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We examine the structure of the continuous circular hydraulic jump and recirculation for
a jet impinging on a disk. We use a composite mean-field thin-film approach consisting of
subdividing the flow domain into three regions of increasing gravity strength: a developing
boundary layer near impact, an intermediate supercritical viscous layer and a region
comprising the jump and subcritical flow. Unlike existing models, the approach does not
require any empirically or numerically adjusted boundary conditions. We demonstrate
that the stress or corner singularity for a film draining at the edge is equivalent to an
infinite slope of the film surface, which we impose as the downstream boundary condition.
The model is validated against existing experiment and numerical simulation of the
boundary-layer and Navier—Stokes equations. We find that the flow in the supercritical
region remains insensitive to the change in gravity level but is greatly affected by
viscosity. The existence of the jump is not necessarily commensurate with the presence
of recirculation, which is strongly dependent on the upstream curvature and steepness of
the jump.

Key words: boundary layer structure, shallow water flows, thin films

1. Introduction

When a circular liquid jet impinges vertically onto a horizontal disk, it spreads radially
outwards as a thin film. At a certain radial position, the film exhibits a circular hydraulic
jump or a sudden rise in the thickness (Middleman 1995). This phenomenon is of pivotal
fundamental importance in free-surface flow, and it is of relevance to many practical
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applications (Ishigai et al. 1977; Kate, Das & Chakraborty 2007; Mohajer & Li 2015;
Askarizadeh et al. 2020). The formation of the jump is associated with a flow separation
and the creation of a separation bubble, or a recirculating vortex, at the bottom in
conjunction with the jump (Bohr ef al. 1996; Ellegaard et al. 1996), resulting from the
film thickening across the jump and the simultaneous decrease in velocity. In turn, this
induces a rise in pressure, which acts as an adverse wind to the flow, enabling it to separate
into regions of upstream and downstream velocities of the type I jump (Bohr et al. 1998).
Both the separation length and the vortex size depend on the flow conditions (Nakoryakov,
Pokusaev & Troyan 1978; Craik et al. 1981; Rao & Arakeri 2001). The predictions of the
jump radius and structure, the free-surface height and the vortex size have been of primary
interest in the literature. However, the flow involving a circular hydraulic jump still lacks a
coherent and systematic predictive theory for these different hydrodynamic features, even
under laminar and steady-state conditions. Existing theoretical models are semi-empirical
as they require some input from experiment to ensure the well-posedness of the problem.
The objective of the present study is to develop a theoretical approach that addresses this
issue and other drawbacks of existing models.

In the presence of gravity, the thin-film equations do not admit a similarity solution
such as in the approach formulated by Watson (1964). Instead, the flow is commonly
treated theoretically by reducing the boundary-layer equations using a mean-field or
depth-averaging of the Karman—Pohlhausen (KP) type (Schlichting & Gersten 2000). In
the absence of surface tension, the thin-film approximation results in a hydrostatic pressure
distribution that reflects the gravitational effect in the flow. By adopting a simple (often
parabolic or cubic) velocity profile across the film layer, reasonably accurate quantitative
predictions of the flow field and film profile can be obtained (Kurihara 1946; Tani 1949;
Bohr, Dimon & Putzkaradze 1993; Kasimov 2008; Wang & Khayat 2019). However,
the choice of the (radial) velocity profile constitutes a crucial step in the formulation.
Almost any simple profile can lead to reasonably accurate prediction of the jump radius
and height, but a more judicious choice is needed to capture more accurately the flow
field. In this respect, the common practice has been to adopt a simple similarity profile,
yielding a first-order equation for the film thickness, or a non-similarity profile that yields
a second-order equation. We therefore refer to first- and second-order formulations when
resulting in first- and second-order equations governing the film thickness, respectively.
Various mechanisms can yield the second-order correction such as the inclusion of normal
diffusive term (Razis, Kanellopoulos & van der Weele 2021) or gravity effect (Bohr,
Putkaradze, & Watanabe 1997; Watanabe, Putkaradze & Bohr 2003) by ensuring that the
velocity profile satisfies the radial momentum equation at the disk.

The first-order model is typically derived by imposing a similarity profile for the radial
velocity component. As a result, a singularity in either the velocity gradient or the film
surface slope emerges at a finite radius, which is often assumed to coincide with the
location of the jump (Kurihara 1946; Tani 1949; Wang & Khayat 2019). This approach
is particularly attractive for two main reasons. On the one hand, the problem is reduced
to a one degree of freedom, thus necessitating only one boundary condition, typically
imposed at some upstream location. On the other hand, the location of the jump is
determined without requiring any knowledge of the subcritical flow. Once the jump is
located, the subcritical flow can be determined using a lubrication approach, which was
shown to give reasonable prediction (Duchesne, Lebon & Limat 2014; Wang & Khayat
2019). Alternatively, Bohr et al. (1993) and Kasimov (2008) integrated the film equation
radially forward upstream and backward downstream, hence generating inner and outer
solutions, respectively. They assumed a simple parabolic velocity profile everywhere in
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the flow. In their inner solution, a boundary condition was arbitrarily imposed at a location
slightly larger than the jet radius. In their outer solution, an infinite slope of either the
average velocity or the film thickness was considered to coincide with the edge of the
disk. Subsequently, Bohr ef al. (1993), Kasimov (2008) and Dhar, Das & Das (2020)
located the jump upon matching both solutions through a Rayleigh shock (Rayleigh 1914)
that satisfies the continuity of mass and radial momentum fluxes across the shock. Later,
Wang & Khayat (2019) adopted a similar solution process, but included a developing
boundary-layer region near impact, thus allowing the fixing of an upstream boundary
condition at the transition location between the boundary and viscous layers. The validity
of the first-order model has been tested, yielding good agreement against experiment and
numerical simulation, particularly for the jump radius. However, the model suffers from
significant fundamental drawbacks as it prohibits proper analysis of the jump structure:
the jump can only be treated as a (discontinuous) shock, with no possibility of examining
the separation downstream or the viscous—inviscid interaction leading up to jump, the
ellipticity of the boundary-layer equations is lost and the upstream influence cannot be
addressed (Bowles & Smith 1992; Higuera 1994; Bowles 1995). We address these issues
in some detail in the present study.

In an effort to capture the smooth variation of the jump and the vortex structure,
second-order corrections were introduced by Bohr et al. (1997) and Watanabe et al. (2003).
They accounted for additional gravity effect by ensuring their velocity profile to satisfy the
momentum equation at the disk. The presence of the resulting additional shape parameter
in the cubic velocity profile prevents the formation of the critical point and the singularity
of the averaged first-order model, allowing the capture of the flow separation. However,
two experimental points are needed in their solution to fix the boundary conditions, and
some prior knowledge of the location of the jump is required. In this regard, even though
their theory showed good agreement with the earlier measurements of Bohr et al. (1996),
it remains somewhat semi-empirical. A similar approach was later adopted by Bonn,
Andersen & Bohr (2009) to study the hydraulic jump in a channel. However, results
showing a jump-like profile were only presented to describe the vortex, whereas their
comparison against measurements was limited to the simplified (first-order) version of the
model in which the jump was treated as an abrupt shock connecting an inner and an outer
solution. Fernandez-Feria, Sanmiguel-Rojas & Benilov (2019) obtained the jump profile
by numerically integrating the boundary-layer equations. Their approach accommodates
only an upstream boundary condition specified at some radial location close to impact.
Similarly, Higuera (1994) solved the boundary-layer equations numerically to generate the
jump profile for two-dimensional flow. Unlike Fernandez-Feria et al. (2019), he ensured
the upstream influence from the downstream flow condition at the edge of the disk.

More recently, Roberts & Li (2006) derived a model based on centre-manifold theory to
describe the dynamics of thin films on curved substrates. A smooth profile was generated
for the circular hydraulic jump on a flat substrate, and the vortex was captured as well.
However, they simply imposed the boundary conditions in a manner similar to Watanabe
et al. (2003). Mikielewicz & Mikielewicz (2009) proposed a simple model based on the
solution of Bernoulli’s equation for the planar viscous fluid flow, which incorporates the
dissipation losses due to the change of the film thickness as well as the presence of eddies
following the jump. The model does not predict the radius of the jump as accurately as the
averaged boundary-layer equations. Moreover, the model requires a prior knowledge of
the size of the vortex, which, in their case, was fixed as a quarter of the subcritical depth.
A more serious attempt was made by Razis et al. (2021) to capture the continuous jump
in an inclined channel. They extended the Saint-Venant equations by including the effect

966 A15-3


https://doi.org/10.1017/jfm.2023.374

https://doi.org/10.1017/jfm.2023.374 Published online by Cambridge University Press

W. Wang, A. Baayoun and R.E. Khayat

of the longitudinal normal stress. They derived analytically an approximate expression for
the jump length as a function of the Froude and effective Reynolds numbers, highlighting
the strong interplay among inertia, gravity and viscous diffusion, as contributing to the
balance of forces that shape the jump.

The aim of the present study is to present a coherent approach that predicts the different
features of the continuous circular hydraulic jump problem. We are particularly interested
in predicting the continuous jump profile so the effects of the flow conditions on the
separation length and the vortex size can be explored. The rest of this paper is organized as
follows. In § 2, we describe the general problem and physical domain. In § 3, we formulate
the problem in terms of the general governing equations and boundary conditions in each
region of the flow. The KP integral method is adopted, and the solution strategy is clearly
described with a case illustration. In § 4, we validate our theoretical predictions against
existing numerical and experimental results. Some further results and analysis are given
in § 5, where we examine the influence of the flow rate over the same experimental range
as that of Duchesne et al. (2014). Flow details are considered which were not reported
in their experiment. Additional results on the influence of gravity and viscosity are also
given. Finally, concluding remarks are given in § 6.

