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EXACT MONTE CARLO SIMULATION
OF KILLED DIFFUSIONS
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Abstract

We describe and implement a novel methodology for Monte Carlo simulation of one-
dimensional killed diffusions. The proposed estimators represent an unbiased and
efficient alternative to current Monte Carlo estimators based on discretization methods
for the cases when the finite-dimensional distributions of the process are unknown. For
barrier option pricing in finance, we design a suitable Monte Carlo algorithm both for the
single barrier case and the double barrier case. Results from numerical investigations are
in excellent agreement with the theoretical predictions.
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1. Introduction

Many important problems can be reduced to the computation of the expected value, say ν,
of a functional of a diffusion process X. In this paper we will derive and implement efficient
and unbiased methods for Monte Carlo evaluation of ν when analytic expressions for the finite-
dimensional distributions of X are not available and the value of the functional depends on
barriers (either a single barrier or double barriers).

We consider a one-dimensional diffusion process X:

dXt = µ(Xt) dt + σ(Xt ) dWt, X0 = x0, 0 ≤ t ≤ T , (1)

where {Wt : 0 ≤ t ≤ T } is a standard Brownian Motion, and the drift µ and the diffusion
coefficient σ are presumed to satisfy the usual conditions that guarantee the existence of a
weakly unique global solution of (1) (see, e.g. Chapter 5 of Øksendal (1998)).

Let H := (a, b) be an open interval of R such that X0 = x0 ∈ H . We are interested in the
computation of

ν := E[h(XT ) 1{τ>T } | X0 = x0], (2)

where T > 0 is a fixed time, τ is the first exit time ofX from the setH , and h(·) is a measurable
function.

In mathematical finance the problem of the computation of (2) arises in many contexts,
for example, in barrier options pricing (see, e.g. Merton (1973) and Reiner and Rubinstein
(1991)) or in structural credit risk modelling (see, e.g. Black and Cox (1976) and Longstaff
and Schwarz (1995)). Analytic computation of (2) is only possible for a limited collection of
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274 B. CASELLA AND G. O. ROBERTS

simple models. For example, in the Black–Scholes case Reiner and Rubinstein (1991) derived
an explicit formula for the price of single barrier options of European style. Recently, Davydov
and Linetsky (2001) extended these results to asset processes driven by diffusions of constant
elasticity of variance. However, in general we have to approximate (2) by Monte Carlo methods.

1.1. Background

In principle, when using Monte Carlo simulation, many trajectories of X are generated
and the value of the functional is evaluated at each sample path. Averaging over all paths then
provides an unbiased estimator of ν which converges to the true value as the number of iterations
increases. When the transition densities ofX are not known, common practice introduces some
kind of discrete approximation X̃ of the process X. From the discrete approximation, suitable
estimates for expected functions can be derived. The simplest and most popular of these
methods is the Euler discretization, which approximates (1) by means of

X̃i� = X̃(i−1)� + µ(X̃(i−1)�)�+ σ(X̃(i−1)�)
√
�εi, X̃0 = x0, i = 1, 2, . . . , n, (3)

where n = T/� and {εi}i=1,2,...,n are independent and identically distributed (i.i.d.) standard
normal random variables. Discretization methods introduce bias in the simulation which tends
to 0 as n tends to ∞ (for fixed T ). Using discretization schemes which are sufficiently fine to
ensure bias reduction to acceptable levels may be computationally very expensive. A related
problem concerns the optimal allocation of the total computational budget between the number
of time steps and the number of simulation trials. Moreover, when dealing with functionals
involving barriers, the discretization scheme is subject to two sources of error: one error arising
from the actual approximation of (1) by its discretized counterpart, and the other error arising
from the use of a discrete exit time instead of a continuous exit time. In fact, Gobet (2000)
proved, under rather general conditions, that in the case of killed diffusions the Euler scheme
converged weakly at a rate of 1/

√
n in contrast to 1/nwhich is customary for sufficiently smooth

payoff functions. A widely used technique consists of interpolating the discretized process (3)
into a continuous Euler scheme by means of Brownian bridges; i.e. for any i = 1, 2, . . . , n and
for any t ∈ [t(i−1)�, ti�), set

X̃t = X̃(i−1)� + µ(X̃(i−1)�)(t − (i − 1)�)+ σ(X̃(i−1)�)(Wt −W(i−1)�). (4)

The idea here is to produce a realisation of the process (3) generating X̃�, X̃2�, . . . , X̃n�. Then,
for any two points X̃(i−1)� and X̃i�, we sample a [0, 1]-uniformly distributed random variable
and compare it with the crossing probability of the corresponding Brownian bridge. Schemes
based on Brownian bridge interpolation of the Euler trajectories can be succesfully applied
to many simulation problems. Asmussen and Glynn (2007, Section X.8) applied analogous
ideas to the exact simulation of reflected Brownian motion with drift and to the approximation
of reflected diffusions. These methods improve the rate of convergence of the discrete Euler
scheme; in particular, Gobet (2000), (2001) showed that the weak error was of order n−1.
However, when n is large, the use of (4) for Monte Carlo simulation of ν can be computationally
expensive, involving the simulation of a very large number of uniform random variables at each
iteration of the Monte Carlo algorithm.

1.2. A new approach

We will describe and implement a new method for Monte Carlo estimation of ν. Our method
is designed to deal with those cases when the family of transition densities of the process X
is not available. In fact, it improves the performances of Monte Carlo algorithms based on
discretization methods in two directions.
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Exact Monte Carlo simulation of killed diffusions 275

• The Monte Carlo estimator is simulated exactly, so no bias is introduced in the simulation.
Because of this, we call our method the exact Monte Carlo method.

• There is no trade-off between accuracy of the estimation and computational effort.
The higher the level of approximation required, the larger the computational efficiency
advantage gained by use of the exact algorithm.

We will see that the exact algorithm approach is actually highly computationally efficient, often
requiring less computing effort than rather crude discretization methods.

