge to the origin within
fixed-time if the parameters satisfy 2>m> 1, n = 2 − m, l2 = c1

(m−1)Td
, l3 = 1

(m−1)Td
. The settling time

satisfies T ≤ Td, which is more explicit than the conventional fixed-time control.

Proof. We firstly illustrate the convergence of the sliding mode variable.

V3 = STS (80)

The derivative is of the designed Lyapunov function is

V̇3

2
= STṠ (81)

Taking the expression of the sliding mode variable results in

V̇3

2
= ST

(
ż2 + ˙̂

�1 + σ 1 + σ 2

)

= ST
[
F + Gu(t)+ σ 1 + σ 2 +�2 + ˙̂

�1

]
(82)

Substituting the designed controller shows

V̇3

2
= ST

[
F + σ 1 + σ 2 +�2 + ˙̂

�1

]
− STG

[
G−1

(
F+σ 1 + σ 2 + υrob + υcomp

)]
= ST

(
�2 − �̂2

)
− STυrob(t) (83)

Since the disturbances are eliminated for any time t> T1 + T2, one gets

V̇3

2
= −ST

[
l1S + l2sigm(S)+ l3sign(S)+ l4sgn(S)− �̃2

]
(84)

The �̃2 is the full estimation error of the fuzzy logic system. It is obvious that
∣∣∣�̃2

∣∣∣ is proven to be
zero when one illustrates the stability of the adaptive fuzzy fixed-time disturbance observer.

It brings out

V̇3

2
≤ −l1STS − l2STsigm(S)− l3STsign(S)

≤ −l2STsigm(S)− l3STsign (S)

= −l2

3∑
i=1

|si||si|m − l3

3∑
i=1

|si||si|n (85)

In order to obtain the fixed-time convergence of the sliding mode variable, the following parameters
is introduced.

2>m> 1 (86)

n = 2 − m (87)

l2 = c1

(m − 1) Td

(88)

l3 = 1

(m − 1) Td

(89)
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Therefore,

V̇3

2
≤ −l23

1−m
2

(
3∑

i=1

|si|2

) m+1
2

− l3

(
3∑

i=1

|si|2

) n+1
2

≤ −l23
1−m

2 V3
m+1

2 − l3V3
n+1

2

≤ c1

(m − 1) Td

3
1−m

2 V3
m+1

2 − 1

(m − 1) Td

V3
3−m

2 (90)

with c̄2
1 = c13

1−m
2 , V2

3,c̄1
= c̄2

1

(
V

m−1
2

3

)2

and lemma 1, the sliding mode will converge to the origin within
following settling time.

T3 ≤ Td (91)

Theorem 3. After the convergence of the sliding mode variable and the estimation errors, the tracking
error will converge to the origin within fixed-time according to the control-oriented mode of the HMV.

Proof. Since S = 0 is valid, one gets{
ż1 = z2 +�1 = z2 + �̂1 + �̃1

z2 + �̂1 = − ∫ t

0
σ 1dτ − ∫ t

0
σ 2dτ

(92)

The fixed-time convergence of the estimation error has been proven, leading to �̃1 = 0. We obtain
the following expression by defining z̄1 = z1.⎧⎪⎪⎨

⎪⎪⎩
˙̄z1 = z̄2

˙̄z2 = −k1

[
sigp1(z̄1)+ sigq1(z̄1)

]
−k2

[
sigp2(z̄2)+ sigq2(z̄2)

] (93)

In this step, the homogeneous system theory is introduced to demonstrate the stability of tracking
error.

The system can be rewritten as

˙̄z =
[

z̄2

−h1 −h2

]
(94)

where h1 = [
h11 h12 h13

]T, h2 = [
h21 h22 h23

]T.
For the case 1: z̄ij ∈

{
z̄ij ∈ R/ {0} :

∣∣z̄ij

∣∣≤ 1
}

hij = kisigpi
(
z̄ij

)+ kisigqi
(
z̄ij

)
(95)

= ki

(
1 + ∣∣z̄ij

∣∣qi−pi
)

sigpi
(
z̄ij

)
For the case 2: z̄ij ∈

{
z̄ij ∈ R/ {0} :

∣∣z̄ij

∣∣> 1
}

hij = kisigpi
(
z̄ij

)+ kisigqi
(
z̄ij

)
(96)

= ki

(
1 + ∣∣z̄ij

∣∣pi−qi
)

sigqi
(
z̄ij

)
Considering the range of

∣∣z̄ij

∣∣qi−pi and
∣∣z̄ij

∣∣pi−qi . For the case 1, 2kisigpi
(
z̄ij

)≥ hij > kisigpi
(
z̄ij

)
holds for

case 1 and 2kisigqi
(
z̄ij

)≥ hij > kisigqi
(
z̄ij

)
for case 2, respectively.