2. The physical domain and problem statement

Consider the steady laminar incompressible flow of a circular (axisymmetric) jet of a
Newtonian fluid emerging from a nozzle of radius a, impinging at a volume flow rate
Q on a flat disk of radius R lying normal to the jet direction. The flow configuration is
depicted schematically in figure 1, where dimensionless variables and parameters are used.
The problem is formulated in the (r, 6, z) fixed coordinates, with the origin coinciding with
the disk centre. The flow is assumed to be independent of 6, thus excluding polygonal flow.
In this case, u(r, z) and w(r, z) are the corresponding dimensionless velocity components
in the radial and vertical directions, respectively. The r axis is taken along the disk radius
and the z axis is taken along the jet axis. The length and the velocity scales are conveniently

taken to be the radius of the jet a and the average jet velocity W = Q/ma?, both in the radial
and vertical directions. Since the pressure is expected to be predominantly hydrostatic for
a thin film, it is scaled by pga, where g is the acceleration due to gravity. In the absence of
surface tension, two main dimensionless groups emerge in this case: the Reynolds number
Re = Wa/v, where v is the kinematic viscosity, and the Froude number Fr = W/, /ag.
Another useful and related number is the Galileo number Ga = Re?/Fr?.

As shown in figure 1, we identify three main regions of the flow: a developing
boundary-layer region (0 < r < rg) where gravity is essentially dominated by inertia, a
fully developed viscous region (79 < r < ry) with moderate gravitational effect and a fully
developed viscous region (r; < r < ro,) With strong gravitational effect. The jump is a
smooth transition region that connects the (upstream) supercritical and the (downstream)
subcritical regions. Again, the analysis of the boundary-layer region, near impact, is crucial
in order to fix an upstream boundary condition for the thin-film viscous flow, relevant
to the jet conditions. Throughout this study, the stagnation or impingement region is
not considered, and the boundary layer is assumed to originate at the stagnation point.
However, we examine in some detail the validity of this assumption (see § 3.1).

The boundary layer grows until it reaches the film surface at the transition location r =
ro. Here, the film thickness is defined as hg = h(r = rp) which corresponds to an upstream
boundary condition for the flow in the fully developed viscous region. We denote by §(r)
the boundary-layer thickness. The leading edge of the boundary layer is taken to coincide
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Figure 1. Schematic illustration of the axisymmetric jet flow impinging on a flat stationary disk and the
hydraulic jump of type I with one vortex downstream. Shown are the developing boundary-layer region (0 <
r < rp) and the fully developed viscous region (19 < r < r«). The fully developed viscous region comprises a
region (rp < r < ry) where gravitational effects are moderate, and a second region where gravitational effects
are strong (r] < r < reo). All notations are dimensionless. In this case, the jet radius is equal to one. The
film is allowed to fall freely over the edge of the disk where an infinite slope in the film thickness occurs,
h(r = reo) — —00. Shown in dashed-red curve is the schematic film-thickness profile reflecting the approach
of Wang & Khayat (2019), terminating with a singularity at a finite radius denoted here by r. The jump location
coincides with /" (ry) = 0, and h(r,,) = hpax-

with the disk centre. We let U(r) = u(r, z = h) denote the velocity at the free surface.
Assuming the jet and stagnation flows to be inviscid irrotational, the radial velocity outside
the boundary layer is then U(0 < r < rp) = 1 as the fluid there is unaffected by the viscous
stresses. We recall that both velocity components have been scaled by the (inviscid)
jet velocity W. The potential flow ceases to exist in the fully developed viscous region
rg < r < reo, and U becomes dependent on r. We note that ry is the location beyond
which the viscous stresses become appreciable right up to the free surface, where the
entire flow is of the boundary-layer type. We follow Rojas et al. (2010) and take the jump
location r; to coincide with the vanishing of the concavity: 4’ (r = ry) = 0. We denote by
r = 1y, the location of the maximum film height: 4(r = r,,) = hyax. The definition of the
jump radius at the location where the free surface changes concavity is reasonable as this
location is very close to the start of the separation zone which is experimentally considered
as the location of the jump in the literature (Bohr er al. 1996). Downstream of the jump,
the film decreases in thickness and eventually falls freely over the edge of the disk, at
r = ro0, Where an infinite (downward) slope in thickness is assumed (Bohr et al. 1993;
Kasimov 2008; Dhar et al. 2020). In fact, we shall see that the infinite slope is directly
related to the stress singularity expected to occur at the disk edge (Higuera 1994; Scheichl,
Bowles & Pasias 2018). More details on the condition at the disk edge and upstream
influence are given later. Finally, we assume throughout the present study that the locations
r1 and r, coincide with the locations of the leading and trailing edges of the jump,
respectively.

Unless otherwise specified, the Reynolds number is assumed to be moderately large so
that our analysis is confined to the laminar regime. Consequently, for steady axisymmetric
thin-film flow, in the presence of gravity, the mass and momentum conservation equations
are formulated using a thin-film or Prandtl boundary-layer approach, which amounts to
assuming that the radial flow varies much slower than the vertical flow (Schlichting &
Gersten 2000). We observe that the pressure for a thin film is hydrostatic as a result of its
vanishing at the film surface (in the absence of surface tension) and the small thickness
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of the film, yielding p(r, z) = h(r) — z. By letting a subscript with respect to r or z denote
partial differentiation, the reduced dimensionless relevant conservation equations become

R
w4+ 2w, =0, Re(uity +wiy) = ——< W +uy, (2.1a,b)
r Fr?

where a prime denotes total differentiation with respect to r. These are the thin-film
equations commonly used to model the spreading liquid flow (Tani 1949; Bohr et al. 1993,
1996; Kasimov 2008; Wang & Khayat 2019). At the disk, the no-slip and no-penetration
conditions are assumed to hold at any r. In this case

u(r,z=0) =w(r,z=0)=0. (2.2a,b)

At the free surface z = h(r), the kinematic and dynamic conditions for steady flow take
the form

w(r,z=h) =u(r,z=hHW (), u,(r,z=h)=0. (2.3a,b)

The conservation of mass at any location upstream and downstream of the jump yields the
following relation in dimensionless form:

hr) !
/ u(r,z)dz = —. 2.4)
0 2r

Finally, a useful expression for the convective terms is obtained by first eliminating
the transverse velocity component by noting from (2.1a) and (2.2b) that w(r, z) =
—(1/r)(3/0r)(r [y udz). In this case

Z
uu, + wi, = l(ruz)r — l(u/ (ru), dz) . (2.5)
r r 0 Z
The flow field is sought separately in the developing boundary-layer region for 0 <
r < ro, the fully developed viscous region with moderate gravity for ro < r < r; and
fully developed viscous region with strong gravity for r; < r < r. Additional boundary
conditions are needed, which are given when the flow is analysed in each region.

3. Formulation and solution strategy

In this section, we first present the formulation of the steady flow in the developing
boundary-layer region in order to obtain the upstream boundary condition needed for
the flow in the fully developed viscous region. Next, we present the formulations of the
flow in the fully developed viscous region. In particular, effects of moderate gravity and
strong gravity are discussed. We see that, depending on the level of importance of the
gravitational effects, different governing equations can be used in different regions. The
general strategy to obtain a unique solution of the free-surface profile and flow field, and
to locate the jump, is finally described.

Aside from some specific cases, boundary-layer and thin-film flows are generally
non-self-similar in character (Schlichting & Gersten 2000; Drazin & Riley 2006).
Therefore, we seek an approximate solution in each flow region. An integral approach of
the KP type (Schlichting & Gersten 2000) is adopted in the developing boundary-layer and
fully developed viscous regions. The KP method has been widely adopted in the literature
for steady and transient jumps, not only when the thin-film equations are parabolic (Watson
1964; Bush & Aristoff 2003; Kate et al. 2007; Dressaire et al. 2010; Prince, Maynes &
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Crockett 2012; Wang & Khayat 2018; Baayoun, Khayat & Wang 2022) but also when the
equations are weakly elliptic (Tani 1949; Bohr et al. 1993, 1997; Watanabe et al. 2003;
Kasimov 2008; Fernandez-Feria et al. 2019; Wang & Khayat 2019; Dhar et al. 2020;
Ipatova, Smirnov & Mogilevskiy 2021). The problem becomes weakly elliptic when the
relatively weak effect of gravity upstream of the jump is not neglected in the analysis.
In this case, the upstream influence caused by the downstream condition is small but not
negligible. It is well established from the literature for impinging jet flow and hydraulic
jump (Prince et al. 2012; Prince, Maynes & Crockett 2014; Wang & Khayat 2018, 2019,
2020; Baayoun et al. 2022) that a cubic similarity velocity profile taken in the supercritical
region leads to close agreement with Watson’s (1964) similarity solution. Consequently,
in this study, we also adopt a cubic profile for the velocity, which is considered to be the
leading-order solution in a comprehensive spectral approach for nonlinear flow (Khayat
& Kim 2006). Other profiles such as the parabolic profile were also used in the literature
(Bohr et al. 1993; Kasimov 2008).