Our approach builds on recent advances in exact simulation of diffusions. The main idea
was introduced in Beskos et al. (2006a). Subsequently, it has been further developed in Beskos
et al. (2008) and applied to inference for discretely observed diffusion processes (Beskos
et al. (2006b)) and particle filter estimation for diffusions (Fearnhead et al. (2008)). Currently,
there are three versions of the exact algorithm: EA1, EA2, and EA3. For simplicity, in the
present paper we will focus on the basic one (EA1), although generalisations to EA2 and
EA3 are possible. In particular, the generalisation to EA2 will be presented in Section 4.
The paper is organised as follows. In Subsection 2.1 we define the class of diffusions of
interest. In Section 2, after some preliminaries, we state the mathematical results that justify the
Monte Carlo procedure. In Section 3 we describe in details the exact Monte Carlo algorithm.
In Section 4 we introduce some further probabilistic constructions supporting more general
versions of our algorithm. In Section 5 we report the results of a numerical study comparing
the performance of our Monte Carlo estimator with the Monte Carlo estimators generated by (3)
and (4). We end in Section 6 with some comments and concluding remarks.

2. Theoretical framework

2.1. The model

In this subsection we describe the class D of one-dimensional diffusion processes (1) for
which the exact Monte Carlo method can be applied. We introduce the transformed process
Y := {Yt ; 0 ≤ t ≤ T } defined by

Yt = η(Xt ) =
∫ Xt

z

1

σ(u)
du, (5)

where z can be any element of the state space of X. Assuming that σ is nowhere 0 and
continuously differentiable, by Itô’s formula, the process Y satisfies the stochastic differential
equation (SDE)

dYt = α(Yt ) dt + dWt, Y0 = η(x0) = y0, (6)

where

α(u) = µ(η−1(u))

σ (η−1(u))
− 1

2
σ

′
(η−1(u))

and η−1 denotes the inverse transformation. Let C = C([0, T ],R) be the set of continuous
functions from [0, T ] to R, let C be the σ -algebra generated by the cylinder subsets of C, and
let {Ct : t ∈ [0, T ]} be the corresponding filtration. We denote by ω = {ωs : 0 ≤ s ≤ T } the
generic element of C. Let Q denote the probability measure induced by the process Y in (6)
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on (C,C) and let W denote the corresponding measure induced by the Brownian motion with
starting point y0. We introduce the following conditions on Y .

(B0) Q << W and the Girsanov representation holds:

d Q

d W
(ω) = exp

(∫ T

0
α(ωt ) dωt − 1

2

∫ T

0
α2(ωt ) dt

)
. (7)

(B1) The drift function α is C1 (differentiable with continuity).

(B2) The function (α2 + α
′
)/2 is bounded.

Conditions (B0)–(B2) define the class D of diffusions (1) of interest:

D := {X : η(X) satisfies conditions (B0)–(B2)}
2.2. Preliminaries

Roughly speaking, EA1 (Beskos et al. (2006a)) exploits a transformation of the likelihood
ratio (7) to allow a rejection sampling on the path space C in order to simulate from the
(unknown) diffusion measure Q. Conditions (B1) and (B2) permit the Girsanov ratio to
be bounded by an explicit and everywhere finite function of ωT , which in turn permits an
appropriate rejection sampling algorithm to be constructed. This construction is described in
detail in Beskos and Roberts (2005), Beskos et al. (2006a), and Beskos et al. (2006b). Explicit
links between (B1) and (B2) and Conditions 1–3 of Beskos and Roberts (2005, pp. 2425–2426)
are provided inAppendix B. EA1 returns as output a partial exact representation of the diffusion
path, i.e. a collection of points of the trajectory of Y , including the (given) starting point at time 0
and the ending point at time T . We call it the skeleton of the process and we represent it as

S1 := {(t0, y0), (t1, y1), . . . , (tm, ym)}, (8)

where 0 = t0 < t1 < · · · < tm = T . Before stating the relevant results on EA1, we fix
some preliminary notation. Let W(s,x;t,y) denote the probability measure of a Brownian bridge
starting at time s at location x and finishing at time t at location y. We also introduce the
following representation of the exit times: for any measurable set B ⊂ R,

τB := inf{t ∈ [0, T ] : ωt /∈ B},
under the convention inf{∅} = +∞. We will denote by qW(s, x; t, y; l1, l2) the exit probability
of the (s, x) → (t, y) Brownian bridge from a given set (l1, l2) under the condition x, y ∈
(l1, l2):

qW(s, x; t, y; l1, l2) := W(s,x;t,y)(τ(l1,l2) ≤ T | x, y ∈ (l1, l2)). (9)

2.3. EA1 results

Theorem 1, below, brings together the relevant results from Beskos et al. (2006a). It states
the conditions on (6) that allow the application of EA1 and it characterises the conditional law
of the process Y given the skeleton.

Theorem 1. Under conditions (B0)–(B2) we can apply EA1 to simulate a skeleton (8) of the
process Y . For any event B ∈ C,

Q(B) = ES1 [WS1(B)], (10)

where WS1 denotes the product measure: WS1 := ⊗m
i=1 W(ti−1,yi−1;ti ,yi ).
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Therefore, the conditional law of the process Y , given the skeleton, is the product law of
Brownian bridges connecting the points of the skeleton. This implies that, by conditioning
on S1, we reduce the problem of the simulation from an unknown probability measure Q to
the problem of the simulation from Brownian bridge measures. The following result provides
a simple application of this construction.

Corollary 1. Let S1 be the skeleton of Y generated by EA1. Then, for any l1 < y0 < l2,

Q(τ(l1,l2) > T ) = ES1

[ m∏
i=1

(1 − qW(ti−1, yi−1; ti , yi; l1, l2)) 1{yi∈(l1,l2)}
]
.

Proof. For any i = 1, 2, . . . , m, let Ci denote the set of continuous functions on [ti−1, ti]
and let Ci denote the corresponding σ -algebra. We define the following events:

Bi := {ωt ∈ (l1, l2); ti−1 ≤ t ≤ ti} ∈ Ci .

