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One-Parameter Continuous Fields of
Kirchberg Algebras. II

Marius Dadarlat, George A. Elliott, and Zhuang Niu

Abstract. Parallel to the first two authors’ earlier classification of separable, unital, one-parameter,

continuous fields of Kirchberg algebras with torsion free K-groups supported in one dimension,

one-parameter, separable, unital, continuous fields of AF-algebras are classified by their ordered

K0-sheaves. Effros-Handelman-Shen type theorems are proved for separable unital one-parameter

continuous fields of AF-algebras and Kirchberg algebras.

1 Introduction

One-parameter separable unital continuous fields of Kirchberg algebras (nu-

clear purely infinite simple C∗-algebras) with torsion free Ki-groups and trivial

Ki+1-groups (i ∈ {0, 1} fixed) satisfying the UCT were classified in [2] by their

Ki-sheaves. Using the semiprojectivity of the Kirchberg algebras with finitely gen-

erated torsion free K0-groups and trivial K1-groups, these continuous fields were

shown by the authors to be inductive limits of fields with finitely many singular points

(the so-called elementary fields). Using the classification results of Kirchberg and

Phillips for Kirchberg algebras, a uniqueness theorem and an existence theorem for

elementary fields were proved, and hence a classification theorem for inductive limit

continuous fields was obtained.

In this note, we shall show that we can use a similar procedure to get a classification

of separable unital one-parameter continuous fields of AF-algebras. More precisely,

noting that finite dimensional C∗-algebras are semiprojective, we apply the methods

of [2] to represent any separable unital continuous field of AF-algebras as an induc-

tive limit of continuous fields of finite dimensional C∗-algebras with finitely many

singularities. In a way very much parallel to the classification of fields of Kirchberg

algebras in [2], we obtain a classification of one-parameter separable unital contin-

uous fields of AF-algebras by their ordered K0-sheaves pointed by the class of the

unit.

The K0-presheaves of continuous fields of C∗-algebras over [0, 1] are always

continuous in the sense that, if S is such a presheaf, then for any closed subin-

terval [a, b] and any decreasing sequence of closed intervals ([ai , bi])i=∞
i=1 with⋂i=∞

i=1 [ai , bi] = [a, b], the canonical map from the inductive limit lim
−→

S[ai , bi] to
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S[a, b] is an isomorphism. Moreover, the stalk Sx is isomorphic to the K0-group of

the fibre algebra at x. If A is a unital continuous field of stably finite C∗-algebras over

[0, 1], then the projection map from A onto any fibre is strictly positive at the level of

the ordered K0-groups.

The continuity condition is a key ingredient for Effros–Handelman–Shen type

theorems for both one-parameter continuous fields of AF-algebras and one-parame-

ter continuous fields of Kirchberg algebras with trivial K1-groups (see Theorems 5.7

and 5.8). In the AF case, the strict positivity condition is equally important. More

precisely, if a sheaf S of pointed ordered groups on [0, 1] satisfies the continuity con-

dition and if it is strictly positive and any stalk is a dimension group, then there is

a separable unital continuous field of AF-algebras, the K0-sheaf of which is isomor-

phic to S. The statement of the theorem for continuous fields of Kirchberg algebras

is similar, except that positivity plays no role. In the proofs of these theorems, we

use the continuity condition (and the strict positivity condition in the AF case) to

decompose the given sheaf into an inductive limit of sheaves with finitely many sin-

gular points. Any morphism of such (elementary) sheaves lifts to a morphism of

elementary continuous fields. Since, as we show, the K0-sheaf functor respects in-

ductive limits, the inductive limit of these elementary fields of C∗-algebras has the

given sheaf as its K0-sheaf.

In the last part of the paper, we study the K0-sheaves of separable, one-parameter,

continuous fields the fibres of which are unital hereditary sub-C∗-algebras of O∞.

These sheaves can be viewed as sheaves of integer valued functions satisfying certain

properties (see Corollary 6.4). Our continuity characterization of the sheaves does

not yield an explicit structure of the zero sets. This topic is further investigated in the

last section of the paper, without, however, answering the question of exactly what

sets arise as zero sets.

2 Continuous Fields of C∗-Algebras and the Invariant

Definition 2.1 ([3]) Let C be a class of C∗-algebras and let T be a locally compact

topological space. A continuous field A of C∗-algebras over T with fibres in C is a

family (A(t))t∈T of C∗-algebras in C, together with a set Γ ⊂
∏

t∈T A(t) of vector

fields with the following properties:

(i) Γ is a ∗-subalgebra of
∏

t∈T A(t);

(ii) for any t ∈ T, the set {x(t) : x ∈ Γ} is dense in A(t);

(iii) for any x ∈ Γ, the function t 7→ ‖x(t)‖ is continuous;

(iv) let x ∈
∏

t∈T A(t) be a vector field; if, for any t ∈ T and every ε > 0, there exists

x ′ ∈ Γ such that ‖x(s) − x ′(s)‖ < ε for all s in some neighbourhood of t , then

x ∈ Γ.

The subset Γ0(A) of x ∈ Γ such that t 7→ ‖x(t)‖ vanishes at infinity on T, with norm

‖x‖ = sup
t∈T

‖x(t)‖,

is a C∗-algebra, called the C∗-algebra of the continuous field A. Γ0(A) is a continuous

C0(T)-algebra in the sense of Kasparov as well as a continuous C∗-bundle in the sense

of [1].
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In this paper we will be concerned mainly with continuous fields over the unit

interval, i.e., one-parameter continuous fields. If there is no risk of confusion, we

will use the same notation for a continuous field and for its C∗-algebra.

2.1 Sheaves of Groups

Let U be a category of non-empty closed subintervals of [0, 1] where the morphisms

are the inclusion maps. We assume that {V ◦ : V ∈ U} is a basis for the topology of

[0, 1] and if V1,V2 ∈ U and V1 ∩ V2 6= Ø, then both V1 ∪ V2 and V1 ∩ V2 are in

U. For example, we may take U to be the category of all closed intervals with dyadic

rational endpoints. Some of the intervals of U can have zero length.

Consider the full subcategory V of U consisting of intervals of nonzero length

(nondegenerate intervals). (The fullness implies that all morphisms in U between

objects of V are included.) By a presheaf of groups on [0, 1] we will mean a con-

travariant functor S from V to the category of groups. A morphism V ⊂ V ′ is taken

by S to (what we shall refer to as) the restriction map πV ′

V : S(V ′) → S(V ). Let

V,V ′ ∈ V be such that V ∩V ′ ∈ V (i.e., V ∩V ′ 6= Ø). The restriction maps induce

a natural map

(2.1) S(V ∪V ′) → {( f , g) ∈ S(V ) ⊕ S(V ′) ; πV
V∩V ′( f ) = πV ′

V∩V ′(g)}.

We will call a presheaf S a sheaf if the above map is bijective for any V,V ′.

Definition 2.2 A presheaf S will be said to be continuous if for any decreasing

sequence of closed subintervals (Vi)
∞
i=1 with intersection

⋂∞
i=1 Vi = V in V, the in-

ductive limit lim
−→

S(Vi) is canonically isomorphic to S(V ). If in addition S satisfies

the pullback condition, bijectivity of the map (2.1), then we will say that S is a con-

tinuous sheaf.

The stalk of S at a point x ∈ [0, 1], denoted by Sx, is defined as the inductive limit

of the groups S(V ) with x in the interior of V . The restriction map S(V ) → Sx is

denoted by πx. A continuous presheaf S extends naturally to a contravariant functor

S ′ on U if we set S ′({x}) = Sx. This extension is unique if we require S ′ to be

continuous in the sense that lim
−→

S ′(Ui) is canonically isomorphic to S ′(U ) for any

decreasing sequence (Ui)
∞
i=1 of elements of U with intersection U belonging to U.

The functor S ′ will also be called a presheaf, or an extended presheaf if we want

to emphasize that it is also defined on degenerate intervals. In the sequel we shall

identify any continuous presheaf S on V with its continuous extension S ′ to U.

Remark 2.3 Let us note that if S is a continuous presheaf, then we have evaluation

maps πx : S[a, b] → Sx for every x ∈ [a, b] and not only for the points x in (a, b).

Indeed, by continuity, any element f ∈ S[a, b] lifts to an element f ′ ∈ S(V ) for

some neighbourhood V ∈ V of [a, b], and the element πx( f ′) is independent of f ′.