Then, the homogeneous degree concept is employed to demonstrate the practical fixed-time conver-
gence of the tracking error.
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First, the system will be demonstrated to be homogeneous in the 0-limit. The approximation function
vector is given by

˙̄z0 = h0(z̄)=
[

z̄2

−k1sigp1(z̄1) −k2sigp2(z̄2)

]
(97)

The associated triple is disclosed by following equations.⎧⎪⎨
⎪⎩

r2
0 = r1

0 + kd0

r2
0p2 = r1

0p1

r2
0p2 = r2

0 + kd0

(98)

After fully considering the parameter range, kd0 = −1 is an acceptable result. Meanwhile, the weight
vector is given as

[
(2 − p2) (1 − p2)

−11 − p2

]T. Secondly, the system will be proved to be homogeneous
in the ∞ − limit. The following approximation function could be established.

˙̄z∞ = h∞(z̄)=
[

z̄2

−k1sigq1(z̄1) −k2sigq2(z̄2)

]
(99)

It is obvious to obtain ⎧⎪⎨
⎪⎩

r2
∞ = r1

∞ + kd∞

r2
∞p2 = r1

∞p1

r2
∞p2 = r2

∞ + kd∞

(100)

It is feasible to obtain a set of parameters. kd∞ = 1 is an acceptable result. Meanwhile, the weight
vector is obtained as

[
p2(1 − p2)

−1
(1 − p2)

−1
]T. Thus, one could conclude that the approximation func-

tion vectors are homogeneous in the 0-limit and ∞ − limit, respectively. It is obvious that the system
is bi-limit homogeneous. Furthermore, based on the results in [35, 36], it is easy to demonstrate the
approximation function vectors are globally asymptotically stable equilibrium. Considering the homo-
geneous degree satisfies kd0 < 0< kd∞, the fixed-time convergence of the closed-loop system with proper
parameters could be verified. The parameters should make the polynomial N(z)= z2 − k2s + k1 become
a Hurwitz polynomial based on the lemma 2.

The proof is completed.

5.0 Simulation
To verify the effectiveness of the proposed controller, several mathematical simulations are designed.
The multisource uncertainties are fully considered, which brings challenges to controller design.

This section presents simulation results by hypersonic flights with continuous morphing. The span
variant rate is generated by the step command that passes through a two-order filter.

The following reference commands are employed by applying a second-order filter 1
0.07s2+0.5s+1

in
case 1.

αc =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

8◦, 0< t< 10

2◦, 10< t< 20

8◦, 20< t< 30

2◦, 30< t< 40

(101)

βc = 0◦, 0< t< 40 (102)
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Figure 2. Commands and attitude angles.

γVc =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

20◦, 0< t< 10

5◦, 10< t< 20

20◦, 20< t< 30

5◦, 30< t< 40

(103)

The second-order actuator
1

0.02s2 + 0.3s + 1
is adopted to generate the span morphing rate ξ ∈ [0, 1].

The hypersonic morphing vehicle is initialised as α(t0)= 0, β(t0)= 3, γV(t0)= 0, V = 9Ma, H =
30km and other states are zero at t0 = 0.

Recalling the principles for the complete control system, which are conditions under (40), guidelines
in (45) and (46), and requirements in theorem 1, (60)–(62), (72) and (74)–(75), the designed parameters
are given as

k1 = 2, k2 = 9.3, p1 = 0.6, p2 = 0.5, q1 = 1.4 and q2 = 1.5 for the sliding mode manifold.
c1 = 1.4, Td = 2.5, m = 1.4, n = 0.6 l1 = 2, l2 = 1, l3 = 30, l4 = 0.5 and l5 = 10 for the controller.
λ13 = 0.1, λ14 = 1000, λ15 = 12, λ16 = 0.001, p0,2 = 0.6, T1c = 3, θ1 = 5, μ1 = 1.1, λ23 = 0.1, λ24 =

4000, λ25 = 3, λ26 = 0.0025, p0,2 = 0.8, T2c = 4, θ2 = 3.1 and μ2 = 1.05 for the fuzzy fixed-time dis-
turbance observer. The fuzzy membership functions are 
1(x)=

(
1 + e3(x+0.5)

)−1, 
2(x)= e−(x+0.3)2 ,

3(x)= e−(x+0.1)2 , 
4(x)= e−x2 , 
5(x)= e−(x−0.1)2 , 
6(x)= e−(x−0.3)2 and 
7(x)=

(
1 + e−3(x−0.5)

)−1. The
methods to properly set the FLS is revealed in [31].

5.1 Effectiveness verification
Time-varying commands to reveal the effectiveness of the controller are adopted. The corresponding
curves are shown in Figs 2–4. The desired response curves are achieved with the help of the proposed
control method under the two consecutive commands and morphing rate changes.
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Figure 3. The curves of angular rates.