Then, {τ(l1,l2) > T } = B1 × B2 × · · · × Bm, so that, from (10) and the definition of WS1 ,

Q(τ(l1,l2) > T ) = ES1

[ m∏
i=1

W(ti−1,yi−1;ti ,yi )(Bi)
]

= ES1

[ m∏
i=1

(1 − qW(ti−1, yi−1; ti , yi; l1, l2)) 1{yi∈(l1,l2)}
]
.

2.4. Crossing probability of the Brownian bridge

2.4.1. One-sided crossing probability. We recall the problem of the evaluation of the crossing
probability (9) for Brownian motion. Let us assume that l1 = −∞. It turns out that, for any
l2 ∈ R,

qW(s, x; t, y; −∞, l2) = exp

(
−2
(l2 − y)(l2 − x)

t − s

)
. (11)

An analogous result holds for the lower barrier case, l2 = +∞. Expression (11) can be
derived easily from the Bachelier–Levy construction, which provides an explicit formula for
the crossing probability of a slope boundary for the Brownian motion (see, e.g. Lerche (1986)).

2.4.2. Two-sided crossing probability. The problem of determining the two-sided crossing
probability of the Brownian bridge is more challenging than the one-sided problem. Although it
has been extensively studied in the literature (see, e.g. Bertoin and Pitman (1994)), a closed-form
expression is not available. In fact, available representations are given in terms of an infinite
sum. Nevertheless, here we state a convergence result (Proposition 1, below) which will allow
us to construct a suitable Monte Carlo algorithm for the double barrier case. Our approach
relies on classical results of Doob (1949) and Anderson (1960). For a recent reference, see also
Pötzelberger and Wang (2001). In Appendix A, while proving Proposition 1, we will give a
brief account of these constructions. Before stating the proposition, we need some additional
notation. For any j ∈ N, we introduce the two functions

Pj (s, x; t, y; l1, l2) := pj (s, x; t, y; l2 − l1, l1)+ pj (s, x; t, y; l2 − l1, l2),

Qj (s, x; t, y; l1, l2) := qj (s, x; t, y; l2 − l1, l1)+ qj (s, x; t, y; l2 − l1, l2),
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where

pj (s, x; t, y; δ, l) = exp

(
− 2

t − s
(jδ + (l − x1))(jδ + (l − y))

)
,

qj (s, x; t, y; δ, l) = exp

(
− 2j

t − s
(jδ2 − δ(l − x))

)
.

Furthermore, we need the following two sequences of real numbers:

nk(s, x; t, y; l1, l2) =
k∑
j=1

(Pj (s, x; t, y; l1, l2)−Qj(s, x; t, y; l1, l2)), (12)

nk(s, x; t, y; l1, l2) = nk−1(s, x; t, y; l1, l2)+ Pk(s, x; t, y; l1, l2). (13)

Proposition 1. For any −∞ < l1 < l2 < +∞, as k → ∞,

nk(s, x; t, y; l1, l2) ↑ qW(s, x; t, y; l1, l2), (14)

nk(s, x; t, y; l1, l2) ↓ qW(s, x; t, y; l1, l2). (15)

Proof. See Appendix A.

This result suggests that we can construct two sequences {nk} and {nk} converging from
below and from above, respectively, to the (unknown) probability qW. Crucially, given the
parameters of the Brownian bridge (s, x, t, y) and the values of the barriers (l1, l2), nk and nk
can be evaluated easily for each k ∈ N.

3. The exact Monte Carlo algorithm

3.1. General setting

After setting up the theoretical framework, we turn to the description of the Monte Carlo
algorithm. In the first place we note that, since the function η (5) is monotone increasing, we
can express expectation (2) under the measure Q of the transformed process Y as

ν = EQ[h′(ωT ) 1{τH ′>T }], (16)

where h′(·) = h(η−1(·)), H ′ := (a′, b′), a′ = η(a), and b′ = η(b). Assuming that X ∈ D ,
Theorem 1 ensures that we can apply EA1 to simulate a skeleton S1 (8) of Y . Our simulation
strategy will then consist of three main steps.

Step 1. Simulate a skeleton S1 of Y (EA1).

Step 2. Given S1, simulate an unbiased estimator of ν in (2).

Step 3. Simulate the Monte Carlo estimator by repeating and averaging.

Under the measure Q, we can define the two unbiased estimators of ν,

φ := φ(ω) = h′(ωT ) 1{τH ′>T } (plain vanilla), (17)

ψ := ψ(S1) = EQ[φ | S1] (Rao–Blackwellised), (18)

generating the Monte Carlo estimators:

ν̃ =
∑N
j=1 φ

(j)

N
and ν̂ =

∑N
j=1 ψ

(j)

N
,
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where {φ(j)}j=1,2,...,N and {ψ(j)}j=1,2,...,N are sequences of i.i.d. copies of (17) and (18). We
will focus on the problem of the simulation of ν̃ and ν̂ (step 2) given the skeleton. Instead, for
the simulation of the skeleton and the issues related to the implementation of EA1 (step 2), we
refer the reader to Beskos et al. (2006a).

3.2. Plain vanilla Monte Carlo estimator

We recall that, by construction, the skeleton (8) provides a realization of ωT under Q,
namely ωT ≡ ym. Therefore, after generating the skeleton, the simulation of φ requires only
the simulation of the indicator variable in (17) according to

Q(1{τH ′>T } = 1 | S1) = Q(τH ′ > T | S1)

=
m∏
i=1

(1 − qW(ti−1, yi−1; ti , yi; a′, b′)) 1{yi∈H ′},
(19)

where the second equality follows from Corollary 1. Simulation from (19) involves the
generation of independent events, say {Ei}i=1,2,...,m, of probabilities

{qW(ti−1, yi−1; ti , yi; a′, b′)}i=1,2,...,m.