If S is a continuous presheaf, it is easy to verify that the pullback condition (2.1) is

equivalent to requiring that for each a < c < b with [a, c], [c, b] ∈ V the restriction

maps induce an isomorphism

(2.2) S[a, b] ∼= {( f , g) ∈ S[a, c] ⊕ S[c, b] ; π[a,c]
c ( f ) = π[c,b]

c (g)}.
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Let us give an equivalent description of continuous sheaves over [0, 1]. Let

(Gx)x∈[0,1] be a family of abelian groups. Suppose that for each U ∈ V a subgroup

F(U ) ⊂
∏

x∈U Gx is given. The elements of F(U ) are functions and hence there is

a natural restriction map F(U ) →
∏

x∈V Gx, f 7→ f |V , whenever V ⊂ U . Consider

the following conditions:

(i) If V ⊂ U and f ∈ F(U ), then f |V ∈ F(V );

(ii) For any x ∈ [0, 1] and any a ∈ Gx, there is a neighbourhood U ∈ V of x and

there is f ∈ F(U ) such that f (x) = a;

(iii) For any U ∈ V and f ∈ F(U ), the null set of f , null( f ) = {x ∈ U : f (x) =

0}, is open in U ;

(iv) F[a, b] ∼= {( f , g) ∈ F[a, c] ⊕ F[c, b] ; f (c) = g(c)} (canonically), for

a < c < b.
We shall view the family of groups U 7→ F(U ) together with the corresponding

restriction maps as a presheaf on V.

Proposition 2.4 If Conditions (i) through (iv) are satisfied, then F is a continuous

sheaf whose stalk at x is Gx. Conversely, any continuous sheaf of abelian groups on [0, 1]

is obtained in this manner, up to isomorphism.

Proof For the sake of simplicity we assume that V consists of all nondegenerate

closed subintervals of [0, 1].

Ad (⇒). F is clearly a presheaf. To compute its stalks, we observe that the canon-

ical map Fx → Gx is surjective by Condition (ii) and injective by Condition (iii).

Let 0 < a < b ≤ 1. Let us show that the canonical map θ : lim
−→

F[a − 1/n, b] →
F[a, b] is bijective. The general continuity of F is verified by similar arguments. Let

f ∈ F[a, b]. By Condition (ii) there is g ∈ F[a − 1/n, a + 1/n] for some n such

that g(a) = f (a). By Condition (iv) the restriction g to [a − 1/n, a] glues with f to

give rise to an element h ∈ F[a − 1/n, b] with restriction to [a, b] equal to f . Thus

θ is surjective. Choose h ∈ F[a − 1/n, b] with restriction to [a, b] equal to the zero

function. By Condition (iii), null(h) is open in [a − 1/n, b] and hence h must vanish

on [a − 1/m, b] for some m ≥ n. Therefore θ is injective.

Ad (⇐). Given a continuous sheaf S on [0, 1], set Gx = Sx. For U ∈ V and

s ∈ S(U ), define ŝ ∈
∏

x∈U Gx by ŝ(x) = πx(s) and set F(U ) = {ŝ ; s ∈ S(U )}.

The family {F(U )} satisfies Conditions (i) through (iv), and the correspondence

S(U ) 7→ F(U ) is bijective.

Let A be a continuous field over X. For any closed subset X ′ of X, the restriction of

A to X ′ is a continuous field of C∗-algebras over X ′. Denote by A(X ′) the C∗-algebra

of this continuous field. Then there is a canonical ∗-homomorphism πX
X ′ : A(X) →

A(X ′). Let U be a neighbourhood basis for the topology of X consisting of closed

subsets. If we set S(U ) = K0(A(U )), with restriction maps K0(πU
V ) : K0(A(U )) →

K0(A(V )), V ⊂ U , then S is a presheaf on U. Sometimes we will write S(U ) =

KA(U ). If A is a one-parameter continuous field of C∗-algebras with trivial K1-group,

and U consists of nondegenerate closed subintervals, then S is in fact a sheaf on U

by [2, Proposition 4.1]. In this case, we shall refer to S as the K0-sheaf of A. This

is the invariant on which the results in this paper are based. See [2, Section 4] for a

background discussion.
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3 A Classification of Continuous Fields of AF-Algebras

Let A be a separable unital continuous field of AF-algebras over [0, 1]. Since finite

dimensional C∗-algebras are semiprojective, we can use the same arguments as in

[2] to show that A is an inductive limit of continuous fields of finite dimensional

C∗-algebras, with finitely many singularities (see Theorem 3.2).

3.1 Basic Building Blocks

We study certain elementary unital continuous fields of finite dimensional C∗-alge-

bras that serve as basic building blocks in the study of continuous fields of AF-alge-

bras.

Let 0 = t0 < t1 < · · · < t2m < t2m+1 = 1 be a partition of [0, 1]. Let us set

Yi = [t2i , t2i+1], Zi = [t2i+1, t2i+2],

Y = [t0, t1] ∪ [t2, t3] ∪ · · · ∪ [t2m, t2m+1], and

Z = [t1, t2] ∪ [t3, t4] ∪ · · · ∪ [t2m−1, t2m];

thus, Y ∩ Z = {t1, t2, . . . , t2m}. For the sake of brevity let us refer to the above cover

as {Y, Z}.

Let {Ei}
m
i=0, {Fi}

m−1
i=0 be finite dimensional C∗-algebras, and let {γi,i : Fi →

Ei}
m−1
i=0 and {γi,i+1 : Fi → Ei+1}

m−1
i=0 be two sets of unital ∗-monomorphisms. One

can form two simple continuous fields by setting

E =

m⊕
i=0

C(Yi , Ei) and F =

m−1⊕
i=0

C(Zi , Fi).

Let G denote the restriction of E to Y ∩ Z and π : E → G the corresponding

restriction map. There is a unital ∗-homomorphism η : F → G defined by

( f0, . . . , fm−1) 7→
(
γ0,0( f0(t1)), γ0,1( f0(t2)), . . . , γm−1,m−1( fm−1(t2m−1)),

γm−1,m( fm−1(t2m))
)
.

We then can define a unital continuous field PD with finitely many singularities, as

the pullback of the following diagram:

(D) E
π

// G F
η

oo .

More precisely, PD is defined by

{(e, f ) ∈ E ⊕ F ; π(e) = η( f )}.

Since the maps γi, j are unital and injective, PD is a unital continuous field of fi-

nite dimensional C∗-algebras over [0, 1] that has Fi as fibres on Zi and has Ei as
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fibres on Yi \ Z. Moreover, it is locally simple except possibly at the singular points

{t1, . . . , t2m}.

As in [2], a diagram D as above is called admissible. If A is a continuous field of

C∗-algebras over [0, 1], denote by DA the diagram

A(Y )
π

// A(Y ∩ Z) A(Z),
π

oo

the pullback of which is isomorphic to A. Here in order to simplify notation the

single symbol π is used to denote the various restriction maps such as πY
Y∩Z or πZ

Y∩Z .

Let us call A elementary if there is an admissible diagram D and a unital morphism

of diagrams ι : DA → D,

A(Y )
π

//

ιY

²²

A(Y ∩ Z)

ιY∩Z

²²

A(Z)
π

oo

ιZ

²²

E
π

// G F ,
η

oo

that induces a ∗-isomorphism A → PD. Let us call ι : DA → D a fibred presentation

of A.

Let A and B be two unital continuous fields of C∗-algebras with A elementary. A

fibred morphism Φ from A to B will mean a fibred presentation of A, ι : DA → D,

together with unital morphisms of continuous fields φY , φY∩Z , φZ such that the fol-

lowing diagram commutes:

A(Y )
π

//

ιY

²²

A(Y ∩ Z)

ιY∩Z

²²

A(Z)
π

oo

ιZ

²²
E

π
//

φY

²²

G

φY∩Z

²²

F
η

oo

φZ

²²

B(Y )
π

// B(Y ∩ Z) B(Z).
π

oo

A fibred homomorphism induces a morphism of continuous fields Φ̂ : A → B. De-

note by HomD(A, B) the set of all fibred homomorphisms from A to B corresponding

to a given fibred presentation of A, ι : DA → D.

3.2 Inductive Limit Decomposition

Finite dimensional C∗-algebras are semiprojective; see e.g., [5]. Using this fact, one

can get inductive limit decompositions for continuous fields of AF-algebras, by argu-

ments similar to those of [2, Theorems 6.1 and 6.2].

Let A be a C∗-algebra. Let a ∈ A and F,G ⊂ A. For ε > 0, as is usual, we write

a ∈ε F if there is b ∈ F such that ‖a − b‖ < ε, and F ⊂ε G if a ∈ε G for any a ∈ F.
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Theorem 3.1 Let A be a unital continuous field of AF-algebras over [0, 1]. For any

finite subset F ⊂ A and any ε > 0, there are an elementary unital continuous field A1

of finite dimensional C∗-algebras with a fibred presentation ι : DA1 → D and a unital

fibred morphism Φ ∈ HomD(A1, A) such that F ⊂ε Φ̂(A1).

Proof We shall find points 0 = t0 < t1 < · · · < t2m+1 = 1 and finite dimensional

C∗-algebras Ei , F j (0 ≤ i ≤ m, 0 ≤ j ≤ m − 1) such that if we set Yi = [t2i , t2i+1],

Z j = [t2 j+1, t2 j+2], and E =
⊕

i C(Yi , Ei), F =
⊕

j C(Z j , F j), Y =
⋃

Yi , Z =
⋃

Z j ,

then there are unital fibrewise injective ∗-homomorphisms φ : E → A(Y ), ψ : F →
A(Z) of continuous fields such that

πZ
Y∩Z(ψ(F)) ⊂ πY

Y∩Z(φ(E))

and

πY (F) ⊂ε φ(E), πZ(F) ⊂ε ψ(F).