3.1. The flow in the impingement zone and boundary-layer region (0 < r < rgp)

As depicted in figure 1, we assume that the inception of the boundary layer coincides with
the stagnation point, thus assuming the impingement zone to be negligibly small, which
is a common practice for an impinging jet. In fact, the velocity outside the boundary layer
rises rapidly from O at the stagnation point to the impingement velocity in the inviscid
far region. The impinging jet is predominantly inviscid close to the stagnation point, and
the boundary-layer thickness remains negligibly small. Obviously, this is the case for a
jet at relatively large Reynolds number. Indeed, the analysis of White (2006) shows that
the boundary-layer thickness is constant near the stagnation point, and is estimated to be
O(Re~/2). 1deally, the flow at the boundary-layer edge should correspond to the (almost
parabolic) potential flow near the stagnating jet, with the boundary-layer leading edge
coinciding with the stagnation point (Liu & Lienhard 1993). However, the assumption
of uniform horizontal flow near the wall and outside the boundary layer is reasonable.
The distance from the stagnation point for the inviscid flow to reach uniform horizontal
velocity is small, of the order of the jet radius (Lienhard 2006). In the absence of gravity,
the steady flow acquires a similarity character. In this case, the position or effect of the
leading edge is irrelevant. This assumption was adopted initially by Watson (1964), and
has been commonly used in existing theories (see e.g. Bush & Aristoff 2003; Prince et al.
2012, 2014; Wang & Khayat 2018, 2019, 2020).

Nevertheless, in an effort to validate the assumption of negligible impingement zone,
we find it helpful to examine its extent for the free-surface jet. We therefore assume,
given the strong inertia of the downward jet, that the flow above the viscous layer is
purely inviscid. For a free-surface jet with no surface tension, Lienhard (2006) showed
that the radial velocity component of the potential flow is given by U(r) = cr + 0(r%),
where ¢ =0.46. The radial velocity component in the stagnation region is then expressed
as u(r,z) = U(r)F'(n) in terms of the similarity variables n = z2(cRe)V/2, and w(r, 7) =
—(U'F + (U/r)F)/+/cRe. A prime indicates total differentiation. Substituting into (2.15)
and neglecting gravity effects, the equation for F becomes (see also Maiti 1965) F”" +
2FF" — F’? + 1 = 0, which is solved subject to F(0) = F'(0) = 0 and F(n — o00) ~ 1.
The boundary-layer height in the impingement zone is then given by § = 1s/+/cRe, where
ns is a constant that depends on Re. The extent of the impingement zone is assessed once
the flow is sought in the developing boundary-layer region.

In this region, the boundary layer grows with radial distance, eventually invading the
entire film depth, reaching the free surface at the transition, » = ro, where the fully
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developed viscous region begins. For 0 < r < rp and above the boundary-layer outer
edge, the free surface lies at some height z = A(r) > §(r). The flow in the developing
boundary-layer region is assumed to be sufficiently inertial for inviscid flow to prevail
between the boundary-layer outer edge and the free surface (see figure 1). In this case, the
following conditions at the outer edge of the boundary layer z = §(r) and beyond must
hold:

u(r<ro,6 <z<h)y=1, u(r<rp,z=26)=0. (3.1a,b)

The height of the free surface in the developing boundary-layer region is determined
from mass conservation inside and outside the boundary layer. Therefore, for r < rg, (2.4)
becomes

8(r) 1
/ u(r,z)dz+ h(r) —6(r) = —. (3.2)
0 2r
Upon integrating (2.1b) across the boundary-layer thickness and considering the integral
form of the convective terms in (2.5), we obtain the following weak form:

Red [* i 1yde=—R s (3.3)
—_ ru(u — = ——=6h — 1. .
rdr Jo o ¢ Fr? v

Here we introduced the wall shear stress or skin friction 1,,(r) = u,(r,z =0). For
simplicity, we choose a similarity cubic profile for the velocity, satisfying conditions (2.2a)
and (3.1). Thus, we let

u(r < ro,z) = 30 — 57 =f(), (3.4)

where n = z/4. Clearly, (3.4) does not satisfy the momentum equation at the disk. In this
case, the effect of gravity is not accounted for in the velocity profile. This assumption
should be reasonable as the effects of gravity are negligible near impingement where
inertia is more dominant (Watson 1964). In this case, (3.4) represents a self-similar
velocity profile in the boundary-layer flow.

Upon inserting (3.4) into (3.2) and (3.3), we obtain the following equations for the
boundary-layer and free-surface heights:

3 1 39 Re 52 3
h 88 =5 %07 5(r8) = 8°h + 5 (3.5a,b)
These equations are solved numerically subject to 5(r = 0) = 0. The transition location
is found when the boundary-layer thickness becomes equal to the film thickness.
Consequently, the boundary condition for the film thickness at the transition location hy =
h(r = rp) is obtained. Clearly, the formulations presented for the flow in the developing
boundary-layer region are the same as those of Wang & Khayat (2019).

Figure 2 illustrates the influence of inertia (Re) and gravity (Fr) on the size of the
impingement zone and the boundary-layer profile dictated by (3.5). The intersection
indicates the extent of the impingement zone, which depends on Fr (figure 2a) and Re
(figure 2b). We recall that the height of the viscous layer in the impingement zone does
not change with position and is independent of Fr for a Newtonian jet, and behaves
like 1/+/Re. Figure 2(a) shows that the extent of the impingement zone decreases as
Fr increases, remaining essentially of O(1). The extent saturates asymptotically to the
value 1.22 for infinite Fr, when gravity is neglected in (3.5). Figure 2(b) indicates that the
length of the impingement zone is essentially insensitive to the variation of the Reynolds
number; only its thickness decreases with Re. Therefore, we conclude that, unless the
Froude number is very low such as under strong gravity or low flow rate of the jet, the
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Figure 2. Influence of gravity and viscosity on the size of the impingement zone (distance between the origin
and the point of intersection with the boundary-layer height). (a) Influence of Fr for Re = 100 and () influence
of Re for Fr=4. The horizontal lines are the thickness of the viscous layer in the impingement zone, and the
curves are the boundary-layer profiles emanating from the origin.

impingement-zone length is of the order of the jet radius, and can be neglected (see also
Lienhard 2006).

3.2. The flow in the fully developed viscous region (ro < r < reo)

Downstream of the transition point (r > rg), the potential flow ceases to exist, with the
velocity at the free surface becoming dependent on r:

u(r > ro,z="hnh) =U(). (3.6)
In this case, the weak form of the momentum equation (2.15) reads
Red [h 5 Re
—— dz = ——=hh' — 1. 3.7
r dr Jo e Fr? o 3-7)

If the similarity velocity profile u(r > ro, z) = U(r)f(n) is adopted, where f(n) is still
given in (3.4) with n = z/h, then, after eliminating U = 4/5rh using (2.4), we recover,
from (3.7), the film thickness equation of Wang & Khayat (2019):

R 5 68 1 W 1 (68 Re 3 3.8

e<4Fr2 175 r2h3> e (175 ”2 2h>’ 38)
which is solved subject to h(r = ry) = hg. This equation is equivalent to that developed
originally by Tani (1949). Although it (or equivalent model) has been extensively (and
successfully) used in the literature (Bohr er al. 1993; Kasimov 2008; Fernandez-Feria
et al. 2019; Wang & Khayat 2019; Dhar et al. 2020), it presents significant drawbacks when
describing the jump structure and flow. Clearly, (3.8) exhibits a singularity at some finite
radial position. The jump radius is typically assumed to lie between two singular points
reached when (3.8) is integrated forward (from some initial location) and backward when
integrated from the disk edge (Bohr et al. 1993; Kasimov 2008). Alternatively, unlike
other approaches, Wang & Khayat (2019) integrated (3.8) starting from the transition
point. They successfully identified the jump radius as coinciding with the location of the
singularity, validating their approach against experiment. Fernandez-Feria et al. (2019)
validated further this approach through comparison against their numerical solution of
the boundary-layer equations. However, the flow downstream of the singularity cannot be
captured by continuing the solution beyond the singularity. Consequently, (3.8) cannot
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be used to describe the continuous jump or to capture the vortex structure downstream
of the jump. Finally, given the inherent ellipticity of the boundary-layer problem, (3.8)
cannot account for any upstream influence (Bowles & Smith 1992; Higuera 1994). Next,
we address these issues by considering the second-order model.

We again assume a cubic velocity profile subject to conditions (2.2a), (2.3b) and (3.6).
In order to obtain a continuous jump profile, we take the profile to satisfy the momentum
equation (2.1b) at the disk, namely —(Re/F ) + uz(r,z=0) =0. In this case, the
radial velocity profile is non-self-similar, and is given as a function of the surface velocity
U(r) and the gravitational term (Re/F rh2H as

1 R Re Re
u(r > r0,2) = 7 [(6U— T;hzh’> +205 hzh/ 2 <2U~|— h%’) } (3.9)

Here n = z/h(r). We observe that the non-self-similarity is due to the presence of the
gravity term. An equivalent profile to (3.9) was adopted by Watanabe et al. (2003),
who introduced a shape parameter A(r), and the profile by Bonn et al. (2009) for the
hydraulic jump in a channel. Clearly, if (3.9) is adopted, the skin friction coefficient or wall
shear stress is given by t,,(r) = %(6( U/h) — (Re/F r2)hh'). The flow separation points are
identified by setting t,,(r) = 0. This is the case when /' is relatively large and positive. In
contrast, the flow separation cannot be captured if the similarity profile is used, as it yields
T, (r) = %(U/h) > (. Upon substituting (3.9) into (2.4) and (3.7), we obtain

hzh’ = 30U — 24 (3.10a)
Fr? rh’
1 /11 Re 3 3 U
S — W + MU WU = ——hh + — =
140 ( cFR T ) 4Fr2 t 2Re
T (—Frz UH = S0 — gt ) (1 7 ) (G100

respectively. We observe that system (3.10) is equivalent to the system of (2.25) in
Watanabe et al. (2003). Eliminating U, we obtain an ordinary differential equation of
second order in A:

Re? 2 4 Re 37 " / 2
Farh <4ﬁrh W +41 | k' = 1632Re(rh)’ — 6300r
R
Fez 2h3h/[ W (Srh' + h) +41Reh/+2100ri| (3.11)

We refer to system (3.10) or (3.11) as the second-order model. It is not difficult to see that
(3.8) can be deduced from (3.11) for small film thickness, slope and curvature. However,
it is helpful to proceed in a more systematic manner, and derive a hierarchy of equations,
reflecting the (small) level of the film thickness.