These events are in fact the crossing events of the Brownian bridges selected by S1. If any Ei
occurs, we set φ ≡ 0, otherwise φ ≡ h′(ym). The basic structure of the algorithm is outlined
in Algorithm 1.

Algorithm 1. (Plain vanilla Monte Carlo algorithm.)

1. Call EA1 and simulate the skeleton S1 = {(t0, y0), (t1, y1), . . . , (tm, ym)}.
2. Evaluate I(S1) = ∏m

1 1{yi∈H ′}. If I(S1) = 0, go to 5. Otherwise, go to 3.

3. Set i = 1.

3.1. Simulate the event Ei with probability qW(ti−1, yi−1; ti , yi; a′, b′). If 1{Ei } = 1,
go to 5. Else if i = m, go to 4.

3.2. Set i = i + 1 and go to 3.1.

4. Output φ = h′(ym).

5. Output φ = 0.

6. Repeat 1–5 a sufficiently large number N of times and output

ν̂ =
(

1

N

) N∑
j=1

φ(j).

In the single barrier case the procedure is straightforward since we have a closed-form
expression (11) for the crossing probability of the Brownian bridge. In the double barrier
case crossing probabilities are not available in closed form. Therefore, in order to generate the
crossing events, we will resort to an iterative algorithm which exploits the result of Proposition 1.
Our simulation method resembles the convergence series method described in Devroye (1986,
p. 156). The steps of the procedure are reported in the pseudo-code of Algorithm 2, below,
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where we have adopted the following convenient notation:

ni,k := nk(ti−1, yi−1; ti , yi; a′, b′),
ni,k := nk(ti−1, yi−1; ti , yi; a′, b′), i = 1, 2, . . . , m, k ∈ N.

Algorithm 2. (Subroutine to simulate the indicator variable 1{Ei } (double barrier case).)

3.1.1 Sample U ∼ Unif[0, 1]. Set k = 1.

3.1.2 Evaluate ni,k and ni,k . If U > ni,k , go to 3.1.3. If U < ni,k , go to 3.1.4. Else set
k = k + 1 and repeat 3.1.2.

3.1.3 Set k = Ni and output 1{Ei } = 0.

3.1.4 Set k = Ni and output 1{Ei } = 1.

Clearly, for any i = 1, 2, . . . , m, the efficiency of the sampling scheme in Algorithm 2 is
strictly connected to the behaviour of the random variable Ni , representing the number of times
we need to repeat the control until a decision is taken. Proposition 2, below, guarantees that,
for any i = 1, 2, . . . , m, Ni has finite moments of every order.

Proposition 2. Let Mi(α) be the moment generating function of Ni . Then, for any i =
1, 2, . . . , m, there exists εi ∈ R such that, for any α ∈ (−εi,+εi),

Mi(α) < ∞.

Proof. We prove the proposition for an arbitrary i ∈ {1, 2, . . . , m}. For the construction of
the algorithm, for any k = 1, 2, . . . ,

Pr(Ni > k) = Pr(U ∈ (ni,k,min{1, ni,k})) ≤ ni,k − ni,k.

Thus,

Mi(α) = E[exp(αNi )]

=
∞∑
k=0

e(k+1)α(Pr(Ni > k)− Pr(Ni > k + 1))

≤
∞∑
k=0

e(k+1)α Pr(Ni > k)

= eα
∞∑
k=0

ekα Pr(Ni > k)

= eα + eα
∞∑
k=1

ekα Pr(Ni > k)

≤ eα + eα
∞∑
k=1

ekα(ni,k − ni,k).
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The moment generating functionMi(α) is finite for those values of α for which it converges to
the infinite series:

∞∑
k=1

ekα(ni,k − ni,k) =
∞∑
k=1

exp

(
− 2k

�i

(
kδ2
i + δi(b

′ − x2)− δi(b
′ − x1)− �i

2
α

))

+
∞∑
k=1

exp

(
− 2k

�i

(
kδ2
i − δi(a

′ − Si)+ δ(a′ − Si−1)− �i

2
α

))
,

where �i = ti − ti−1. It is now clear that it exists a neighbourhood (−εi,+εi) of 0 such that,
if α ∈ (−εi,+εi), the two series on the right-hand side converge; that is, Mi(α) is finite in
(−εi,+εi).

It is worth remarking that in practice the algorithm performs surprisingly well. In fact,
for any i = 1, 2, . . . , m, Ni is typically very small since the two sequences {nk}k=1,2,... and
{nk}k=1,2,... converge to qW faster than exponentially. In the numerical example we will present
in Section 5 we have verified that in most cases the algorithm comes to a decision after one or
two iterations.

3.3. Rao–Blackwellised Monte Carlo estimator

Expanding the conditional expectation in (18), we obtain

ψ = h′(ym)
m∏
i=1

(1 − qW(ti−1, yi−1; ti , yi; a′, b′)) 1{yi∈H ′} . (20)

Expression (20) shows that the simulation of ψ requires the analytic evaluation of the crossing
probabilities of Brownian bridges. As we are aware, this is possible only in the single barrier
case. So, assuming, for example, an upper barrier (a′ = −∞), from (11) we obtain

ψ = ψ(S1) = h′(ym)
( m∏
i=1

(
1 − exp

(
−2
(b′ − yi)(b

′ − yi−1)

ti − ti−1

))
1{yi∈(−∞,b′)}

)
. (21)

In this context the simulation of ψ requires only the simulation of S1 and the evaluation of
expression (21). Repeating the procedure and averaging gives an estimate of ν̂. The final
algorithm (Algorithm 3, below) turns out to be very simple. Unfortunately, in the double
barrier case Rao–Blackwellisation is not feasible, since we are not able to evaluate the crossing
probabilities in (20) analytically.

Algorithm 3. (Rao–Blackwellised Monte Carlo Algorithm (upper barrier).)