If A1 is the pullback of the map φ and ψ, and D is defined by

E
π

// G F
η

oo ,

where G = E(Y ∩ Z) and η is obtained as the composition

F(Z)
πZ

Y∩Z

// F(Y ∩ Z)
γ

// E(Y ∩ Z) = G,

where γ( f ) = (φ−1ψ)|Y∩Z( f ), then, just as in [2], there is a fibred homomorphism

Φ ∈ HomD(A1, A), induced by the pair φ, ψ, which satisfies the condition of the

theorem.

Let us construct E, F, φ, and ψ. For any x ∈ [0, 1], since A(x) is a unital

AF-algebra, there is a finite dimensional unital sub-C∗-algebra Fx ⊂ A(x) such that

πx(F) ⊂ε/2 Fx. Choose a finite subset H of Fx such that for any a ∈ F there is

ha ∈ H such that ‖ha − πx(a)‖ < ε/2. Since Fx is semiprojective and A is a con-

tinuous field, there is a closed neighbourhood Ux of x and a fibrewise injective unital
∗-homomorphism ηx : Fx → A(Ux) such that ‖πxηx(h)−h‖ = 0 for any h ∈ H. Then

‖πx(ηx(ha))−πx(a)‖ < ε/2 for all a ∈ F. Since A is a continuous field of C∗-algebras,

after passing to a smaller neighbourhood, we have that ‖ηx(ha) − πUx
(a)‖ < ε/2 for

any a ∈ F. In particular, πUx
(F) ⊂ε/2 ηx(Fx).

By compactness of [0, 1], there are points 0 = y0 < y1 < · · · < ym = 1, finite

dimensional C∗-algebras F j (0 ≤ j ≤ m − 1), fibrewise injective unital ∗-homo-

morphisms η j : F j → A[y j , y j+1], and finite sets F j of F j such that

π[y j ,y j+1](F) ⊂ε/2 η j(F j) for all 0 ≤ j ≤ m − 1.

Since each F j is a finite dimensional C∗-algebra, there exist finite subsets G j ⊂ F j

and δ j > 0 such that for any fibrewise injective unital ∗-homomorphism φ from
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F j to a unital C∗-algebra B with φ(G j) ⊂δ j
B ′, where B ′ is a unital sub-C∗-algebra

of B, there is a fibrewise injective unital ∗-homomorphism ψ from F j to B ′ with

‖φ(a) − ψ(a)‖ < ε/2 for any a ∈ F j .

Repeating the argument from above for each fibre A(yi), we obtain mutually

disjoint closed intervals Yi = [t2i , t2i+1] (0 ≤ i ≤ m) such that Yi is a neigh-

bourhood of yi and there are finite dimensional C∗-algebras Ei and fibrewise in-

jective unital ∗-homomorphisms φi : Ei → A(Yi) such that πYi
(F) ⊂ε φi(Ei) and

π[y j ,y j+1]∩Yi
(η j(G j)) ⊂δ j

φi(Ei) for any i and j ∈ {i − 1, i}. Consider the continuous

field

B = {a ∈ A : πx(a) ∈ πx(φi(Ei)), for x ∈ Yi , 0 ≤ i ≤ m}.

By construction, η j(G j) ⊂δ j
B[y j , y j+1] for all j. Therefore, there are fibrewise injec-

tive unital ∗-homomorphisms ψ j : F j → B[y j , y j+1] such that

‖ψ j(a) − η j(a)‖ < ε/2 for any a ∈ F j .

Set Z j = [t2 j+1, t2 j+2] ⊂ [y j , y j+1]. The sets (Z j) are mutually disjoint, and

πZ j∩Yi
ψ j(F j) ⊂ πZ j∩Yi

φi(Ei) whenever Z j∩Yi 6= Ø. Extend the maps φi : Ei → A(Yi)

and ψ j : F j → A(Z j) to (necessarily injective) morphisms of continuous fields of C∗-

algebras, and define φ, ψ as above. Then πY (F) ⊂ε φ(E) holds by the choice of {φi}.

Since for any 0 ≤ j ≤ m−1, π[y j ,y j+1](F) ⊂ε/2 η j(F j) and ‖ψ j(a)−η j(a)‖ < ε/2 for

any a ∈ F j , one has that πZ(F) ⊂ε ψ(F). Then φ, ψ, Y and Z satisfy the requirements

at the beginning of the proof, as desired.

The preceding theorem gives us a local approximation of continuous fields of

AF-algebras by elementary fields of finite dimensional C∗-algebras. Using the same

arguments as in the proof of [2, Theorem 6.2], one can prove the following semipro-

jectivity property for elementary continuous fields of finite dimensional C∗-algebras.

Let D be an admissible diagram with components Ei and F j finite dimensional C∗-al-

gebras and based on a closed cover Y , Z, and X. Let

E
π

//

φY

²²

G

φY∩Z

²²

F
η

oo

φZ

²²

A(Y )
π

// A(Y ∩ Z) A(Z)
π

oo

be a commutative diagram the vertical maps of which are unital morphisms of con-

tinuous fields of C∗-algebras. Then, for any finite sets FE ⊂ E, FF ⊂ F and any ε > 0

there are finite sets GE ⊂ E, GF ⊂ F and δ > 0 such that for any sub-continuous-field

C∗-algebra B ⊂ A with φ(GE) ⊂δ B(Y ) and ψ(GF) ⊂δ B(Z), there is a commutative

diagram

E
π

//

φ ′

Y

²²

G

φ ′

Y∩Z

²²

F
η

oo

φ ′

Z

²²

B(Y )
π

// B(Y ∩ Z) B(Z)
π

oo
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such that ‖φ(e) − φ ′(e)‖ < ε for all e ∈ FE and ‖ψ( f ) − ψ ′( f )‖ < ε for all f ∈ FF .

The proof of the above property is a repetition of the proof of [2, Theorem 6.2],

and we omit it here. With this semiprojective property together with Theorem 3.1,

we have the following inductive limit decomposition theorem.

Theorem 3.2 Let A be a unital separable continuous field of AF-algebras over [0, 1].

There is an inductive system (Ak) of unital elementary continuous fields of finite dimen-

sional C∗-algebras and unital fibred morphisms Φk ∈ HomDk
(Ak, Ak+1) and Φk,∞ ∈

HomDk
(Ak, A) such that Φ̂k+1,∞ ◦ Φ̂k = Φ̂k,∞ and the maps (Φ̂k,∞) induce an isomor-

phism lim
−→

(Ak, Φ̂k) ∼= A.

3.3 A Classification Theorem

Lemma 3.3 Let A be a unital separable continuous field of AF-algebras over [0, 1].

The C∗-algebra A[a, b] has stable rank one for any [a, b]. In particular, A[a, b] is stably

finite and has cancellation of projections.

Proof By Theorem 3.1, A can be approximated locally by elementary continuous

fields of AF-algebras. These approximating fields have stable rank one as is seen by

applying [6] to various extensions of stable rank one C∗-algebras. It follows that

A[a, b] also has stable rank one.

The following lemma plays a role similar to that of [2, Corollary 3.3].

Lemma 3.4 Let A be a finite dimensional C∗-algebra. Let B be a unital continuous

field of AF-algebras over Z = [z1, z2]. Suppose that there are unital continuous field

morphisms φ, ψ : C(Z, A) → B, and unitaries ui ∈ U(B(zi)) and v ∈ U(B) satisfying

uiψzi
(a)u∗

i = φzi
(a) for all a ∈ C(Z, A), i = 1, 2, and v ψ v∗ = φ.

Then, for any finite subset F ⊂ C(Z, A) any ε > 0, there is u ∈ U(B) such that uzi
= ui

and

‖uψ(a)u∗ − φ(a)‖ < ε for all a ∈ F.

Proof Since ψ and φ are continuous field morphisms, we may assume that F is in

the unit ball of A. From the given assumptions we deduce immediately that

[v∗zi
ui , ψzi

(a)] = 0 for all a ∈ A.

Consider the end-point z1 and let z ∈ (z1, z2). The relative commutant R of the

finite dimensional algebra ψz1
(A) in the AF-algebra B(z1) is AF. Therefore, there is a

continuous path of unitaries ω : [0, 1] → U(R) such that ω(0) = v∗z1
u1 and ω(1) = 1.