For this, we introduce more appropriate length scales for the radial position and the film
thickness; recall that the jet radius has been adopted so far as the common length scale.
Thus, a suitable scaling that reduces (3.11) to a one-parameter equation is

r = R*PFr*y, h=Re 'h. (3.12a,b)

When the rescaled variables (3.12) are used, (3.11) reduces to an equation involving
only one parameter, namely ¢ = Re~2/>Fr~*, which is indeed typically small in practice.
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For instance, for the flow of silicone oil in the experiment of Duchesne et al. (2014),

Re=169.1 and Fr=16.87 so ¢ = 4 x 10”7, Therefore, we take & as perturbation or
ordering parameter to generate the following equations to first and second orders:

O(e) . 136e(Fh) — 52572 — 3507 3K = 0, (3.13a)
02 EPPR Uerh ol + DK = 163262 (Fh) — 63007

_ -2 - - -
— 2R e[ PR T (5T + ) + H (41l + 21007)].
(3.13b)

Several observations are made here. Model (3.8) is recovered to O(e), with a slight
difference as equation (3.13a) has a factor of one instead of the factor 5/4 on the
left-hand side of (3.8). The original second-order (3.11) corresponds to the 0(e?) (3.13b).
The hierarchy in (3.13) shows how the effect of gravity, in particular, influences the
type of film equation. We therefore deduce that (3.13a) or (3.8) is suitable for a
flow under moderate gravity effect, and (3.136) or (3.11) should be the choice under
relatively strong gravity effect. This important observation forms the basis of our solution
strategy.

3.3. Solution strategy

In order to obtain a unique free-surface profile that ensures a smooth continuous jump, the
following steps are taken in the solution process:

(1) System (3.5) is solved subject to §(r = 0) = 0 over the range 0 < r < ry to obtain
the boundary-layer and film-thickness profiles between the impingement point and
the transition point r = ry.

(2) Subject to the boundary condition h(r = rg) = hg obtained, (3.8) is integrated
forward in r over the range r9 < r < ry, hence generating a film thickness profile
that exhibits a singularity at some finite radius r = rs. Although this location is not
used in the solution process, it gives a close estimate of the jump location (Wang &
Khayat 2019).

(3) Next, we integrate the second-order (3.11) over the range r; < r < ryo, Where ryp K
r1 < rg (see figure 1), subject to the known values of the height 4(r = r1) and slope
W (r = ry) from the solution of (3.8). The location of the starting point | for the
solution of (3.11) is determined by ensuring that 2/ (r = r) — —00.

In sum, the composite film profile is determined by solving system (3.5) over the range
0 <r <rp, (3.8) over the range ro < r < r; and (3.11) over the range r; < r < roo. We
take the jump location r = ry, to coincide with 4”(r;) = 0. Hence, r; is the leading edge
of the jump. Finally, it is important to point out that, given the sensitivity of the solution
of (3.11) on the initial conditions and the ensuing numerical instability (Watanabe et al.
2003; Roberts & Li 2006), the solution must begin at a location close to the jump, thus
rendering crucial the introduction of the boundary-layer and moderate-gravity regions.
This, in turn, ensures the imposition of appropriate boundary conditions: A(r = ry)
and 7' (r = ).

3.4. Upstream influence and the free-interaction problem

Figure 3 illustrates the solution process of the two-point boundary-value problem,
with Re=2800, Fr=5 and roo = 25. The flow for 0 < » < r; covers the developing
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Figure 3. A sample case (Re =800, Fr =5 and ro, = 25), illustrating the shooting method and the effect of the
upstream and downstream boundary conditions on the jump location (upstream influence). The distributions
of film profiles (a) and the wall shear stress (b) are obtained for different initial conditions. The green solid
and dashed curves correspond to the profiles of the film and boundary layer, respectively, in the developing
boundary-layer region. Here, the transition location is at r = rg = 4.18 (green vertical line). The red curve
corresponds to the variation of the film thickness in the moderate-gravity viscous region, obtained by solving
the first-order equation (3.8), and exhibiting a singularity at r = ry = 12.3 (red vertical line). The black and
blue curves show branches of the solution for the film thickness variation in the strong-gravity viscous region
obtained by solving the second-order equation (3.11). Depending on the value of r; (and consequently /1) the
solution may or may not reach the edge. The unique solution to the problem (blue curve), corresponding to an
infinite slope at the edge of the disk, is obtained for r; = 10.7931 (blue vertical line).

boundary-layer and moderate-gravity regions. Equation (3.11) is solved subject to five
different initial conditions corresponding to five locations of the leading edge and height
of the jump. The figure illustrates the strong influence of the starting location r = r; and
hy = h(r = r1) on the ensuing solution of (3.11), and how the film profile (figure 3a)
and wall shear stress (figure 3b) can be obtained uniquely over the entire domain. We
recall that r; < ry, where ry is the location of the singularity reached by solving the
first-order equation (3.8) with initial conditions at 9 = 4.18 (red curve). In particular,
the figure illustrates how the jump profile is influenced by the choice of 1. When ry is
close to ry, r1 = 11.30, the film profile follows closely the first-order solution but avoids
the singularity exhibited by the solution of the first-order equation (3.8), rising slightly
and dropping soon after. For a smaller ri, here r; = 11.00, the profile extends further
in the subcritical region and becomes singular at some location upstream of the disk
edge. Only one value, r; = 10.79, ensures that the tail singularity (/' — —o0, 1, — 00)
occurs at 7 = roo. When ry is taken further upstream, the profile overshoots the edge of the
disk. The process illustrates clearly how the upstream influence is ensured in the present
approach.

The profiles in figure 3, obtained subject to different initial conditions, are reminiscent
of the profiles in figure 3 of Bowles (1995), who examined the free-interaction problem
of the planar flow of a sloped liquid layer over an obstacle. Bowles described the
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internal structure of the continuous jump as dominated by the viscous—inviscid interaction
between the hydrostatic pressure gradient and the viscous effects near the solid wall
(see also the earlier work of Gajjar & Smith (1983) and the dissertation of Bowles
(1990)). As Bowles (1995) observes, the free interaction in the internal jump structure
involves one of two types of mechanism, depending on the pressure development: ‘The
pressure may increase, possibly leading to separation (a compressive interaction) or it
may decrease, leading perhaps to a finite-distance singularity in the solution (an expansive
interaction)’. The solution branches in our figure 3 reflect the two possibilities, namely an
expansive interaction with a singularity and no separation for r; = 11.00 and 11.30, and
a compressive interaction for r; = 10.20, 10.60 and 10.79 with separation. We recall that
imposing these different initial locations is equivalent to imposing different initial film
heights provided through the solution of (3.8).

Similarly, by varying the initial conditions, Bowles (1995) sought the solution for the
sloped film flow by imposing a perturbation on the otherwise uniform film surface and
corresponding half-Poiseuille flow far upstream. The flow was sought as a superposition of
the base flow and an exponentially developing flow. The resulting (linearized) eigenvalue
problem was solved numerically. Bowles found that the type of film profile obtained
depends on the level of the perturbation of the uniform film. For a perturbed film with
a slightly diminished thickness, the film profile was found to terminate in an expansive
interaction, similar to the two profiles starting at r; = 11.00 and 11.30 in our figure 3,
with the derivative of the layer’s depth becoming large and negative (figure 3a). The
corresponding skin friction in figure 3(b) becomes large and positive, while the depth
of the film remains finite of O(1). Higuera (1994) showed that this type of singularity is
algebraic rather than logarithmic as in the problem of the free interaction in hypersonic
flow (Brown, Stewartson & Williams 1975; Bowles 1990). For a perturbed film with a
slightly augmented height relative to the upstream uniform height, Bowles (1995) found
that the film surface becomes horizontal far downstream (with no singularity). For a
relatively large bed slope, a jump emerges for a positively perturbed film height. In
that case, a separation occurs with compressive interaction, which is reflected in our
figures 3(a) and 3(b) for r; = 10.20, 10.60 and 10.79. Figure 3(a) indicates that if the
solution starts at a relatively distant r; from impingement, a weak jump forms as a result of
strong viscous and weak inertial effects; the film comes to a halt. Conversely, if the initial
distant r| is closer to impingement, fluid accumulates with a strong jump and upward slope,
causing the development of an adverse pressure gradient and a separation. Consequently,
we highlight an important distinction from the observations of Bowles (1995), which we
demonstrate throughout the present study: the hydraulic jump can actually form without
being followed by a recirculation zone. Finally, it is worth mentioning that the magnitude
of the perturbations imposed by Bowles (1995) was relatively small (of the order of 107° to

1072 compared to 1, the normalized film depth). This suggests that the solution is sensitive
to initial conditions, which is also the case in our computations (see also Watanabe et al.
2003).