1. Call EA1 and simulate the skeleton S1.

2. Evaluate ψ = ψ(S1) according to (21).

3. Repeat 1–2 a sufficiently a large number N of times and output

ν̂ =
(

1

N

) N∑
j=1

ψ(j).
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We point out that, if available, the Rao–Blackwellised estimator is preferable to the plain
vanilla. In fact, by Jensen’s inequality,

var(ψ) ≤ var(φ),

which implies that, under a quadratic loss function, for fixed N , ν̂ is more efficient than ν̃.
Furthermore, the simulation of ν̂ is computationally less demanding than the simulation of ν̃.
In fact, at each iteration of the Monte Carlo algorithm, the simulation of ψ involves only the
simulation of the skeleton, while the simulation of φ involves the simulation of the skeleton
and the simulation of φ from Q | S1 .

4. More general constructions

4.1. Exact Monte Carlo via a truncation of the drift

We now consider the problem of the Monte Carlo estimation of ν (16) given a family of
diffusion processes (6) satisfying (B0) and the following two conditions.

(B1∗) The drift function α is differentiable on the closure H
′

of H ′.

(B2∗) The function (α2 + α
′
)/2 is bounded on H

′
.

Under the conditions above, by truncating the drift function α at the barriers a′ and b′ and using
smoothing techniques, it is possible to define a process Ỹ :

dỸt = α̃(Ỹt ) dt + dWt, Ỹ0 = y0, (22)

that satisfies the desirable conditions (BO)–(B2) (Section 2.1) and such that, for any u ∈ H ′,
α̃ (u) ≡ α (u). We denote by Q̃ the measure induced by the process Ỹ on the measurable space
(C,C).

Theorem 2. Let us consider the two processes Y and Ỹ with SDEs (6) and (22). If α ≡ α̃ for
each u ∈ H ′ and the function φ : C → R is measurable with respect to CT∧τH ′ then

EQ[φ(ω)] = EQ̃[φ(ω)].

Proof. By Girsanov’s theorem, the Radon–Nikodym derivative of Q with respect to Q̃ is
given by

MT (ω) = d Q

dQ̃
(ω) = exp

( ∫ T
0 α(ωs) dωs − (1/2)

∫ T
0 α2(ωs) ds

)
exp

( ∫ T
0 α̃(ωs) dωs − (1/2)

∫ T
0 α̃2(ωs) ds

) .
By the measurability assumption on φ and the martingale property of {Mt,Ct }0≤t≤T , we have

EQ[φ(ω)] = EQ̃[φ(ω)MT (ω)]
= EQ̃[EQ̃[φ(ω)MT (ω) | CT∧τH ′ ]]
= EQ̃[φ(ω)EQ̃[MT (ω) | CT∧τH ′ ]]
= EQ̃[φ(ω)MT∧τH ′ ].

Since on the interval [0, T ∧ τH ′) the two drift functions α and α̃ coincide, it turns out that
MT∧τH ′ = 1, Q̃-almost surely . The conclusion then follows.
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In our framework, since φ(ω) = h′(ωT ) 1{τH ′>T } is clearly CT∧τH ′ -measurable, Theorem 2
implies that

ν = EQ[h′(ωT ) 1{τH ′>T }] = EQ̃[h′(ωT ) 1{τH ′>T }].
Therefore, we can simulate an unbiased estimator of ν by applying the exact Monte Carlo method
to the auxiliary process Ỹ (satisfying conditions (BO)–(B2)). This strategy is particularly
powerful when we deal with a double barrier problem. In fact, in that case H ′ is a bounded
interval and we just need to ensure that the drift α ‘behaves well’ in a compact set H

′
. This is

naturally satisfied by most models. However, in the single barrier case we should still assume
boundedness of α on one side (either (−∞, b′] or [a′,+∞)).

4.2. Exact Monte Carlo via EA2

We replace condition (B2) with the following less restrictive condition:

(B2∗∗) For all u ∈ R, (α2 +α′
)/2 is bounded below and it is bounded above either on (−∞, u)

or on (u,+∞).

We assume, without loss of generality, that the function (α2 + α
′
)/2 is bounded on the

intervals {(u,+∞)}u∈R. EA2 was introduced in Beskos et al. (2006a). A crucial difference
between it and EA1 lies in the fact that it outputs a richer structure than S1 (8). In fact, in addition
to the starting point (0, y0) and the ending point (T , yT ) of the diffusion path, it also includes
its minimum and the time at which this minimum is achieved, say (t∗, y∗). It is convenient to
choose a representation of S2 which takes into account this underlying structure:

S2 := {(t0, y0), (t1, y1), . . . , (tm1 , ym1), . . . , (tm2 , ym2)}, (23)

where 0 = t0 < t1 < · · · < tm1 = t∗ < · · · < tm2 = T , so that the minimum can be easily
identified as (tm1 , ym1) ≡ (t∗, y∗). We denote by Q −y∗ the probability measure induced by the
process Y − y∗ := {Yt − y∗ : 0 ≤ t ≤ T } on (C,C) and denote by W(s,x;t,y)

+ the probability
measure of a three-dimensional Bessel bridge from (s, x) to (t, y). Furthermore, we will denote
crossing probabilities as follows:

qW+(s, x; t, y; l1, l2) := W(s,x;t,y)
+ (τ(l1,l2) ≤ T | x, y ∈ (l1, l2)).

The following result is the analogue of Theorem 1 and it can be derived from the construction
presented in Beskos et al. (2006a).

Theorem 3. Under conditions C0, C1 and B2∗∗, we can apply EA2 to simulate a skeleton S2
(23) of the process Y . For any event A ∈ C,

Q −y∗(A) = ES2 [WS2+ (A)],
where WS2+ = ⊗m2

i=1 W(ti−1,yi−1−y∗;ti ,yi−y∗)
+ .

Theorem 3 justifies the following suitable representation of the crossing probability of the
process Y .