By the homotopy lifting property of the fibration πz1
: U(B[z1, z]) → U(B(z1)), there

is a continuous path of unitaries Ω : [0, 1] → U(B[z1, z]) such that Ω(1) = 1 and

πz1
Ω(t) = ω(t) for all t ∈ [0, 1]. (In fact, one may consider ω as a unitary in the

C∗-algebra C0 = { f ∈ C([0, 1], B(z1)) ; f (1) ∈ C1B(z1)}, which is the natural

quotient of C1 = { f ∈ C([0, 1], B[z1, z2]) ; f (1) ∈ C1B[z1,z2]}, and then note that
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any unitary of C0 can be lifted to a unitary in C1 since any unitary of C0 is path-

connected to the identity.) After decreasing z if necessary, we may arrange that

‖[Ω(t), π[z1,z]ψ(a)]‖ < ε, for all t ∈ [0, 1] and a ∈ F.

Consider the unique affine increasing homeomorphism h : [z1, z] → [0, 1]. The

formula

u ′
x =

{
πxΩ(h(x)) if x ∈ [z1, z],

1 otherwise,

defines a unitary u ′ in B such that u ′
z1

= v∗z1
u1 and

‖[u ′, ψ(a)]‖ < ε for any a ∈ F.

Repeating the same argument at the end-point z2, we obtain a unitary u ′ ′ with similar

properties. Then w = u ′u ′ ′ is a unitary in B such that wzi
= v∗zi

ui , i = 1, 2, and

‖[w, ψ(a)]‖ < ε for any a ∈ F.

Consider the unitary u = vw ∈ U(B). We have that uzi
= ui , i = 1, 2, and

‖uψ(a)u∗ − φ(a)‖ ≤ ‖v(wψ(a)w∗ − ψ(a))v∗‖ + ‖vψ(a)v∗ − φ(a)‖ < ε

for any a ∈ F, as desired.

Lemma 3.5 Let A be a finite dimensional C∗-algebra and let D be a AF-algebra. Let B

be a unital C∗-algebra with cancellation of projections and let π : B → D be a surjective
∗-homomorphism. Let σ : A → D be a unital ∗-homomorphism. Suppose that there is

a positive morphism α : K0(A) → K0(B) such that α[1A] = [1B] and π∗α = σ∗. Then

there is a unital ∗-homomorphism ϕ : A → B such that ϕ∗ = α and πϕ = σ.

Proof Since A is finite dimensional and B has cancellation of projections, there is

a unital ∗-homomorphism ψ : A → B such that ψ∗ = α. Therefore, (πψ)∗ = σ∗.

Since D is AF and hence has the cancellation property for projections, we must have

πψ = u σ u∗ for some unitary u ∈ U(D). Since u is homotopic to 1D in U(D), u lifts

to a unitary v ∈ U(B). We conclude that ϕ = v∗ ψ v is the desired lifting of σ.

By a fibred K0-morphism from A to B, corresponding to a given fibred presen-

tation ι : DA → D of A, we mean a triple of positive maps α = (αY , αY∩Z , αZ),

where αY has components αi : K0(E(Yi)) → K0(B(Yi)), αZ has components

α j : K0(F(Z j)) → K0(B(Z j)), and αY∩Z has components αi, j : K0(E(Yi ∩ Z j)) →
K0(B(Yi ∩ Z j)), such that these maps preserve the classes of the units and the follow-

https://doi.org/10.4153/CJM-2011-001-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-001-6


510 M. Dadarlat, G. A. Elliott, and Z. Niu

ing diagram is commutative:

K0(A(Y ))
π∗

//

ι∗

²²

K0(A(Y ∩ Z))

ι∗

²²

K0(A(Z))
π∗

oo

ι∗

²²

K0(E)
π∗

//

αY

²²

K0(G)

αY∩Z

²²

K0(F)
η∗

oo

αZ

²²

K0(B(Y ))
π∗

// K0(B(Y ∩ Z)) K0(B(Z)).
π∗

oo

Let us summarize the above diagram by the notation

K0(DA)
K0(ι)

// K0(D)
α

// K0(DB).

The set of fibred K0-morphisms from A to B corresponding to a given fibred presen-

tation ι : DA → D of A is denoted by Hom(K0(D), K0(DB)).

Parallel to [2, Theorem 8.1], we have the following existence and uniqueness the-

orem.

Theorem 3.6 Let A and B be unital continuous fields of C∗-algebras over [0, 1] with

fibres AF-algebras. Assume that A is elementary with fibred presentation ι : DA → D.

For any K0-fibred positive morphism α ∈ Hom(K0(D), K0(DB)) that preserves the

class of the unit, there is a fibred morphism Ψ ∈ HomD(A, B) such that K0(Ψ) = α.

If Φ ∈ HomD(A, B) is another fibred morphism satisfying K0(Φ) = α, then Φ is

approximately unitarily equivalent to Ψ.

Proof By assumption, the components of α are such that

αY∩Z

(
K0(E(Yi ∩ Zi))

)
⊂ K0

(
B(Yi ∩ Z j)

)
,

αY

(
K0(E(Yi))

)
⊂ K0

(
B(Yi)

)
, and αZ

(
K0(F(Z j))

)
⊂ K0

(
B(Z j)

)
.

Let αE
i and αF

j denote the corresponding components of αY and αZ . Also let

αi, j : K0(Ei) → K0(B(Yi ∩ Z j)) denote the component of αY∩Z corresponding to

Yi∩Z j 6= Ø. Since the fibres of B are AF-algebras, there are unital ∗-homomorphisms

ψi, j : Ei → B(Yi ∩ Z j) such that K0(ψi, j) = αi, j . By Lemma 3.3, B(Yi) has cancel-

lation of projections. Therefore by Lemma 3.5 there is a unital ∗-homomorphism

ψE
i : Ei → B(Yi), which can then be extended to a morphism of continuous fields

ψE
i : C(Yi , Ei) → B(Yi), with K0(ψE

i ) = αE
i and ψE

i extending simultaneously the

maps ψi,i−1 ◦ πYi∩Zi−1
and ψi,i ◦ πYi∩Zi

. Arguing in a similar way, for each Z j we

obtain a unital morphism ψF
j : C(Z j , F j) → B(Z j) that simultaneously extends the

maps ψ j, j ◦ η j, j and ψ j+1, j ◦ η j, j+1, such that K0(ψF
j ) = αF

j . Then ψY = (ψE
i ) and

ψZ = (ψF
j ), and ψY∩Z = (ψi, j) is the desired lifting of α.
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We now show the uniqueness part of the theorem. Let Ψ and Φ be as in the

statement, and use the same notation for each component of Ψ and Φ. Since Ei

is a finite dimensional C∗-algebra and the range C∗-algebras have cancellation of

projections, φE
i and φF

j are unitarily equivalent to ψE
i and ψF

j , respectively. Denote by

ui ∈ B(Yi) and v j ∈ B(Z j) the intertwining unitaries. Their restrictions to Yi ∩ Z j

may not be equal. But this can be handled in the same way as the argument of [2,

Theorem 8.1] with Lemma 3.4 playing the role of [2, Corollary 3.3]. This gives the

uniqueness part of the theorem.

With the decomposition Theorem 3.2, and the existence and uniqueness Theo-

rem 3.6, we have the following classification theorem.

Theorem 3.7 Let A, B be separable unital continuous fields of AF-algebras over [0, 1].

Any isomorphism of K0-sheaves α : KA → KB such that α[0,1]([1A]) = [1B] lifts to an

isomorphism A ∼= B of continuous fields of C∗-algebras. The lifting is unique up to

approximate unitary equivalence.

Proof The proof is very similar to the proof of [2, Theorem 8.2]; hence we omit it.

4 On K0-Presheaves of One-Parameter Continuous Fields of
C∗-Algebras

4.1 Continuity Properties of Presheaves

Let A be a unital, separable, continuous field C∗-algebra over [0, 1]. For any closed

subinterval [a, b], if we define S[a, b] = K0(A[a, b]), then S (which we will also

denote by KA) is a presheaf with restriction homomorphisms induced by the re-

striction homomorphisms of A. For any decreasing sequence of closed subintervals

([ai , bi])∞i=1 with
⋂∞

i=1 [ai , bi] = [a, b], there is a canonical homomorphism

(4.1) φ : lim
−→

(S[ai , bi], φi,i+1) → S[a, b],

where φi,i+1 is the restriction homomorphism from the abelian group S[ai , bi] to

the abelian group S[ai+1, bi+1], and lim
−→

(S[ai , bi], φi,i+1) is the inductive limit of

(S[ai , bi], φi,i+1) in the category of countable abelian groups.

Lemma 4.1 The homomorphism φ in (4.1) is an isomorphism. Moreover, if we denote

by V the limit of the positive cones of S[ai , bi], the map φ induces an isomorphism from

V to the positive cone of S[a, b]. The statement also holds if [a, b] reduces to a point;

that is, if ai , bi converge to x, then the canonical map φ : lim
−→

S[ai , bi] → K0(A(x)) is

an isomorphism. Thus the stalk Sx is canonically isomorphic to K0(A(x)).