3.5. Asymptotic flows

Two well-established limit flows are worth including for reference. The first is the limit
of infinite Froude number in the supercritical region. We note that the supercritical flow
consists essentially of a balance between inertia and viscosity effects with negligible
gravity effects. This limit was first considered by Watson (1964) and later adopted by
others (see Wang & Khayat (2019) and references therein). For Fr — oo, the solution of

966 A15-13


https://doi.org/10.1017/jfm.2023.374

https://doi.org/10.1017/jfm.2023.374 Published online by Cambridge University Press

W. Wang, A. Baayoun and R.E. Khayat

(3.5) upstream of the transition point reduces to

5 - 70 r " : L( [0 2 " o
r<rg) =2/ —=— r<rp) = — — 4 - r<rg) = 1.
0 V39 Re’ V=AW 13 Re ) 0

(3.14a—c)
The transition point is determined by setting 6 (rg) = h(rg), yielding ro = (78Re/ 875)1/3,
which is closely reflected in figure 3. Based on (3.14a), the boundary layer grows like
/1, and the film height decreases predominantly like 1/r, as is also reflected in figure 3.
Downstream of the transition point, the flow is governed by (3.8). Setting Fr — oo, it is
not difficult to show that the solution reduces to

2331 175

L2l R 3.15a.b
3407 136 Re’ (3.15a.5)

h(r > rp) = U(r = ry) =

5rh’
suggesting that  decreases like 1/r for small r and increases like 2 for large , as reflected
in figure 3. For comparison, Watson’s expressions are reproduced here in dimensionless
form:

3¢B3vV3c—m)1 21 2 3432
- —— U(r > rO) = 3
87 r 33Re 4nirh

where ¢ = 1.402. Comparison of the numerical coefficients between (3.15) and (3.16)
reveals a surprisingly close agreement between Watson’s similarity solution and that based
on the cubic velocity profile (see also Prince et al. 2012).

The second asymptotic flow often used in the literature is the limit of negligible inertia
in the subcritical region. The flow is captured using lubrication theory, which consists
of integrating equation (2.15) subject (2.2a) and (2.3b) to obtain the parabolic velocity
profile u = (Re/Fr*)l' (z2/2 — hz). Upon using the mass conservation equation (2.4), we
obtain the equation for 4. This finally yields the following profiles for the film thickness
and surface velocity:

h(r > rg) = (3.16a.,b)

Fr? T /
e (T _3
h= [hoo +6 ln< ; )} LU (3.17a,b)

where we recall /o, to be the thickness at the edge of the disk.

4. Validation

In this section, we validate our approach against existing measurements and numerical
simulation. Additional features are reported on the flow observed and simulated, which
illustrates the capabilities of our approach to capture some of the jump and vortex structure
not captured by existing models.

4.1. Validation against numerical models

We first validate our approach against the numerical solutions of the Navier—Stokes
equations and the boundary-layer equations (2.1) of Fernandez-Feria et al. (2019), as
well as the depth-averaged model of Kasimov (2008). Unlike the first-order equation
(3.8) which requires upstream and downstream boundary conditions to generate the inner
and outer solutions (Kasimov 2008; Wang & Khayat 2019), the boundary-layer equations
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Figure 4. (a) Comparison of the free-surface profile based on the present approach against the boundary-layer
and Navier—Stokes profiles of Fernandez-Feria e al. (2019), as well as the depth-averaged based profile of
Kasimov (2008) for Re =854.29, Fr=97.19 and ro, =80. (b) Visualization of the flow field based on the
present approach (U and t,, distributions in inset).

(2.1) and (3.11) can accommodate two boundary conditions specified at the same or
two different radial locations. However, specifying the two boundary conditions at the
same location, such as near impact, may not generate an accurate profile, as seen in
figure 4(a) from the boundary-layer profile. In this regard, Higuera (1994) recognized
the elliptic nature of the boundary-layer equations, and the need to ensure the upstream
influence of the flow near the edge; boundary conditions must be imposed upstream
and downstream of the jump. We note that Kasimov (2008) imposed (arbitrarily) the
surface velocity and the film thickness at a radius 20 % larger than the jet radius. At
this radius, Kasimov set the surface velocity equal to the jet velocity at impingement,
and the film thickness was imposed by satisfying the conservation of mass. As shown
in figure 4(a), our approach yields a better agreement with the Navier—Stokes solution
compared with the boundary-layer and the first-order models. Clearly, the boundary-layer
solution, which is not subject to a downstream boundary condition, fails to capture the
free-surface profile close to the edge of the disk. On the other hand, the condition
W (r = roo) — —oc0 imposed in our approach and in the first-order model of Kasimov
(2008) yields a close agreement with the Navier—Stokes solution. We see that Kasimov’s
solution overestimates the supercritical film thickness and underestimates the jump
location. This is a consequence of the over-representation of viscous friction when
using the parabolic profile. Moreover, this model cannot capture the vortex below the
jump due to the shock-like assumption of the jump and the simple similarity profile
adopted. Our close agreement with the Navier—Stokes supercritical profile confirms the
necessity of first determining the boundary-layer flow near impact; this yields the suitable
upstream boundary condition for the solution of (3.8), and further (3.11), in the viscous
region. Simultaneously, the treatment of the flow in the developing boundary-layer region
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circumvents the need to fix arbitrarily or empirically an upstream boundary condition as
in the case of Kasimov (2008) or Fernandez-Feria et al. (2019).

Figure 4(b) shows our predictions of the flow streamlines, as well as the wall shear stress
and the surface velocity distributions (inset). The flow structure clearly shows a vortex
at the bottom in conjunction with the jump. The shear stress decreases monotonically
upstream of the jump. This monotonicity is expected given the weak gravity effect in
the supercritical region; in the boundary-layer region, the wall shear stress t,, = 3/28, and
further downstream, the film slope is negligibly small and (3.9) indicates that t,, ~ 3U/2h.
In the vicinity of the jump, a recirculation zone appears, corresponding to 7,,(r) < 0. The
separation and the reattachment of the flow are the consequence of the rapid change of the
hydrostatic pressure induced by the rapid increase of the film thickness at the jump. We
note that profile (3.9) indicates that t,, vanishes when U = Reh*l’ /6Fr?. Consequently,
(3.10a) reduces to Reh*h'/Fr? = 6/rh, indicating that 4’ > 0. Thus, the separation and
reattachment occur below the ascending film portion; the vortex is therefore confined
below the jump (Higuera 1994). The vortex also takes a similar shape to that based on
the boundary-layer approach of Higuera (1994), as well as the second-order models of
Watanabe et al. (2003), Roberts & Li (2006) and Bonn et al. (2009). The vortex is always
placed under the jump region as a result of the balance between the shear forces applied by
the disk and the flow above the vortex, which are directed towards the disk edge, and the
hydrostatic pressure force, directed towards the impingement zone (Higuera 1994). The
surface velocity U decreases after experiencing a weak maximum (not visible here).

Figure 5 shows a further comparison between the present approach and the numerical
solution of the boundary-layer equations of Fernandez-Feria et al. (2019). Shown are the
radial distributions of the film profile & (figure 5a), the wall shear stress t,, (figure 5b),
the gravity term —(Re/Fr?)hh’ (figure 5¢) and the radial momentum flux term m =

(Re/r)(d/dr) f; ru®dz (figure 5d) in (3.7). The comparison of the flow details shows
surprisingly close agreement given the simplicity of the present approach and its capability
in reproducing the physical mechanisms at the jump. As Fernandez-Feria et al. (2019)
observed, upstream of the jump the radial momentum flux almost balances the shear
stress at the wall, the gravitational term being almost negligible in comparison with the
inertial and viscous terms. Close to the jump inception, the shear stress drops suddenly
(figure 5b), becoming negative but small in magnitude. This drop is compensated by the
abrupt growth of the gravity term (figure 5¢) to balance the momentum flux (figure 54),
causing the jump to form (figure 5a). Hence, while the shear stress is negative and small in
the recirculating flow region, the momentum flux is balanced almost exclusively by gravity.
Further downstream, inertia becomes negligible, leaving the viscous and gravity forces
in balance. Thus, downstream of the recirculation zone, the flow reaches a lubrication
limit so that the velocity profile is practically parabolic. This is the reason why the
lubrication assumption in the subcritical region yields an accurate description of the flow
(Duchesne et al. 2014; Wang & Khayat 2018, 2019). However, and as we discuss below,
the lubrication character in the bulk subcritical region does not extend all the way to
the edge of the disk, where inertia, viscosity and gravity (as well as surface tension)
become equally important (Higuera 1994). Fernandez-Feria et al. (2019) mentioned that
the boundary-layer or thin-film approach equations are no longer valid (nor, of course, is
the lubrication approximation) near the edge of the disk. This is, of course, true in principle
as |h'| becomes very large at the edge. However, as our calculations and the agreement
in figure 4 suggest, the boundary-layer or the present thin-film approach seems to hold
around the sharp corner at the edge of the disk; the coincidence of the singularity with the
edge location turns out to be sufficient to account for the upstream influence analysed by
Higuera (see below).
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Figure 5. Comparison of the present approach (solid curves) against the numerical solution of the
boundary-layer equations (open circles) of Fernandez-Feria er al. (2019) for the radial distributions of (a) the
film profile, (b) the wall shear stress, (¢) the gravity term and (d) the radial momentum flux term in (3.7). Here
the liquid is silicone oil with Re =164.98, Fr = 16.87 and ro, = 31.