Corollary 2. Let S2 be the skeleton of Y generated by EA2. Then, for any l1 < y0 < l2,

Q(τ(l1,l2) > T ) = ES2

[
1{y∗>l1}

m2∏
i=1

(1 − qW+(ti−1, y
∗
i−1; ti , y∗

i ; −∞, l∗2 )) 1{Ci }
]
, (24)

where, for any i = 1, 2, . . . , m2, y∗
i := yi − y∗, l∗2 := l2 − y∗, and Ci := {yi < l2}.
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Proof. From Theorem 3 we derive the following representation:

Q(τ(l1,l2) > T ) = Q −y∗(τ(l∗1 ,l∗2 ) > T ) = ES2 [WS2+ (τ(l∗1 ,l∗2 ) > T )],
where we have set l∗1 = l1 − y∗. Proceeding as in the proof of Corollary 1, for any i =
1, 2, . . . , m2, we define the events

B∗
i = {ωt ∈ (l1 − y∗, l2 − y∗); ti−1 ≤ t ≤ ti},

so that {τ(l1−y∗,l2−y∗) > T } = B∗
1 × · · · × B∗

m2
. Therefore, by the definition of WS2+ we have

WS2+ (τ(l1−y∗,l2−y∗) > T ) =
m2∏
i=1

W
(ti−1,y

∗
i−1;ti ,y∗

i )+ (B∗
i )

=
m2∏
i=1

(1 − qW+(ti−1, y
∗
i−1; ti , y∗

i ; l∗1 , l∗2 )) 1{yi∈(l1,l2)} . (25)

Now, if {y∗ ≤ l1} ≡ {ym1 ≤ l1}, (25) is clearly null in agreement with (24); if on the other
hand {y∗ > l1}, (24) follows from (25) using the positivity of the Bessel process.

Now, substituting appropriately into (24), we obtain the following probability:

Q(τ
H

′ > T | S2) = 1{y∗>a′}
m2∏
i=1

(1 − qW+(ti−1, y
∗
i−1; ti , y∗

i ; −∞, b∗)) 1{yi<b′}, (26)

where we have set b∗ = b′ −y∗. Analytic evaluation of (26) is not feasible, since a closed-form
formula for the crossing probability qW+ of the Bessel bridge is not available. Consequently,
we are not able to simulate the Rao–Blackwellised estimator ψ (18) and the corresponding
Monte Carlo estimator ν̂. However, in the lower barrier case (b∗ = +∞),

Q(τ
H

′ > T | S2) = 1{y∗>a′},

so that the simulation of the plain vanilla estimator φ (17) is immediate. On the other hand,
when b∗ is finite (either in the upper barrier or in the double barrier case), the simulation of φ
involves the generation of events of probabilities {qW+(ti−1, y

∗
i−1; ti , y∗

i ; −∞, b∗)}i=1,2,...,m2 .
To this end, we have defined an appropriate algorithm, similar in spirit to Algorithm 2. The
algorithm is based on the following result. For any k ∈ N, let

n∗
k(s, x; t, y; l) = 1 − nk(s, x; t, y; 0, l)

1 − exp(−2xy/(t − s))
,

n∗
k(s, x; t, y; l) = 1 − nk(s, x; t, y; 0, l)

1 − exp (−2xy/(t − s))
,

where {nk} and {nk} are respectively defined by (12) and (13).

Proposition 3. For any b∗ > 0 and i ∈ {1, 2, . . . , m2}, as k → +∞,

n∗
k(ti−1, y

∗
i−1; ti , y∗

i ; b∗) ↑ 1 − qW+(ti−1, y
∗
i−1; ti , y∗

i ; −∞, b∗),
n∗
k(ti−1, y

∗
i−1; ti , y∗

i ; b∗) ↓ 1 − qW+(ti−1, y
∗
i−1; ti , y∗

i ; −∞, b∗).
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Proof. For any l∗ > 0 and i ∈ {1, 2, . . . , m2}, using the representation of a Bessel bridge
as a Brownian bridge conditioned to be positive,

1 − qW+(ti−1, y
∗
i−1; ti , y∗

i ; −∞, l∗) = 1 − qW(ti−1, y
∗
i−1; ti , y∗

i ; 0, l∗)
1 − qW(ti−1, y

∗
i−1; ti , y∗

i ; 0,∞)
,

whereas, by the Bachelier–Levy formula,

1 − qW(ti−1, y
∗
i−1; ti , y∗

i ; 0,∞) = 1 − exp

(
−2

y∗
i−1y

∗
i

ti − ti−1

)
. (27)

Furthermore, as a consequence of (14) and (15), as k → +∞,

1 − nk(ti−1, y
∗
i−1; ti , y∗

i ; 0, l∗) ↓ 1 − qW(ti−1, y
∗
i−1; ti , y∗

i ; 0, l∗),
1 − nk(ti−1, y

∗
i−1; ti , y∗

i ; 0, l∗) ↑ 1 − qW(ti−1, y
∗
i−1; ti , y∗

i ; 0, l∗),
(28)

so that by combining (27) and (28), the conclusion follows.

The simulation from probabilities qW+ in (26) is analogous to the simulation from qW in the
double barrier case, as described in Algorithm 2. Namely, we simulate a [0, 1]-uniformly
distributed random variable and we compare it stepwise with couples of values (n∗

k, n
∗
k)

(k increasing) until a decision is taken. In this way we can simulate the crossing event from
(26) and, consequently, the plain vanilla estimator (17).

5. Numerical example

To test our algorithm, we consider the following model:

dYt = sin (Yt ) dt + dWt, Y0 = y0, 0 ≤ t ≤ T . (29)

It is easy to verify that Y satisfies conditions (B0)–(B2) for the exact Monte Carlo algorithm.
Let us suppose that we want to evaluate

ν = E[YT 1{τ>T } | Y0 = y0], (30)

where, as usual, τ = inf{t ≥ 0 : Yt /∈ H } with H = (a, b) ⊂ R such that y0 ∈ H . Since we
do not know the law at time T of the killed diffusion, it is clear that the explicit computation
of ν is not possible and we resort to Monte Carlo methods to estimate ν. In this simulation
study we investigate the performance of the estimator of ν produced by the exact Monte Carlo
method (hereafter E1).