Proof This follows from the usual stability properties of projections since the C∗-al-

gebra A[a, b] is isomorphic to the inductive limit C∗-algebra lim
−→

A[ai , bi].

Let A be a continuous field of C∗-algebras over [0, 1], and denote by S = KA the

K0-presheaf of A. There is a representation Φ of S induced by (πx)x∈[0,1]. For any
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[a, b], consider the map

(4.2) Φ : K0

(
A[a, b]

)
∋ f 7→

(
[πx]( f )

)
x∈[a,b]

∈
∏

x∈[a,b]

K0

(
A(x)

)
.

Lemma 4.2 Let A be a unital continuous field of C∗-algebras over [0, 1] such that

K1(A(x)) = 0 for all x ∈ [0, 1]. Then the representation Φ is faithful. In other words,

for any f ∈ K0(A[a, b]), if Φ( f ) = 0, then f = 0 in K0(A[a, b]).

Proof Since K1(A(x)) = 0 for all x, the K0-presheaf of A is in fact a sheaf by [2,

Proposition 4.1]. If Φ( f ) = 0 for an element f ∈ K0(A[a, b]), by Lemma 4.1, there

is a neighbourhood Ux of x such that [πUx
]( f ) = 0. By the compactness of [0, 1] and

the fact that the K0-presheaf is a sheaf, we conclude that f = 0 in K0(A[a, b]).

4.2 Ordered K0-Sheaves of One-Parameter Continuous Fields of AF-Algebras

Lemma 4.3 Let A be a unital continuous field of AF-algebras over [0, 1]. Let 0 ≤ a <
b < c ≤ 1, and let p ∈ A[a, b] and q ∈ A[b, c] be projections with [πb(p)] = [πb(q)].

Then there is a projection e in A[a, c] such that [π[a,b](e)] = [p] and [π[b,c](e)] = [q].

Proof Since [πb(p)] = [πb(q)] and A(b) is a unital AF-algebra, there is a unitary

u ∈ A(b) such that uπb(q)u∗
= πb(p). Since U (A(b)) is path connected, u lifts to a

unitary v ∈ A[b, c]. Since the projections p and vqv∗ assume the same value in A(b),

they glue together to a projection e ∈ A[a, c] with the desired properties.

This lemma, together with the fact that the unitary group of an AF-algebra is con-

nected, shows that the ordered K0-presheaf is a sheaf of ordered groups. Moreover,

we have the following proposition.

Proposition 4.4 An element f ∈ K0(A[a, b]) is positive if and only if Φ( f ) is point-

wise positive.

Proof It is simple to verify that if f is positive, then Φ( f ) is pointwise positive. Thus

it suffices to prove the converse.

Write f = [p1] − [p2] for projections p1 and p2 in Mm(A[a, b]). For any x ∈
[a, b], we assert that there is a closed neighbourhood Ux of x, and a projection p ∈
MN (A(Ux)) (for some N) such that [p] = [πUx

]( f ). Since [πx]( f ) ∈ K+
0 (A(x)), there

is a partial isometry vx in Mm(A(x)) such that

vxv∗x = πx(p2) and v∗x vxπx(p1) = v∗x vx.

Since A is a continuous field, there exist a closed neighbourhood Ux of x and a partial

isometry v in Mm(AUx
) such that

‖vv∗ − πUx
(p2)‖ < 1 and ‖v∗vπUx

(p1) − v∗v‖ < 1/4,

from which it follows that πUx
(p2) is unitarily equivalent to vv∗ and

‖πUx
(p1) v∗v πUx

(p1) − v∗v‖ ≤

‖πUx
(p1) v∗v πUx

(p1) − πUx
(p1)v∗v‖ + ‖πUx

(p1)v∗v − v∗v‖ < 1/2.
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Therefore, there is a projection in the hereditary sub-C∗-algebra of Mm(A(Ux)) gen-

erated by the projection πUx
(p1) that is unitarily equivalent to v∗v. Thus, πUx

(p2)

is Murray–von Neumann equivalent to a subprojection of πUx
(p1). This proves the

assertion.

By the compactness of [0, 1], there is a partition 0 = a0 < a1 < · · · < an = 1

and m such that there is a projection pi in each Mm(A[ai, ai+1]) such that [pi] =

[π[ai ,ai+1]]( f ). Applying Lemma 4.3 repeatedly, we obtain a projection p such that

[π[ai ,ai+1](p)] = [πai ,ai+1
]( f ), which implies [p] = f (since the K0-presheaf is a sheaf),

as desired.

Recall ([7]) that an ordered group (G, G+) (we deem that 0 ∈ G+) has the Riesz

decomposition property if for any positive elements a, b, and c with a ≤ b + c, there

exist positive elements 0 ≤ b ′ ≤ b and 0 ≤ c ′ ≤ c such that a = b ′ + c ′. We write

a > b if a − b ∈ G+ \ {0}. An ordered group (G, G+) is called unperforated if for any

element a, positivity of na for some natural number n implies positivity of a. Note

that any unperforated ordered group is torsion free (na = 0 ⇒ a ≥ 0; however

na = 0 ⇒ n(−a) = 0 ⇒ −a ≥ 0). An unperforated ordered group with the Riesz

decomposition property is referred as a dimension group. Let us say that a morphism

f : G → G ′ of ordered groups is faithful if f (a) > 0 whenever a > 0.

Any totally ordered group has the Riesz decomposition property. Ordered

K0-groups of AF-algebras are dimension groups. However, the ordered K0-group

of a unital continuous field of AF-algebras may fail to have the Riesz decomposition

property. For example, the splitting interval algebra

S := { f ∈ M2(C[0, 1]) ; f (0) ∈ C ⊕ C, f (1) ∈ C ⊕ C}

is a continuous field over [0, 1] with fibre M2(C) between 0 and 1 and C⊕C at 0 or 1.

The K0-group of S does not have the Riesz decomposition property ([9]).

Nevertheless, if the K0-group of each fibre C∗-algebra is totally ordered, then the

K0-group of the global C∗-algebra is also totally ordered. In particular, it has the

Riesz decomposition property.

Proposition 4.5 Let A be a unital separable continuous fields of AF-algebras over

[0, 1]. If K0(A(x)) is totally ordered, then the ordered group K0(A[a, b]) is totally or-

dered for any subinterval [a, b]. Moreover, the map [πx] : K0(A) → K0(A(x)) is injec-

tive for any x ∈ [0, 1].

Proof We may assume that [a, b] = [0, 1]. For any projections p and q in A[0, 1],

consider the sets

U := {x ∈ [0, 1] ; [πx(p)] > [πx(q)]}, V := {x ∈ [0, 1] ; [πx(p)] < [πx(q)]},

and W := {x ∈ [0, 1] ; [πx(p)] = [πx(q)]}. Since K0(A(x)) is totally ordered for any

x, one has that U ,V,W are mutually disjoint and U ∪ V ∪ W = [0, 1]. Note that if

e is a projection in A such that [ex] 6= 0 for some x, then [ey] 6= 0 for all y in some

neighbourhood of x. Therefore, arguing as in the proof of Proposition 4.4, we see

that the subsets U , V , W are open subsets of [0, 1]. Since [0, 1] is connected, only
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one of them is nonempty, and then it is equal to [0, 1]. If U or V is nonempty then

[p] > [q] or [p] < [q] by Proposition 4.4. If W is nonempty and hence W = [0, 1],

one has that [p] = [q] by Lemma 4.2. Therefore, we always have either [p] ≥ [q] or

[p] ≤ [q]. Moreover, if [πx(p)] = [πx(q)] for some x ∈ [0, 1], then W = [0, 1] and

hence [p] = [q]. This shows that the map [πx] is injective, as desired.

In general, the map [πx] is not injective, as is illustrated by the case of the splitting

interval algebra mentioned. On the other hand, if A is a unital continuous field of

stably finite C∗-algebras, then the map [πx] is always faithful.

Recall that a C∗-algebra A is stably finite if for any projections e and f in a matrix

algebra over A such that e ≤ f and e is Murray–von Neumann equivalent to f , one

has e = f . In other words, the C∗-algebra A is stably finite if any projection in A ⊗ K

is finite.

Proposition 4.6 Let A be a unital continuous field of stably finite C∗-algebras over

[0, 1]. Then A is stably finite and the map [πx] : K0(A) → K0(A(x)) is faithful for any

x ∈ [0, 1], i.e., if g > 0, then [πx](g) > 0.

Proof Let v be a partial isometry in some matrix algebra over A such that vv∗ ≤ v∗v.

Then πx(v)πx(v∗) ≤ πx(v∗)πx(v) holds in each fibre. Since A(x) is stably finite, we

have πx(v)πx(v∗) = πx(v∗)πx(v) for all x ∈ [0, 1]. Therefore, πx(vv∗ − v∗v) = 0 for

all x ∈ [0, 1], and hence vv∗ = v∗v. Thus A is stably finite.