4.2. Comparison against experiment

Next, we validate our approach against the measurements of Duchesne et al. (2014) for
silicone oil (20 cSt) of density 960 kg m~—> and kinematic viscosity 2 x 107> m? s~!. The
liquid was injected downward from a jet of radius a = 1.6 mm onto a horizontal circular
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Figure 6. Comparison of the free-surface profiles between our present approach (black solid line) and the
measurements (open blue circles) of Duchesne et al. (2014). The Navier—Stokes solution of Zhou & Prosperetti
(2022) is also included (red solid line) as well as the lubrication solution (green dashed line). Arrows point
to the jump heights H;; = hpqy and Hyp based on the present and lubrication approaches, respectively. Here,
Re=169.1, Fr =16.87 and rro = 93.75.

disk of radius Ry, = 15 cm. The flow conditions in dimensionless form correspond to
Re =169.1, Fr =16.87 and ro, = 93.75. The comparison of the free-surface profiles based
on our approach and experiment is shown in figure 6. We also included the prediction from
the Navier—Stokes numerical solution of Zhou & Prosperetti (2022). As in the numerical
simulation of Wang & Khayat (2021), the steady state was reached through the evolution
of the transient flow. Zhou & Prosperetti (2022) reported that the computational domain
was initially full of a gas medium with density and viscosity three orders of magnitude
smaller than those of the liquid. The jet was injected from the inlet with a uniform velocity
profile. For all wall boundaries the no-slip condition was used. At the outlet of the domain,
the flow was essentially fully developed, with the static pressure fixed to a reference value.
A standard outlet condition was used for the velocity; the velocity gradient normal to the
boundary was set equal to zero.

The present approach agrees well with experiment, but like the numerical solution it
underestimates slightly the supercritical film thickness. Measuring the film height in this
thin-film region may be associated with uncertainties. In contrast, in the subcritical region,
the theoretical and numerical predictions almost fit all the experimental data points, except
near the disk edge. The agreement with the Navier—Stokes solution of Zhou & Prosperetti
(2022) is surprisingly close. We recall that the effect of surface tension was neglected in
our model but was included in the numerical simulation (see also Wang & Khayat 2021),
confirming that, in this case, the effect of surface tension may only be important near the
edge and at the jump. We recall that the agreement was equally close between our approach
and the numerical simulation in the absence of surface tension (figure 4). We discuss the
edge thickness in more detail later. As far as the location of the jump is concerned, we
see that the experimental data suggest a slightly smaller jump radius than that predicted
by our approach and the numerical simulation. However, our theoretical prediction of the
free-surface profile agrees well with the numerical one in the jump region. Finally, we
have also included in figure 6 the subcritical profile based on the lubrication solution for
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Figure 7. Flow details corresponding to the profile in figure 6 using the present approach. Shown are the flow
streamlines (a), the wall shear stress distribution (b) and the surface velocity distribution (c). The results are
plotted in dimensionless form with Re = 169.10, Fr = 16.87 and r, = 93.75. In (a), the red curve represents the
supercritical free surface of the film, showing a singularity, predicted using the first-order model (3.8).

reference, showing close agreement with experimental and numerical results, with some
discrepancy near the jump.

Further theoretical details of the flow in figure 6 are given in figure 7, where we show
our predictions of the flow streamlines (figure 7a), the wall shear stress (figure 7b) as well
as the surface velocity (figure 7c¢) profiles. The flow structure in figure 7(a) clearly shows
a vortex at the bottom in conjunction with the jump. The film thickness predicted using
the first-order model (3.8) (depicted by the red curve) does not cross the jump since it
terminates by a singularity. Nevertheless, the location of the singularity (r = ry) is shown
to be close to the end of the separation zone predicted using the second-order theory.

Figure 7(b) depicts the distribution of the wall shear stress over the entire disk. The
shear stress decreases monotonically upstream of the jump. As mentioned earlier, this
monotonicity is expected given the weak gravity effect in the supercritical region. In this
case, (3.9) indicates that t,, ~ 3U/2h, which explains the sharper drop of the stress than
the velocity as & increases with r. Further downstream, near the jump, a small separation
zone corresponding to 7,, < 0 is observed over the range 7.93 < r < 9.58. We recall from
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our earlier observation that separation occurs while the film slope is positive. Therefore,
the vortex is confined between r; and ry,, with 2”(r;) = 1/ (r;,) = 0. Simultaneously, U
decreases, after experiencing the maximum shown in the inset of figure 7(c). Indeed, at
the separation point, we recall that (Re/Fr’)h*h’ = 6/rh, leading to U = 1/rh. In this
case, U’ = —1/ r*h — (Fr? /Re)(6/ r2I) < 0. Downstream of the separation region, the
wall shear stress remains almost unchanged before exhibiting a sharp increase at the disk
edge. The stress profile mimics well the flow condition at the disk edge, where a corner or
stress singularity occurs (Higuera 1994; Scheichl ef al. 2018). This, in turn, justifies taking
an infinite slope at the edge of the disk. The correlation between the stress singularity and
infinite slope becomes evident when we deduce the wall shear stress from profile (3.9) and
use (3.10a) to eliminate U:

( ) 1 6U Re i 1/ 6 Re i Re (i)

Tw(r =700) = | 6— — = =\ 02 T 2 ~ - =loo»

" 7 a\Ch FR ) 5\em2 P2 ), SFR2TT
4.1)

which confirms the equivalence between the stress and geometrical singularities, and
justifies taking an infinite slope at the edge of the disk as a result of the stress singularity
(Higuera 1994; Kasimov 2008; Dhar et al. 2020).

Figure 7(c) shows that the surface velocity remains equal to one in the developing
boundary-layer region, then decreases, under viscous effects, almost linearly until the
jump occurs. A small rise in the surface velocity is observed near the jump (see the inset
of figure 7c, showing a small bump in U at r ~ 7.93). In fact, U experiences a local
maximum, coinciding with the change in the concavity at the jump radius. Indeed, upon
differentiating (3.10a) and noting the dominance of the surface slope, we see that U’ ~
%(Re JFr?)hh'?, reflecting the increase in U at the jump location. Further downstream, U
decrease monotonically and maintains an almost constant value in the subcritical region. In
fact, inertia in this region is negligible, so the flow can be predicted reasonably well using
the lubrication theory (see Duchesne et al. 2014; Wang & Khayat 2018, 2019; Baayoun
et al. 2022). However, as discussed by Higuera (1994), inertia becomes important again as
the flow approaches the edge, resulting in a velocity increase close to the edge. Unlike the
lubrication approach, our theory captures the flow complexity near the edge (see next).

Figure 8 shows the influence of Fr on the jump radius in figure 8(a), on the maximum
film height A, in figure 8(b) and on the Froude number at the jump in figure 8(c). The
measurements of Duchesne et al. (2014) are included for comparison over the same range
of Fr as the experiment. The dependence on Fr reflects the dependence on the jet flow rate,
in which case the Galileo number is maintained at Ga = Re*/Fr? = 100. Our predictions
are in good agreement with the measurements, essentially over the entire range of flow
rates, reflecting a growth r; ~ Fr’/19 (inset in figure 8a). This behaviour is essentially the

same as that reported by Hansen et al. (1997), based on their measurements for silicone

oil (ry ~ Fr%72).

Figure 8(b) shows an overall good agreement for A, against the measurements of
Duchesne et al. (2014), suggesting that /i, ~ F /2 (inset in figure 8b). This growth is
most likely accompanied by a similar or faster growth of the supercritical film thickness,
eventually leading to the vanishing of the jump as gravity continues to weaken (see below).
Duchesne et al. (2014) observed that the Froude number at the jump, Fr; = Fr/ 2r1h,3n/a2x,
is independent of Fr. Figure 8(c) shows that this independence seems to hold when we
compare our prediction against the measured Fr;. Indeed, recalling from figures 8(a) and
8(b) that r; ~ Fr’/19 and hye, ~ Fr*/?, we deduce that Fry ~ Fr0-0, confirming the
quasi Fr independence.
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Figure 8. Influence of Fr (flow rate) on (a) the jump radius r; (inset shows r; & 1.08F #1/10)_(b) the maximum
film height A4, (inset shows /. =~ 1.32F 7*/25) and (c) the Froude number at the jump Fry over the
experimental flow rate range of Duchesne et al. (2014), corresponding to 50.11 < Re < 551.25 or Ga = 100.
Theoretical results (black solid curves) are compared against the measurements (blue circles) of Duchesne
et al. (2014). In (c), the open blue and red circles represent the Fry values based on the measured heights Hj;
and the height Hj, (see figure 7).

Figure 9 shows the dependence of the jump location on the Froude number (flow rate),
where comparison is carried out against the measurements of Hansen et al. (1997), the
spectral inertial-lubrication solution of Rojas et al. (2010) as well as the Navier—Stokes
solution of Zhou & Prosperetti (2022) for water and silicone oil. We have included our
results using the same log—log ranges used by Rojas et al. (2010) in their figure 2 and
Zhou & Prosperetti (2022) in their figure 3. Our predictions are in close agreement with
both numerical results. The agreement with the oil data is quite good. That with the water
data is less so, although our results are in very close agreement with those of Rojas et al.
(2010) and Zhou & Prosperetti (2022). We may also note that Hansen et al. (1997) stated
that the radius of the jump was oscillating for Q greater than approximately 15 cm? s~!
(Fr>1.5) so that the experimental data reported are mean values. Zhou & Prosperetti
(2022) noted that the unsteadiness mentioned by Hansen et al. (1997) was not observed
in their simulation. We also recall that Rojas et al. (2010) had to impose the thickness at
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Figure 9. Comparison of our approach (solid lines) for the jump radius with the measurements of Hansen
et al. (1997) (open circles). Results for water (Ga = 627 840) are in red, those for silicone o0il (Ga =2790) are
in blue. The dash-dotted lines are the predictions of the spectral inertial-lubrication model developed by Rojas
et al. (2010), and the dashed lines those of the Navier—Stokes simulations of Zhou & Prosperetti (2022).

the edge of the disk as measured by Hansen et al. (1997). Both the present theoretical and
existing numerical predictions tend to overestimate equally the jump radius compared to
the measurements for water. The discrepancy appears to be higher for low flow rates, for
a given liquid. A plausible explanation for the discrepancy is the difficulty in accurately
locating the jump radius in reality. The qualitative and quantitative agreement with the
numerical models is especially encouraging given the simplicity of the present approach
compared with the spectral approach and numerical simulation.