The plots in Figure 1 show a comparison between E1 and the estimators based on the
continuous Euler scheme (E2) and on the discrete Euler scheme (E3). In particular, given a
Monte Carlo sample sufficiently large (106), for different choices of the starting point y0 and the
barriers’ values a and b, we have computed the estimates of E1 (dotted line) and the estimates
produced by E2 and E3 for different discretization intervals. Then we have plotted the values
of E2 (crosses) and E3 (circles) versus the number of discretization intervals.

As we expected, the values of E2 and E3 converge to E1 as the number of discretization
intervals increases. Indeed, it was shown in Gobet (2000) that, for killed diffusions, the
weak approximation error of Euler schemes decreases to 0 as the number of discretization
intervals increases. When the Monte Carlo sample size is large enough, the Monte Carlo error
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Figure 1: Monte Carlo estimates of ν for the model (29) based on the exact Monte Carlo (dotted line),
the discrete Euler scheme (circles), and the continuous Euler scheme (crosses). Monte Carlo estimates
based on the Euler schemes are associated with the corresponding number of disretization intervals. The
Monte Carlo sample size equals 106. (a) y0 = 0, b = 3, and T = 5. (b) y0 = 1.5, b = 4.5, and T = 5.

(c) y0 = 0, a = −3.5, b = 4.5, and T = 5. (d) y0 = 2, a = 1, b = 4.5, and T = 5

is negligible and the estimated values are affected mainly by the discretization error. In this
context the distance between the values of E2 and E3 and the dotted line is a good representation
of the (weak) discretization error affecting the Euler schemes, and their convergence to the dotted
line reflects the theoretical convergence of the corresponding expected values. Furthermore,
according to the conclusions of Gobet, we note that the estimates based on the continuous Euler
scheme show better convergence than the estimates based on the discrete Euler scheme.

Comparing the performances of E2 and E3 along the four plots, we observe that both in the
single barrier case (Figure 1(a) and (b)) and in the double barrier case (Figure 1(c) and (d))
Euler-based estimators behave very poorly when the starting point of the process is other than 0
(Figure 1(b) and (d)). Moreover, in these cases E2 converges to the E1 value from below while
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E3 converges from above. The reasons why Euler schemes behave in this way deserves further
attention from both an empirical and a theoretical point of view.

In practical applications there is an interest in the comparison between the computational
times of the exact Monte Carlo method and the Euler-based methods. However, such compar-
ison is not straightforward since Euler schemes are subjected to a trade-off between computa-
tional time and discretization error, i.e. as the estimates of E2 and E3 converge to the dotted
line, the time needed to produce them increases. In each plot we use symbols made from
solid and dashed lines. The solid line symbols represent simulations which required greater
computational effort than E1. In these cases our algorithm is both more accurate and more
efficient.

6. Conclusions

In this paper we have developed and implemented a novel Monte Carlo method for the
estimation of the expected value of a class of functionals of diffusion processes. In particular
we considered functionals involving barriers. In these cases the estimation of the expected value
is typically challenging. In fact, it is common practice to discretize the underlying diffusion
and run Monte Carlo simulation on the discretized process. This clearly introduces a bias in
Monte Carlo simulation. Such bias can be reduced only at the cost of a larger computational
effort. In comparison, our method turns out to be as unbiased and efficient as our simulation
study for the sine model demonstrated.

The application of the exact algorithm to the multidimensional case is limited to unit diffusion
coefficient SDEs whose drift can be expressed as the gradient of a potential (Langevin-type
diffusions) (Beskos et al. (2008)). In this context the exact algorithm returns a skeleton that gives
rise to a factorization of the conditional process in terms of the product of multidimensional
independent Brownian bridges. For rectangular ‘killing’ regions, a straightforward multivariate
exact Monte Carlo algorithm for the barrier problem can be constructed by simulating the
crossing events for each of the components of the Brownian bridges. For more general killing
regions, the simulation of crossing events of the Brownian bridges is a challenging and open
problem. Interesting proposals in this direction can be found in Lépingle (1995), Gobet
(2001), and Bossy et al. (2004) for the related problem of the approximation of a reflected
multidimensional diffusion.

The methodology presented in this paper suggests several further developments and ideas
for future research.

A major objective is to extend the algorithm to larger classes of diffusion processes as
well as to other time-continuous processes such as jump-diffusion processes, Levy processes,
or stochastic volatility processes. Some relatively minor extensions of the basic exact Monte
Carlo algorithm have been proposed in Section 4. We are currently working on more substantial
generalizations of the algorithm including Monte Carlo simulation of jump-diffusion processes
with state dependent intensity.

We have concentrated here on the (Monte Carlo) barrier problem. This is especially relevant
in option pricing for the evaluation of barrier and lookback options and in credit risk modelling
for the evaluation of defaultable derivatives. However, we believe that there is a wide range
of other relevant Monte Carlo problems arising in finance to which the exact Monte Carlo
framework can be successfully applied. For instance, current work involves Monte Carlo
estimation of the Greeks.
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Finally, even though the results from our simulation study are promising, it is worth carrying
out a more comprehensive numerical simulation. In particular, the efficiency of our method in
comparison with Euler-based methods needs to be investigated in more detail.

Appendix A. Brownian bridge two-sided crossing probability (proof of Proposition 1)

Let W be the standard Brownian motion and W(s,x;t,y) be the (s, x) → (t, y) Brownian
bridge. It is well known that, for any δ > 0,

W
(0,x;δ,y)
u

d= x + u

δ
(y − x)+ δ − u√

δ
Wu/(δ−u), 0 ≤ u ≤ δ,

where ‘
d=’ denotes equality in distribution from which we can derive

pW(s, x; t, y; l1, l2) = Pr(l1(u) < Wu < l2(u), u ≥ 0),

where we have set

l1(u) := l1 − y√
t − s

u+ l1 − x√
t − s

,

l2(u) := l2 − y√
t − s

u+ l2 − x√
t − s

.