Figure 4. Control inputs and morphing rate.

Figure 1 elaborates on the excellent tracking results of the states. All the attitude angles smoothly
track the commands with 2s. Figure 2 reveals the curves of the angular rates. Figure 3 shows the con-
trol surfaces and the morphing rate. Since the span morphing influences the aerodynamic characteristic,
the steady-state value of the controller changes. The results in this simulation illustrate the effective-
ness of the proposed controller. All the angles can accurately track the reference commands within 2.5s
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Figure 5. Mismatched disturbance estimations in case 1.

when the HMV is flying in morphing processes. The states are continuous, and the curves of the con-
trollers are acceptable. The varying steady value of δz implies the dramatic changes in aerodynamic
properties.

5.2 Comparison among different disturbance observers
The disturbance estimations are revealed in this simulation. Therefore, angles and morphing ratio are set
to α = 2◦, β = 0◦, γV = 0◦ and ξ = 0. The conventional fixed-time disturbance observer and the param-
eters are obtained from the research [37]. Based on the literature [31], three sets of disturbances are
introduced. In case 1, the disturbances are d1 = 0.6�1 and d2 = 0.6�2; In case 2, they are d1 = 0.8�1

and d2 = 0.8�2; we introduce d1 =�1 and d2 =�2 in case 3 with

�1 = 1

20

⎡
⎢⎢⎣

sin 0.5π t

sin 0.5π t

cos 0.5π t

⎤
⎥⎥⎦+ 1

20

⎡
⎢⎢⎣

sin 0.25π t

cos 0.25π t

sin 0.25π t

⎤
⎥⎥⎦ rad/s and �2 = 10d1rad/s2

Figs 5–10 discloses that the estimation of the proposed AFFDO is better than the conventional
FDO in the presence of mismatched and matched disturbances. By applying the designed AFFDO, the
mismatched disturbances in three cases can be accurately estimated, which is helpful in disturbance com-
pensation. It is announced that the proposed disturbance observer will provide outstanding disturbance
estimations without the information on disturbance derivatives, which is necessary for the conventional
FDO [37]. Moreover, since the settling time of the proposed methods can be easily pre-specified, the
disturbance observer with better convergence performance is available.

5.3 Disturbance compensation demonstration
From the previous simulation, the disturbance estimation performance could be verified. Since matched
and mismatched disturbances are inevitable in the flight mission, it is necessary to offer an inspection
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Figure 6. Matched disturbance estimations in case 1.

Figure 7. Mismatched disturbance estimations in case 2.

for the controller. Now, we need to demonstrate the disturbance rejection. The proposed fixed-time con-
trol without/with the developed AFFDO is designed to test the performance. Figure. 11 shows that the
anti-disturbance performance is obviously improved by introducing the proposed disturbance observer.
Figures 12 and 13 show the angular rates, controller and morphing ratio. According to Figs 14 and 15,
we can find that the disturbances are well estimated by the designed disturbance observer. Note that
d1 =�1 and d2 =�2 are adopted in this simulation.
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Figure 8. Matched disturbance estimations in case 2.

Figure 9. Mismatched disturbance estimations in case 3.

5.4 Comparison among different control methods
Researchers have proposed numerous control methods with different performances. However, for hyper-
sonic morphing vehicles, the controller should have strong robustness and adaptation. The full control
method in [37] is chosen to make the comparison, which is indicated by conventional FTC with FDO.
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Figure 10. Matched disturbance estimations in case 3.

Figure 11. Commands and attitude angles.

d11 and d21 start to make the impact at t = 8s, while the others affect the states from t = 10s. The results
are shown in Figs 16–20.

Figure 16 shows that the robustness of the proposed control method is better when the proposed
strategy is compared with the method in [37]. The different levels of improvement of the tracking
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Figure 12. The curves of angular rates.

Figure 13. Control inputs and morphing rate.

performance are obtained. Disturbance suppression is ensured by integrating the proposed fuzzy dis-
turbance observer. The proposed control technique has more excellent anti-disturbance performance.
Figures 17 and 18 show the corresponding angular rates and the control inputs. Figures 19 and 20 reveal
the outputs from the disturbance observers, indicating the different disturbance estimations.
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Figure 14. Mismatched disturbance estimations.

Figure 15. Matched disturbance estimations.

5.5 Control against of aerodynamic parameters perturbations
Since the wingspan morphing technique is introduced, hypersonic morphing vehicles cover a large flight
envelop. Therefore, it is important to validate the uncertainties rejection performance. In comparison
with the nominal case without any aerodynamic perturbance, the positive perturbance and negative
perturbance scenarios are designed to demonstrate the anti-uncertainties performance of the proposed

https://doi.org/10.1017/aer.2023.116 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.116


The Aeronautical Journal 25

Figure 16. The commands and responses.