4.3. The nature of the subcritical flow

The present approach seems to capture well the turnaround usually observed at the edge
of the disk. This is particularly obvious from our comparison with experiment and the
solution of the boundary-layer and Navier—Stokes equations as shown in figures 4(a),
5(a) and 6. As the work of Higuera (1994) suggests, both inertia and gravity become
important at the edge. Obviously, inertia is neglected in a lubrication approach for the
subcritical flow, which seems to yield an accurate description of the flow, including the
vicinity of the jump, but less so near the edge, where the acceleration of the flow tends
to infinity as a result of strong gravity effect (Duchesne et al. 2014; Wang & Khayat
2018, 2019). Consequently, at the edge, the wall shear stress should exhibit a (corner)
singularity, and viscous effects are confined to a thin boundary layer that develops near
the wall, similar to the free-surface flow exiting a channel (Tillet 1968; Khayat 2014,
2016, 2017). Higuera (1994) carried out a matched asymptotic expansion and developed
the solution in the viscous thin layer near the plate and matched it to the bulk solution
in the inviscid region lying above. Higuera also estimated the order of magnitude of
the region near the edge where inertial effects cease to be negligible in the subcritical
region to be 1 —x = O((Fr’Re®/L3)!/3). This range is recast here in terms of the jet
Froude and Reynolds numbers, where L is the half-length of the plate scaled by the
half-width of the jet, and x =1 coincides with the plate edge. We follow Higuera (1994),
and establish a similar estimate in our axisymmetric case by balancing the inertial term
with the hydrostatic pressure gradient term in the momentum equation (2.15), or by setting
ReU(dU/dr) ~ (Re/Fr?)(dh/dr), where U and h are the subcritical surface velocity and
film thickness. On the other hand, ignoring the convective terms, and integrating (2.15), we
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arrive at the lubrication result: U = — % (Re/F ) (dh / dr)h?. Following Higuera (1994) and
setting hoo & 0, we obtain from (3.17a): h = [(6F 2 /Re) In(roo/ YA, Finally, the range
where inertial effects become important near the edge is 1 — r/roo = O((F r’Re3 / rgo)l/ 3.

5. Further results

In this section, we examine further the influence of the flow rate on the flow and jump
structure over the same range of flow rates as considered by Duchesne et al. (2014).
We also keep the same conditions as in their experiment. In this case, 5 < Fr < 55 and
Re = +/GaFr, where the Galileo number remains very close to Ga = 100. Although the
additional theoretical details reported in this section do not have their counterpart in the
experiment of Duchesne et al. (2014), the aim of including them here is to motivate further
measurements. The influence of gravity and viscosity is also examined. We particularly
focus on the film profile, the wall shear stress distribution and the flow field in the vicinity
of the jump.

5.1. The influence of the flow rate

Further details of the influence of the flow rate on the flow are reported in figure 10,
where the radial distributions of the film profile, wall shear stress and surface velocity are
shown in figures 10(a), 10(b) and 10(c), respectively. Although similar or equivalent flow
details were not reported by Duchesne et al. (2014), the results in figure 10 and this section
correspond to the same range of flow rates and conditions of their experiment. Figure 10(a)
shows that the boundary-layer thickness diminishes with increasing flow rate, following
closely (3.14a), with the film thickness profile well reflected in (3.14b). The figure indicates
that although the jump radius and height both grow with the Froude number (as shown
in figure 8), the shape of the jump, particularly its steepness or slope, is insensitive to
the Froude number. While the supercritical region extends and diminishes in thickness,
the subcritical region shrinks in length with diminishing thickness growth with flow rate,
evolving from an essentially linear to a logarithmic (lubrication) profile (excluding the
vicinity of the edge). Figure 10(b) suggests that the recirculation zone increases with flow
rate, with the rate of drop in the wall shear stress diminishing until it eventually vanishes.
Hence, the vortex beneath the jump widens but the height behaves inconsistently as the
flow rate increases.

Although the surface velocity appears to decrease monotonically with radial distance
(figure 10c), this is not the case upon local scrutiny. We have already seen in figure 7(c)
that U experiences a weak maximum just where the stress drops. This is confirmed
further in the first inset of figure 10(c) for Fr=35 where a relatively strong maximum
occurs. The second inset in figure 10(c) indicates that while the velocity increases with
distance as the flow approaches the edge of the disk at relatively low Fr, it decreases with
distance at relatively high Fr. Physically, this reversal in trend is the result of the enhanced
accumulation of the subcritical fluid with increasing flow rate.

It is worth mentioning first that the trend reversal in figure 10(c) is not predictable for
subcritical lubrication flow. Indeed, recalling (3.17b) above or (5.6) from Wang & Khayat
(2019) for the parabolic velocity profile for lubrication flow, we see from mass conservation
that U = 3/4rh or U' = —(3/4rh*)(W + h/r). When applied at the edge of the disk, and
recalling the dominant slope, this relation yields U, &~ —3h._/4rsh%,, confirming that
Ul is always positive for a draining fluid (h, < 0). Rewriting equation (3.10b), after

966 A15-23


https://doi.org/10.1017/jfm.2023.374

https://doi.org/10.1017/jfm.2023.374 Published online by Cambridge University Press

W. Wang, A. Baayoun and R.E. Khayat

0 10 20 30 40 50 60 70 80 90 100

(o) I 1 1 I I 1 I 1 1
1.0 0.06 -

" Z/
U 05 —— L
T 0
32 33 93.60 93.65 93.70 93.75

0 - -

T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100

7

Figure 10. Influence of the Froude number (flow rate) on (a) the film profile, (b) wall shear stress (inset
shows amplification in the downstream vicinity of the jump) and (c¢) surface velocity (insets show local
profile for Fr =5 and amplification near the disk edge). Here, Ga =100 (50.11 < Re < 551.25) and ro = 93.75,
corresponding to the range of flow rate in the experiment of Duchesne et al. (2014).

using (3.10a), as

- M= 2w 2V B (e LY (et (5.1)
35 rh © 4Fr? 2Re h 35 r2h? r)’ '

we first observe that the coefficient of U’ is always negative at the edge for any flow
rate. Consequently, when applying (5.1) at the disk edge, we see that the sign of Ul
depends on the competition among gravity, viscosity and inertia effects, represented by
the terms (3/4Fr?)hl, (3/2Re)(U/h) and 12(U? — 1/r?h?)(K + h/r), respectively, on
the right-hand side of (5.1). As we recall from Wang & Khayat (2019), the thickness and
velocity at the edge of the disk are iy, = O(F r*/3) and Us, = O(Fr—2/3), respectively.
Therefore, the viscous term is O(Re™' Fr~*/3) and is negligible at the edge, so that U, ~
—[(B/4F ) hoo + 12 (U2, — 1/12h2)1h,,. From (3.10a), we deduce that U2, — 1/r2 h2,
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Figure 11. Influence of Fr (flow rate) on the local Froude number Fr;. Inset shows the distribution of the
numerically predicted jump radius (black solid curve) and the critical radius (red dashed curve), as well as the
experimental data of Duchesne et al. (2014) (open blue circles). Here, Ga = 100 and ro = 93.75, corresponding
to the experiment parameters.

is always negative. For relatively small flow rate (Fr <25 in figure 10c), UL, is positive,
and becomes negative as Fr exceeds a critical value (Fr > 25).

One of the difficulties plaguing both theory and experiment is the identification of
the jump location (Hansen et al. 1997; Rojas, Argentina & Tirapegui 2013; Duchesne
et al. 2014). Ideally, the jump location should correspond to the location where the local
Froude number Fr; reaches unity, changing from Fr; > 1 in the supercritical region to
Fr; < 1 in the subcritical region. In the present work, we assumed that the jump location
coincides with the vanishing of the film surface concavity: 7" (r = ry) = 0. We now verify
the plausibility of this assumption by examining the value of Fr; at the jump radius. We
introduce the local Froude number in terms of the average velocity and film height as
Fr; = Fr(u)/~/h. Noting from (2.4) that (u) = 1/2rh, then Fr; = Fr/2rh3/2. Figure 11
depicts the influence of Fr (flow rate) on the distribution of Fr; for the same range of flow
rates as in the experiment of Duchesne et al. (2014) and the profiles in figure 10. We have

also plotted in the inset the critical radius that satisfies Fr/2rchg/ 2 — 1 as a function of
Fr (flow rate), where h. = h(r = r.) is the critical height, along with the theoretical and
measured jump radius from figure 8(a). The inset shows that the r; and r, profiles are
surprisingly close, hardly distinguishable. This excellent agreement confirms the accuracy
of our assumption, 4" (r = ry) = 0, for identifying the location of the jump. The sharp
drop of Fr; with distance in figure 11 shows how quickly the effect of gravity increases
in the supercritical region and across the jump, mostly relative to inertia (see figure 10c).
Figure 11 also shows a sharp increase in Fry, reflecting a drop in gravity effects compared
with inertia.