Now, under the usual convention that inf{∅} = ∞, we define the following stopping times:

τ ∗ = inf{u ≥ 0 : Wu ≤ l1(u) or Wu ≥ l2(u)}
and

τj,1 = inf{u ≥ τj−1,2 : Wu ≤ l1(u)},
τj,2 = inf{u ≥ τj−1,1 : Wu ≥ l2(u)}, j = 1, 2, . . . ,

under the convention that τ0,1 = τ0,2 = 0. Let us define the following related events:

A := {τ ∗ < ∞}, A1 := {τ1,1 < τ1,2},
A2 := {τ1,2 < τ1,1}, Aj,n := {τj,n < ∞}, for j = 1, 2, . . . and n = 1, 2.

Using reflecting properties of the Brownian motion, it is possible to show that (see, e.g.Anderson
(1960, Theorem 4.1)), for any j ∈ N,

Pr(A2j−1,2) = pj (s, x; t, y; δ, l2), Pr(A2j−1,1) = pj (s, x; t, y; δ, l1),
Pr(A2j,2) = qj (s, x; t, y; δ, l2), Pr(A2j,1) = qj (s, x; t, y; δ, l1),

with δ = l2 − l1. Straightforward probabilistic arguments lead to the following results:

(i) {Aj,1} ↓ ∅ and {Aj,2} ↓ ∅,

(ii) A = A2 � A1 = A1,2 ∪ A1,1,

(iii) A2 = ⊔+∞
j=1(A2j−1,2 − A2j,2) and A1 = ⊔+∞

j=1(A2j−1,1 − A2j,1),

(iv) for any j = 1, 2, . . . , Aj,2 ∩ Aj,1 = Aj+1,2 ∪ Aj+1,1,
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where with the symbol � we denote the disjoint union. Finally, we can write

qW(s, x1; t, x2; l1, l2) = Pr(A)

= Pr(A2)+ Pr(A1)

=
+∞∑
j=1

((Pr(A2j−1,2)− Pr(A2j,2))+ (Pr(A2j−1,1)− Pr(A2j,1)))

=
+∞∑
j=1

(Pj (s, x; t, y; l1, l2)−Qj(s, x; t, y; l1, l2))

= lim
k→∞ nk(s, x; t, y; l1, l2),

where we have used (ii) and (iii). From (i), for any j = 1, 2, . . . ,

Pr(A2j−1,2)− Pr(A2j,2)+ Pr(A2j−1,1)− Pr(A2j,1) ≥ 0,

so that {nk}k=1,2,... is increasing, proving (14). On the other side, from (ii) and (iv), the sequence
{nk}k=1,2,... (13) can be written in the following way:

n1(s, x; t, y; l1, l2) = Pr(A1,2 ∪ A1,1)+ Pr(A1,2 ∩ A1,1)

= Pr(A)+ c1

= q∗(s, x; t, y; l1, l2)+ c1,

nk(s, x; t, y; l1, l2) = nk−1(s, x; t, y; l1, l2)+ (ck − ck−1)

= Pr(A)+ ck

= qW(s, x; t, y; l1, l2)+ ck,

where {ck = Pr(A2k−1,2∩A2k−1,1)}k=1,2,... is decreasing such that limk→∞ ck = 0. Therefore,
for any k = 1, 2, . . . ,

qW(s, x; t, y; l1, l2)+ ck ≥ qW(s,x;t,y;l1,l2) + ck+1

and

lim
k→+∞ nk(s, x; t, y; l1, l2) = Pr(A)+ lim

k→∞ ck = Pr(A) = qW(s, x; t, y; l1, l2),

so that (15) follows.

Appendix B.

Let us recall conditions 1–3 of Beskos and Roberts (2005) for the construction of EA1.

(C1) The drift function α is everywhere differentiable.

(C2)
∫

R
exp(A(u)− u2/2T ) du with A(u) = ∫ u

0 α(z) dz is bounded by a constant.

(C3) The function (α2 + α′)/2 is bounded.

Conditions (B1)–(B2) in Section 2 trivially imply conditions (C1)–(C3) if the following lemma
holds.
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Lemma 1. Suppose that α is a C1 function on R. If α′ + α2 is bounded then so is α.

Proof. Suppose to the contrary that either

(i) lim supx→+∞ α(x) = +∞ or

(ii) lim infx→+∞ α(x) = −∞
hold, or, alternatively, that (i) or (ii) hold with x → −∞. Firstly, suppose that (i) holds. Then
there exists a sequence {xi} → +∞ with {α(xi)} → +∞. Under the hypothesis of the lemma,
for all large enough indices i, we have

1. xi > 0,

2. α′(xi) < 0,

3. α(xi) > α(0).

Since the derivative function α′ is continuous, by the intermediate value theorem, there exists
yi ∈ [0, xi] such that α′(yi) = 0 and α(yi) > α(xi). Thus, {α(yi)} → +∞ and α′(yi) +
α2(yi) = α2(yi) is unbounded in i for a contradiction.

Secondly, suppose instead that (ii) holds. Then there exists {xi} → +∞ with {α(xi)} →
−∞. Then, for all sufficiently large i,

1. xi > 0,

2. α′(xi) < 0,

3. α′(y) < 0 for all y > xi (otherwise there will be somewhere where α′(y) = 0, leading
to a contradiction similar to the one obtained when supposing that (i) holds).

Therefore, for sufficiently large x, α(x) is decreasing so that limx→+∞ α(x) = −∞. This,
combined with the boundedness of the function α′ + α2, implies that, for any ε ∈ (0, 1), there
exists x0(ε) such that, for any x ≥ x0, we have

−
(

1

α(x)

)′
+ ε = α′(x)

α2(x)
+ ε ≤ 0.

Choosing ε = 1
2 and applying the mean value theorem to the continuous function α, we obtain,

for any x ≥ x0(
1
2 ) and y ∈ (0, x),

1

α(x)
− 1

α(y)
≥ x − y

2
,

leading to a contradiction.
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