Let p be a projection in Mm(A). If [πx0
(p)] = 0 in K0(A(x0)) for some x0 ∈ [0, 1],

then, since A(x0) is stably finite, πx0
(p) = 0. Since p is a projection, necessarily

‖πx(p)‖ = 0 or 1 for any x ∈ [0, 1]. By the continuity of the field, ‖πx(p)‖ is

continuous with respect to x. Since [0, 1] is connected, this implies that πx(p) = 0

for all x ∈ [0, 1] and hence p = 0, as desired.

5 The Range of the Invariant

5.1 Elementary Covers

By an elementary cover C of an interval [0, 1] we shall mean a full subcategory of U

satisfying the following conditions. C has finitely many objects grouped into three

coloured families {Yi}i∈I , {Z j} j∈ J , {yi j} where the intervals in each family are mu-

tually disjoint, Yi and Z j are of nonzero length, and yi j = Yi ∩ Z j . It is convenient

to regard Yi and yi j as being coloured with the colour Y, and Z j coloured with the

colour Z. The typical example of an elementary cover C arises from a set of points

0 = x0 < x1 < · · · < xn = 1 by setting Y0 = [x0,x1], Z1 = [x1, x2], y01 = x1, etc. By

an elementary diagram of ordered groups D, we shall mean a contravariant functor

from an elementary cover C to the category of countable ordered groups with the

property that the image D(ι) of any morphism ι between any two objects of the same

colour is the identity map. We shall regard the group D(X) as having the same colour

as X. Equivalently, if, for each pair of adjacent intervals Yi and Z j , we set Ei = D(Yi),

F j = D(Z j), then we must have D({yi j}) = Ei , and D simplifies to the diagram

(5.1) Ei Ei F j

ψ ji

oo .
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We shall say that an elementary cover C′ refines C if the intervals of C ′ are obtained

by dividing some of the intervals of C into three subintervals of nonzero length and

changing the colour of the interval in the middle of each trisection. If D is an ele-

mentary diagram defined on C, we can extend D canonically to a diagram DC
′

on

C ′ by setting DC
′

(X ′) = D(X) for all new intervals X ′ in C ′ (including those of

length zero) contained in an interval X of C. The new morphisms added to DC
′

are

all equalities. If C has just one element [0, 1] and D[0, 1] = G, we will let GC
′

, or

even G, stand for DC
′

.

Let D1, D2 be elementary diagrams defined on covers C1, C2 such that C1 refines

C2. A morphism of diagrams D1 → D2 will be by definition a morphism of functors

D
C2

1 → D2. Note that both functors D
C2

1 and D2 are defined on the same category C2.

One can replace [0, 1] by any interval U = [a, b] in the above setting. If U =

[a, b] ⊂ [0, 1], then the restriction of D to U , denoted by DU , is defined as follows.

If X is an object of C, then X ∩ U is an object of CU , the category on which DU is

defined, and DU (X ∩U ) = D(X) as coloured groups.

If D is a diagram of ordered groups on [a, b], we shall denote its pullback by

P(D). With the above notation, P(D) consists of elements ((ei)i∈I , ( f j) j∈ J) such that

ei ∈ Ei , f j ∈ F j , and ψ ji( f j) = ei for all pairs of adjacent intervals Yi and Z j .

Via the operations of restrictions and pullbacks, each diagram D defines a con-

tinuous sheaf D̂ of countable ordered groups over [0, 1]. Indeed, for each U =

[a, b] ⊂ [0, 1], set D̂(U ) = P(DU ). Then one verifies immediately that the restric-

tion maps P(DU ) → P(DV ), defined for V ⊂ U by dropping from the collection

((ei)i∈I , ( f j) j∈ J) those elements ei and f j for which Yi or respectively Z j does not

intersect V , satisfy the required properties.

If S is a sheaf of ordered groups on [0, 1], we shall denote by S|C its restriction to C.

Let α : D → S|C be a morphism of functors. In other words we have a commutative

diagram

Ei

αi

²²

Ei

αi j

²²

F j

ψ ji

oo

αi

²²

S(Yi)
πxi j

// Sxi j S(Z j).
πxi j

oo

Then α induces a morphism of sheaves α̂ : D̂ → S. Indeed for each U ⊂ [0, 1] as

above, α induces a morphism αU : DU → S|CU
. Recall that the objects of CU are of

the form X ∩ U where X is an object of C. The component of αU corresponding to

the object X ∩U is

DU (X ∩U ) D(X)
α|X

// S(X)
πX∩U

// S(X ∩U ).

By passing to pullbacks αU gives a morphism of groups α̂U : D̂(U ) → S(U ).
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5.2 Inductive Limit Representations of Sheaves

Recall (from Section 4) that a morphism of ordered groups α : G → H is called

faithful if α(g) > 0 whenever g > 0.

Definition 5.1 A sheaf of ordered groups S will be called faithful if for any closed

interval Z and any point z ∈ Z, the morphism πz : S(Z) → Sz is faithful. An ele-

mentary diagram of finitely generated dimension groups will be called faithful if all

its morphisms are faithful. With notation as in (5.1), this means precisely that all the

morphisms ψ ji : F j → Ei are faithful.

• Throughout the remainder of this section we shall assume that S is a continuous

and faithful sheaf of countable ordered groups over [0, 1] and that its stalks are

dimension groups. Moreover, we shall assume that S is pointed in the sense that a

positive nonzero element ν ∈ S[0, 1] has been chosen.

By a finitely generated dimension group let us mean one that has finitely gener-

ated positive cone, which is therefore by [8, Theorem 2.3] isomorphic to the ordered

group direct sum Z
k for some k ≥ 0.

Definition 5.2 Let G be a finitely generated dimension group and let Z = [a, b] ⊂
[0, 1]. Let ι : G → S(Z) be a faithful homomorphism. By a simple interpolant of ι
we shall mean a factorization of ι through a finitely generated dimension group F,

by means of faithful homomorphisms η : F → S(Z) and θ : G → F, such that the

diagram

G

θ ÂÂ>
>>

>>
>>

ι
// S(Z)

F

η

==||||||||

commutes, and also ker(πzι) = ker(θ) for a specified point z ∈ Z. A simple inter-

polant for ι : G → S(Z) as just defined, with the chosen notation for the constituent

components, will be denoted by (G, Z, z, θ, η, F). We shall say that a simple inter-

polant is open provided that a < z if a 6= 0 and z < b if b 6= 1.

By an (elementary) interpolant for a faithful morphism ι : G → S[a, b], we shall

mean a faithful elementary diagram D of finitely generated dimension groups, asso-

ciated with the elementary cover C of [a, b], together with morphisms θ : GC → D

and η : D → S|C, such that the diagram

GC

θ ÃÃ@
@@

@@
@@

@

ι
// S|C

D

η

>>}}}}}}}
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commutes, and for each X ∈ C that does not reduce to a point, the diagram

G

θX !!CC
CC

CC
CC

πXι
// S(X)

D(X)

ηX

<<xxxxxxxx

is a simple interpolant of πXι for some point x ∈ X.

We shall say that an elementary interpolant is open if the simple interpolants that

correspond to the initial component [a, c] and the final component [d, b] of C are

both open.

The property of an (elementary) interpolant of being open will be used in the

process of gluing interpolants described in Lemma 5.5.

Lemma 5.3 Let G be a finitely generated dimension group. For any faithful homo-

morphism ι : G → S[a, b] and any x ∈ [a, b], there exist a closed interval Z ⊂ [a, b]

with x ∈ Z̊ and a simple interpolant

G

θ ÂÂ>
>>

>>
>>

πZ ι
// S(Z)

F

η

==||||||||

of πZι with respect to the point x, i.e., such that ker(πxι) = ker(θ).

Proof Since G is finitely generated, we may assume that G = Z
n, for some n, with

the usual order. Since S and ι are faithful, the homomorphism πxι : G → Sx is

also faithful. Since Sx is a dimension group, by [8, Theorem 3.1] there are a finitely

generated dimension group F and faithful homomorphisms θ : G → F, η ′ : F → Sx

such that the diagram

G

θ ÂÂ>
>>

>>
>>

πxι
// Sx

F

η ′

??ÄÄÄÄÄÄÄ

commutes and ker(πxι) = ker(θ).

Using the definition of S, choose a closed neighbourhood V of x in [a, b] such

that the map η ′ lifts to a positive homomorphism η : F → S(V ). Since G is finitely

generated, there is a closed interval Z ⊂ V with x ∈ Z̊ such that the restriction of

ηθ − πV ι to Z vanishes. We conclude the proof by replacing η by πZη and observing

that this map must be faithful, since it is a lifting of a faithful map η ′ and since S is

faithful.
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Remark 5.4 Let (G, Z, z, θ, η, F) be a simple interpolant for ι : G → S(Z) as in

Definition 5.2. Arguing as in the proof of Lemma 5.3 and using the continuity of S,

one verifies immediately that there are a closed neighbourhood Zε of Z and faithful

liftings ιε : G → S(Zε) and ηε : F → S(Zε) of ι and η such that (G, Zε, z, θ, ηε, F) is a

simple interpolant of ιε. Let us call this a local extension of the given interpolant.