Figure 12 shows the dependence of the vortex size, namely vortex length Ly, and
vortex height Hyper, On the flow rate or Fr, for the same range as in the experiment
of Duchesne et al. (2014). The vortex length Ly, increases monotonically with Fr,
behaving roughly like Fr!/2. Therefore, increasing the flow rate stretches the jump region
in the streamwise direction (see also figure 10a), and thereby increasing the size of the
recirculation zone (refer to the vertical dotted lines in figure 12(b—d) that delimit the jump
length). However, the growth of the jump and vortex lengths is not commensurate with
the growth of the vortex height, which tends to level off or saturates with increasing flow
rate. The vortex immediately downstream of the jump also takes a similar shape to the
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Figure 12. Dependence of the vortex size and structure on Fr (flow rate). (@) The vortex length and height and
(b—d) the vortex structure for Fr =5-55 (vertical dotted lines delimit the jump region/length). Here Ga = 100
and ro, = 93.75, corresponding to the parameters in the experiment of Duchesne ez al. (2014).

one based on the boundary-layer approach of Higuera (1994), as well as the second-order
models of Watanabe et al. (2003) and Bonn et al. (2009).

5.2. The jump of type 0

Referring back to figure 10, we saw in particular from figure 10(b) that the vortex strength
weakens with increasing flow rate, but the vortex does not vanish since its size remains
essentially insensitive to the increase in the flow rate. Simultaneously, the jump intensity
or steepness also remains, surprisingly, unaffected by the flow rate as the vortex strength
diminishes. This begs the question as to whether a hydraulic jump can indeed exist for
some flow conditions in the absence of recirculation. Some but little evidence of the
existence of a type-0 jump can be found in the literature, particularly for a jump with an
obstacle placed at the edge of the disk. Liu & Lienhard (1993) observed several forms
of the circular hydraulic jump that appeared sequentially in their experiments as the
downstream thickness was increased. For a small difference between the supercritical and
subcritical depth, they observed a smooth jump of gradually increasing depth without
any flow reversal. Later, the numerical simulation of Passandideh-Fard, Teymourtash
& Khavari (2011) showed that a circular jump exists with no flow separation if the
obstacle height is relatively small. More recently, a similar observation was made by
Saberi, Teymourtash & Mahpeykar (2020) in their simulation for a jump on a convex
target plate. Finally, Askarizadeh et al. (2020) observed that for small obstacles (disk
height-to-diameter ratio <0.05), the flow exhibits no vortices, and the streamlines perfectly
follow the interfacial shape that represents the circular jump, which they termed as a jump
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Figure 13. Influence of the Froude number (gravity) on (a) the free surface profile (solid curves) and the
boundary-layer thickness (dashed curves), (b) the wall shear stress and (c) the local Froude number. The inset
in (c) shows the distribution of the numerically predicted jump radius (black solid curve) and the critical radius
(red dashed curve). (d—g) The streamlines for Fr=2, 5, 10 and 15. Here, Re = 800 and r, = 25.

of type 0. We next examine two situations by varying the effects of gravity and viscosity
where separation may or may not occur.

The influence of gravity is assessed in figure 13 by varying Fr and keeping Re and
the disk size fixed. Figure 13(a) shows that as the jump radius and height increase with
Fr, the jump gets washed out of the disk for large Fr. This increasing trend of the jump
radius with Fr also agrees with the simulation results of Passandideh-Fard ef al. (2011)
and the measurements of Avedisian & Zhao (2000); both groups investigated the influence
of gravity on the hydraulic jump. We emphasize that although the effect of gravity is
weak in the supercritical region, this effect is crucial to include in the formulation for
establishing the proper upstream conditions for the flow in the viscous region. In contrast,
the subcritical film thickness increases significantly with Fr, as more flow accumulates
(unable to drain) under lower gravity. In fact, the influence of Fr on the film thickness in
both the supercritical and subcritical regions corroborates well the profiles in figure 2 of
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Higuera (1994) for a planar jump. Figure 13(b) indicates that t,, decreases sharply with
Fr downstream of the recirculation, but eventually saturates for large Fr. The boundary
layer and film thickness as well as the wall shear stress remain essentially uninfluenced
by gravity in the supercritical region, confirming the weak influence of gravity ahead of
the jump, and the earlier predictions of Wang & Khayat (2018, 2019). This is particularly
evident from the inset in figure 13(b).

In the region near the jump, where the film height undergoes a significant change,
the response is not as consistent. In fact, the influence of Fr on the separation length
in figure 13(b) is not monotonic; the vortex size increases with Fr, reaches a maximum
and decreases, to eventually vanish at some critical Froude number (Fr~13); the
non-monotonic response is also illustrated in figure 13(d—g). Therefore, the jump can
exist without a recirculation at a finite Froude number. The disappearance of the vortex
suggests that there is no more flow separation, which is reflected by the wall shear stress
remaining positive over the entire disk range (figure 13b). Recalling the discussion on
the dissipation model by Mikielewicz & Mikielewicz (2009) and their figure 3, it is
clear that a constant value of P, which is roughly the ratio of the downstream film
height and the mean vortex radius, is unrealistic, as the vortex does not exist when Fr
is sufficiently large, leading to an infinite P in this situation. It is worth noting that the
hydraulic jump is not an essentially vortex or flow-separation phenomenon as indicated
by Craik et al. (1981). The numerical simulation of Passandideh-Fard er al. (2011) also
showed hydraulic jumps without flow separation. Here in figure 13(a) we show that
the hydraulic jump still exists when the vortex disappears. In order to confirm that the
profile is indeed a hydraulic jump in the absence of a vortex, we plot the value of the
local Froude number in figure 13(c), showing that the local Froude number is equal to
unity where the surface concavity vanishes. The inset in figure 13(¢) also confirms that
the critical radius coincides with the jump radius. In reality, the disappearance of the
recirculation bubble may be associated with an instability at high Fr; the flow may become
oscillatory and then turbulent downstream of the jump where the depth has increased
(Craik et al. 1981). However, and as we confirm below, the existence of the recirculation
is intimately tied to the strength of the upstream curvature of the jump and the jump
steepness.

The influence of the viscosity is depicted in figure 14, where Re is varied and Fr is fixed.
As expected, a larger Re (lower fluid viscosity) results in a thinner boundary layer and film
thickness in the developing boundary-layer region (figure 14a). In contrast to the effect of
gravity, the supercritical flow is evidently dependent on viscous effects, as depicted by the
dependence of the film (figure 14a) and stress (figure 14b) profiles. As Re increases, the
film profile becomes flatter, with a weakening of the supercritical minimum and subcritical
maximum film thickness, as the jump is pushed towards the disk edge (figure 14a). The
increase in the jump radius is in agreement with the simulation of Passandideh-Fard
et al. (2011). The jump becomes essentially non-existent at a relatively large value of Re.
Simultaneously, the vortex diminishes in size as Re increases, and vanishes at Re much
smaller than that corresponding to the vanishing of the jump (figure 14b). The distribution
of the local Froude number in figure 14(c) also confirms the existence of the jump for all
Re values.

This clearly shows that the existence of a jump is not necessarily accompanied by the
formation of a vortex (figure 14d—g). Finally, it is interesting to observe that the rate of
increase of 7,, with Re in the supercritical region (inset of figure 14b) is essentially the
same as near the edge of the disk. We also observe that the strength of the singularity of
the stress (equivalently of the film slope) at the edge weakens considerably with Re.
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Figure 14. Influence of Re (viscosity) on (a) the free surface profile (solid curves) and the boundary-layer
thickness (dashed curves), (b) the wall shear stress and (c¢) the local Froude number. The inset in (c) shows
the distribution of the numerically predicted jump radius (black solid curve) and the critical radius (red dashed
curve). (d—g) The streamlines around the jump region for Re =200, 400, 600 and 800. Here, Fr =10 and
Foo = 25.

6. Conclusion

We examined the structure of the circular hydraulic jump and the recirculation appearing
for a jet impinging on a disk. We formulated a composite mean-field thin-film approach,
which consists of subdividing the flow domain into three regions of increasing gravity
strength: a developing boundary layer near impact, an intermediate supercritical viscous
layer leading up to the edge of the jump and a region comprising the jump and subcritical
flow. The flow is assumed to drain at the edge of the disk. Unlike existing formulations
that capture the continuous jump profile and the recirculation zone, the present approach
does not require any empirically or numerically adjustable boundary conditions. The
governing boundary-layer equations for the thin film are elliptic given the presence of
the hydrostatic pressure gradient in the original boundary-layer equations, thus resulting
in a two-point boundary-value problem, requiring upstream and downstream boundary
conditions, particularly at the edge of the disk. The ellipticity is preserved through
the presence of the gravity term in the velocity profile that was taken to satisfy the
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momentum equation at the disk. We demonstrated that the stress or corner singularity
for a film draining at the edge is equivalent to the infinite slope of the film surface, which
we impose as the downstream boundary condition. We validated our approach against
existing measurements and numerical data. Comparison against numerical solutions of
the boundary-layer equations and Navier—Stokes equations showed excellent agreement
(figures 4-6), as well as that against existing models of the averaged film equations
(figure 4). Comparison against existing measurements of the film profile and jump radius
also showed close agreement and/or equally accurate predictions as existing numerical
solutions (figures 6, 8 and 9).

In an effort to stimulate further experimental work, we examined the influence of flow
rate (inertia) in some detail, over the same range of experimental conditions as that of
Duchesne et al. (2014). The results in § 5.1 highlight the influence of the flow rate on the
film profile and vortex structure (figures 10 and 12). The film profile was found to have a
significant influence on the jump size and vortex structure. We also address and resolve
one of the difficulties facing theory and experiment in identifying the jump location. We
assumed the jump radius to coincide with the change in the film surface concavity. We
showed that this assumption is accurate since the predicted jump radius is very close to
the critical radius based on the local Froude number (figure 11).

Finally, the flow in the supercritical region remains insensitive to the change in gravity
(figure 13) but is greatly affected by viscosity (figure 14). The existence of the jump is not
necessarily commensurate with the presence of a recirculation zone. We identify as type 0
the class of such jumps.
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