Figure 17. The angular rates.

control method. The atmosphere density perturbance is set to ±20%, while the aerodynamic force C̄α
L ,

C̄α
D, C̄β

N and moment coefficients m̄δx
x , m̄

δy
y , m̄δz

z are perturbed by ±30%. The morphing rate is same as the
previous simulation.

The results are shown in Figs 21–23. Figure 21 reveals that the positive and negative perturbances
impact the convergence procedure of the tracking error. However, all states can get rid of the influence
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Figure 18. The control inputs and morphing ratio.

Figure 19. The mismatched disturbance estimations.
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Figure 20. The matched disturbance estimations.

Figure 21. Commands and responses.

of the different perturbances within 2s, which demonstrates the stability of the closed-loop HMV sys-
tem. Figures 22 and 23 display the corresponding angular rates and the control inputs. In a word, a
wide-range flight is achieved for hypersonic morphing vehicles without sacrificing tracking performance
in the presence of aerodynamic perturbations.
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Figure 22. Angular rates.

Figure 23. Control inputs and morphing ratio.

6.0 Discussion
A high-accuracy flight control system for HMV has been developed by applying fixed-time control and
fuzzy control. The developed fixed-time controller results in an explicit settling time than the traditional
fixed-time control method. Moreover, disturbance suppression is achieved without any knowledge of
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the disturbance derivatives. Therefore, the anti-disturbance method could be available in engineering
applications. The complete flight controller ensures fast and high-accuracy attitude tracking. The results
of hypersonic flights in morphing phases match the theoretical findings.

It is necessary to reveal the limitations of the proposed method. The parameters of fuzzy memberships
will impact the disturbance estimation. The designed disturbance observer with proper fuzzy mem-
berships will adapt to various disturbances. Inappropriate will deteriorate the disturbance observation.
Additionally, the application of the fuzzy logic system will require more computational resources.

Future work will focus on prescribed performance control for HMVs to enhance the flight control
performance.

7.0 Conclusions
In this paper, the robust fixed-time controller is constructed to solve the tracking issue for an HMV
with multisource uncertainties. The developed control method utilises a fixed-time control technique,
homogeneous system theory, and fuzzy logic system to induce the controller. By using the adaptive fuzzy
fixed-time disturbance observer, the influence of multisource uncertainties is ideally estimated and com-
pensated. With the help of introducing the homogeneous degree concept, the tracking error converges in
a fixed time after the convergence of the multivariable sliding mode variable. The proposed controller
has achieved favorable performance in terms of robustness against time multisource uncertainties with-
out the cost of sacrificing the control performance. The Lyapunov theory-based stability analysis is
provided to prove the stability of the closed-loop system. The hypersonic morphing vehicle in the mor-
phing phase is studied as the application. Three simulation cases show robustness against disturbance as
well as dynamic uncertainties. Future work will consider the development of a prescribed performance
controller for hypersonic morphing vehicles.

Funding sources. This work is supported by the National Natural Science Foundation of China Youth Fund (grant number
62003355).
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Appendix A. Variables

Table A1. The indications in the model

Symbols Description
V The velocity of the aircraft
g Gravitational acceleration
Ik, k = x, y, z Pitch, yaw and roll moments of inertia
L, D, N Lift, drag and lateral forces
C̄k, k = L, D, N Equivalent aerodynamic coefficients of the forces
Mk, k = x, y, z Pitching, yawing and rolling moments
m̄k, k = x, y, z Equivalent aerodynamic coefficients of the moments
L1, L2 Reference lengths
S, m The reference aera and the mass of the HMV
θ Flight path angle
ξ Morphing ratio

Table A2. The symbols in the control-oriented model

Symbols Description
x1 = [

α β γV

]T The state consisted of attack angle, sideslip angle and bank angle.
x2 = [

ωz ωy ωx

]T The state consisted of angular rates of three channels.
u = [

δz δy δx

]T The control input vector consisted of three-channel control fins.
d1 The mismatched disturbance consisted of modelling inaccuracies and external

disturbances.
d2 The matched disturbance, containing model inaccuracies, additional moments

and external disturbances.

Table A3. The definitions in the sliding mode controller

Symbols Description
z Tracking error.
S Sliding mode variables.
sig(•) For ς = [

ς1 ς2 · · · ςn

]
, sig(ς)= [

sig(ς1) sig(ς2) · · · sig(ςn)
]

is defined.

Table A4. The symbols in the disturbance observer

Symbols Description
ẑ1, ẑ2, z̃1, z̃2 State estimations and the estimation errors
d̂1, d̂2, d̃1, d̃2 Disturbance estimations and the estimation errors
ψ ij(x) , i = 1, 2, j = 1, 2, 3 Fuzzy basic function
kij, k∗

ij, k̂ij The essential parameters of fuzzy logic system, their desired values
and the estimations


Aj
i

Fuzzy membership functions
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