Lemma 5.5 Let Cℓ be an elementary cover of [xℓ, x] and let Cr be an elementary cover

of [x, xr]. Let

(5.2) Gℓ

θℓ ÃÃ@
@@

@@
@@

@

ιℓ

// S|Cℓ

Dℓ

ηℓ

==||||||||

and

(5.3) Gr

θr ÃÃA
AA

AA
AA

A

ιr

// S|Cr

Dr

ηr

==||||||||

be two open interpolants, and let G be a finitely generated dimension group with faithful

homomorphisms αℓ : G → Gℓ and αr : G → Gr such that πxι
ℓαℓ

= πxι
rαr.

There exists an open interpolant

(5.4) GC

θ
// D

η

// S|C

for the morphism α : G → S[xℓ, xr] induced by the pair ιℓαℓ, ιrαr such that the restric-

tions of C to [xℓ, x] and [x, xr] refine Cℓ and Cr respectively, and if Cℓ
new := C|[xℓ,x] and

Cr
new := C|[x,xr], then there are morphisms Dℓ|Cℓ

new
→ D|Cℓ

new
, Dr|Cr

new
→ D|Cr

new
such

that the diagrams

D|Cℓ
new

η|
Cℓ

new

""FFFFFFFF

Gℓ

θ|
Cℓ

new

=={{{{{{{{{
θℓ

// Dℓ|Cℓ
new

OO

ηℓ

// S|Cℓ
new

and

D|Cr
new

η|Cr
new

##FFFFFFFF

Gr

θ|Cr
new

==zzzzzzzzz θr

// Dr|Cr
new

OO

ηr

// S|Cr
new
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commute.

Moreover, suppose that D1 is a faithful elementary diagram on the interval [xℓ, xr]

with cover C1: [xℓ, x] ∪ {x} ∪ [x, xr] and objects and maps

Kℓ Kℓ Kr,
ψ

oo

and suppose that there are morphisms µℓ : Kℓ → Gℓ, µr : Kr → Gr such that πxι
ℓµℓψ =

πxι
rµr, such that the pair ιℓµℓ, ιrµr induces a morphism of functors η

1
: D1 → S|C1

.

Then the interpolant (5.4) can be chosen in such a way that there is a morphism

µ
1

: D1 → D satisfying η
1
= η ◦ µ

1
, and the diagram

(5.5) DC
1 (X)

µ
1 ##GG

GG
GG

GG
G

η
1

// S|X

D(X)

η

==zzzzzzzz

is an interpolant for all nondegenerate intervals X of C.

Proof A procedure is required for gluing the two given open interpolants. Since this

procedure is local, we may assume without loss of generality that the (elementary)

interpolants (5.2) and (5.3) are simple. Denote by V ℓ
= [xℓ, x] and V r

= [x, xr].

Using our earlier notation, the two simple interpolants for ιℓ and ιr are

(Gℓ,V ℓ, zℓ, θℓ, ηℓ, Fℓ) and (Gr,V r, zr, θr, ηr, Fr),

where zℓ < x < zr by the openness assumption. These interpolants admit local

extensions across x corresponding to a common ε > 0, as noted in Remark 5.4. Let

us set V = (V ℓ)ε ∩ (V r)ε. Consider the map

ιε : Fℓ ⊕ Fr → S(V ), ιε(a, b) = πV (ηℓ)ε(a) + πV (ηr)ε(b).

By Lemma 5.3, after shrinking ε if necessary, there is a simple interpolant (Fℓ ⊕
Fr,V, x, γ, ηH , H) for ιε, where V = [sℓ, sr] and xℓ < zℓ < sℓ < x < sr < zr < xr.

Denoting by γℓ and γr the restrictions of γ to Fℓ and Fr respectively, we have the

following commutative diagram.

(5.6) H

ηH

²²

Fℓ

γℓ
=={{{{{{{{{

πV (ηℓ)ε

// S(V ) Fr

πV (ηr)ε

oo

γr
aaCCCCCCCCC
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Define a cover C of [xℓ, xr] by setting Y = V = [sℓ, sr] and Zℓ
= [xℓ, sℓ],

Zr
= [sr, xr]. Define a faithful elementary diagram D on C as follows. Its objects

are D(Y ) = D(Y ∩ Zℓ) = D(Y ∩ Zr) = H, D(Zℓ) = Fℓ and D(Zr) = Fr. Its

morphisms are γℓ : Fℓ → H, γr : Fr → H, and the identity maps; see the diagram

following (5.12).

Next, define a morphism of functors η : D → S|C by

η
Zℓ = πZℓηℓ, η

Zr
= πZr ηr, η

Y
= ηH , η

Y∩Zℓ = πsℓηH , η
Y∩Zr

= πsr ηH .

We need to check that η is a morphism of functors. That reduces to the following

equalities:

πsℓηHγℓ( f ) = πsℓπZℓηℓ( f ), for all f ∈ Fℓ,

πsr ηHγr( f ) = πsr πZr ηr( f ), for all f ∈ Fr.

Let us verify only the first equality, since the second equality can be verified in a

similar way. For any f ∈ Fℓ, we have

πsℓηHγℓ( f ) = πsℓπV (ηℓ)ε( f ) = πsℓη
ℓ( f ) = πsℓπZℓηℓ( f ).

Define a morphism of functors θ : GC → D by

θZℓ = θℓαℓ, θZr = θrαr, θY = γℓθℓαℓ, θY∩Zℓ = γℓθℓαℓ, θY∩Zr = γrθrαr.

Let us verify that θ is a morphism of functors. It suffices to check that

γℓθℓαℓ(g) = γrθrαr(g) for any g ∈ G.

Since πxι
ℓαℓ(g) = πxι

rαr(g), one has that πxη
ℓθℓαℓ(g) = πxη

rθrαr(g), and hence

πxι
ε(θℓαℓ(g),−θrαr(g)) = 0.

Since (Fℓ ⊕ Fr,V, x, γ, ηH , H) is a simple interpolant, ker(πxι
ε) = ker(γ). Thus from

γ(θℓαℓ(g),−θrαr(g)) = 0 we obtain that γℓθℓαℓ(g) = γrθrαr(g).

Let us verify that

(5.7) GC

θ
// D

η

// S|C

is an (elementary) interpolant of G. First we verify

ηHγℓθℓαℓ(g) = πV α(g)

where α : G → S[xℓ, xr] is the homomorphism induced by ιℓαℓ and ιrαr. Let us

verify it pointwise. If z ∈ [sℓ, x], then

πzπV α(g) = πzι
ℓαℓ(g) = πzη

ℓθℓαℓ(g) = πzπV (ηℓ)εθℓαℓ(g) = πzη
Hγℓθℓαℓ(g).
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Using γℓθℓαℓ(g) = γrθrαr(g), a similar argument also shows that

πzπV α(g) = πzη
Hγℓθℓαℓ(g)

for any z ∈ [x, sr]. Next we verify the kernel conditions corresponding to Zℓ
=

[xℓ, sℓ], Zr
= [sr, xr], and Y = [sℓ, sr]:

ker(θℓαℓ) = ker(πzℓπZℓιℓαℓ) = ker(πzℓιℓαℓ),(5.8)

ker(θrαr) = ker(πzr πZr ιrαr) = ker(πzr ιrαr),(5.9)

ker(γℓθℓαℓ) = ker(πxι
ℓαℓ) = ker(πxι

rαr) = ker(γrθrαr).(5.10)

The kernel condition for the interpolant (5.2) amounts to ker(θℓ) = ker(πzℓιℓ) and

this clearly implies (5.8). Similarly, (5.9) follows from (5.3). Next we observe that

the first half of (5.10) is equivalent to ker(γℓθℓαℓ) = ker(πxη
ℓθℓαℓ), since ιℓ = ηℓθℓ.

The desired equality follows, since ker(γℓ) = ker(πxη
ℓ) from the construction of the

simple interpolant for ιε. One argues in a similar way to justify the second half of

(5.10).

In the same way, one verifies that the restrictions of η to Cℓ
new := C ∩ [xℓ, x] and

Cr
new := C ∩ [x, xr] give two interpolants,

(Gℓ)C
ℓ
new

θ
// D|Cℓ

new

η

// S|Cℓ
new

,(5.11)

(Gr)C
r
new

θ
// D|Cr

new

η

// S|Cr
new

.(5.12)

These two interpolants are assembled together in the following diagram:

G

αℓ

²²

G

αℓ

²²

G

αr

²²

G

αr

²²

Gℓ

θℓ

²²

Gℓ

γℓθℓ

²²

Gr

γrθr

²²

Gr

θr

²²

Fℓ
γℓ

//

π
Zℓη

ℓ

²²

H

π
sℓηH

²²

H

ηH

²²

H

πsr ηH

²²

Fr
γr

oo

πZr ηr

²²

S[xℓ, sℓ]
π

sℓ

// Ssℓ S[sℓ, sr]
π

sℓ

oo
πsr

// Ssr S[sr, xr].
πsr

oo

This proves the first part of the lemma. For the second part, because of the locality

of our construction, we may again assume that the interpolants (5.2) and (5.3) are

simple.
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Suppose now that D1 is a diagram as in the statement. The morphism of functors

η
1

: D1 → S|C1
is illustrated by the following commutative diagram:

Kℓ

ιℓµℓ

²²

Kℓ

²²

Kr
ψ

oo

ιrµr

²²

S[xℓ, x]
πx

// Sx S[x, xr].
πx

oo

Since πxι
ℓµℓψ(gr) = πxι

rµr(gr) for any gr ∈ Kr, we obtain that πxη
ℓθℓµℓψ(gr) =

πxη
rθrµr(gr) for any gr ∈ Kr, and hence πx((ηℓ)ε⊕(ηr)ε)(θℓµℓψ(gr),−θrµr(gr)) = 0.

Since (Fℓ ⊕ Fr,V, x, γ, ηH , H) is a simple interpolant, we have

γ(θℓµℓψ(gr),−θrµr(gr)) = 0

and hence that γℓθℓµℓψ = γrθrµr. Therefore, we have the following commutative

diagram:

Kℓ

θℓµℓ

²²

Kℓ

γℓθℓµℓ

²²

Kr

γrθrµr

²²

ψ
oo Kr

θrµr

²²

Fℓ
γℓ

//

π
Zℓη

ℓ

²²

H

π
sℓηH

²²

H

ηH

²²

H

πsr ηH

²²

Fr
γr

oo

πZr ηr

²²

S[xℓ, sℓ]
π

sℓ

// Ssℓ S[sℓ, sr]
π

sℓ

oo
πsr

// Ssr S[sr, xr].
πsr

oo

In fact, the diagram expands to the larger diagram

Kℓ

θℓµℓ

²²

Kℓ

γℓθℓµℓ

²²

Kℓ

γℓθℓµℓ

²²

Kℓ

γℓθℓµℓ

²²

Kr

γrθrµr

²²

ψ
oo Kr

γrθrµr

²²

Kr

θrµr

²²

Fℓ
ψℓ

//

π
Zℓη

ℓ

²²

H

π
sℓηH

²²

H

π
[sℓ,x]

ηH

²²

H

πxηH

²²

H

π[x,sr ]ηH

²²

H

πsr ηH

²²

Fr
ψr

oo

πZr ηr

²²

S[xℓ, sℓ]
π

sℓ

// Ssℓ S[sℓ, x]
π

sℓ

oo
πx

// Sx S[x, sr]
πx

oo
πsr

// Ssr S[sr, xr].
πsr

oo

Thus we have a morphism µ1 : D1 → D such that η
1

= η ◦ µ
1
. Arguing as in the

first part of the proof one checks that the columns of the last diagram corresponding

to nondegenerate intervals are interpolants. Here one works with the elementary

cover C that consists of [xℓ, sℓ], [sℓ, x], [x, sr], and [sr, xr]. This proves the second part

of the lemma.
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Lemma 5.6 Let G be a finitely generated dimension group with a faithful morphism

ι : G → S[a, b]. Then there is the following open interpolant:

GC

ι
//

θ ÃÃA
AA

AA
AA

A
S|C

D.

η

>>}}}}}}}}

Proof By applying Lemma 5.3 and using the compactness of [a, b], we obtain points

a = y0 < · · · < ym = b and open simple interpolants

I(k) = (G, Zk, zk, θk, ηk, Fk)

for πZkι, where Zk
= [yk−1, yk], k = 1, . . . , m. Then we may glue together the simple

interpolants I(k), k = 1, . . . , m, by applying the first part of Lemma 5.5.

Theorem 5.7 Let S be a continuous and faithful sheaf of countable ordered groups

over [0, 1]. If the stalks of S are dimension groups, then S is the K0-sheaf of a continuous

field of AF-algebras over [0, 1] with [1A] = ν for a given nonzero element ν ∈ S[0, 1]+.

Proof We shall construct inductively a sequence of elementary diagrams (Dn) with

covers (Cn) of [0, 1] and morphisms Ψn,n+1 : Dn → Dn+1 and Ψn,∞ : Dn → S|Cn

Ψn+1,∞ ◦ Ψn,n+1 = Ψn,∞ such that the induced map

Λ : lim
−→

(D̂n, Ψ̂n,n+1) → S

is an isomorphism of sheaves. Then it is enough to lift each Dn to a diagram

D′
n of finite dimensional C∗-algebras and each morphism Ψn,n+1 to Ψ

′
n,n+1 ∈

HomD ′

n
(D′

n,D
′
n+1), as in Subsection 3.1. In particular, then K0(D′

n) = Dn and

K0(Ψ ′
n,n+1) = Ψn,n+1. The unital morphisms γi, j (of D′

n) are liftings of faithful maps

and hence they are injective. Therefore the pullbacks An of D′
n are unital continu-

ous fields. By continuity of K-theory it follows that the K0-sheaf of lim
−→

(An, Ψ̂
′
n,n+1) is

isomorphic to S.

The construction of Dn, Ψn,n+1 and Ψn,∞ is as follows. By an elementary set the-

oretic argument, there is a sequence of rational intervals [an, bn] in [0, 1] and for

each n ≥ 1 a positive element sn ∈ S[an, bn] such that for each interval [a, b] with

rational endpoints and each positive element s ∈ S[a, b], there is n ≥ 1 such that

[a, b] = [an, bn], and s = sn.

The diagrams Dn and the various morphisms are constructed inductively such

that [an, bn] is a union of components of Cn, all the components of Cn have length

≤ 1/n, and for each n and each nondegenerate interval X ∈ Cn+1, the commutative

diagram

(5.13) DCn+1
n (X)

Ψn,∞

//

Ψn,n+1

%%JJJJJJJJJ
S|X

Dn+1(X)

Ψn+1,∞
;;xxxxxxxxx
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is an (elementary) interpolant. Moreover, we arrange that sn+1 is in the image of

Ψ̂n+1,∞.

To construct D1 we apply Lemma 5.6 to ι1 : G = Z s1 →֒ S[a1, b1] and find an

interpolant of ι1 on [a1, b1]. Then we extend the morphism η that appears in this in-

terpolant to a morphism Ψ1,∞ : D1 → S on [0, 1] by gluing elementary interpolants.

It is then clear that s1 ∈ Image(Ψ̂1,∞) by the first part of Lemma 5.5.

Suppose now that D1, . . . ,Dn and the morphisms Ψ j,∞, 1 ≤ j ≤ n and Ψ j, j+1,

1 ≤ j < n have been constructed. We must construct Dn+1 and the morphisms

Ψn,n+1 and Ψn+1,∞.

Let C ′
n be a refinement of Cn such that [an+1, bn+1] is a union of components of C′

n.

Let us denote by Xk the components of C′
n that are not points and set Fk

= D
C

′

n
n (Xk).

For each Xk, denote by ηk : Fk → S(Xk) the corresponding component of Ψn,∞.

For each k, define elements tk ∈ S(Xk) by tk
= sn+1|Xk if [an+1, bn+1] ∩ Xk

= Xk

and tk
= 0 otherwise. For each k consider the map ιk : Gk := Ztk ⊕ Fk → S(Xk),

ιk(mtk, f k) = mtk + ηk( f k).

Applying Lemma 5.6, we obtain an interpolant

(Gk)Cn+1,k

ιk

//

θn+1,k

$$IIIIIIIII
S|Cn+1,k

Dn+1,k

η
n+1,k

;;wwwwwwww

.

By Lemma 5.5, the above interpolants based on the diagrams {Dn+1,k} can be

glued together to get an elementary diagram Dn+1 on [0, 1] and a morphism

(5.14) Ψn+1,∞ : Dn+1 → S|Cn+1
.

Moreover, by the second part of Lemma 5.5, there is a morphism Ψn,n+1 : DCn+1
n →

Dn+1 such that Ψn+1,∞ ◦ Ψn,n+1 = Ψn,∞ and such that (5.13) is an interpolant.

We must show that the map Λ is bijective. The surjectivity is verified as follows.

It suffices to show that for any n, one has that sn ∈ Im(Λ). But this is clear, since

sn ∈ Im(Φ̂n,∞) by construction.

Let us now verify that Λ is injective. Let s ∈ Dn[a, b] be such that Λ(s) = 0.
Let us show that for each x ∈ [a, b] there is a neighbourhood W of x and there

is m ≥ n such that Ψ̂n,m(s) vanishes on W in D̂m(W ). By compactness of [a, b]

this will eventually imply that Ψ̂n,m(s) = 0 in D̂m[a, b] for some m ≥ n. If s is as

above, by continuity of S, we may assume that there is δ > 0 such that s extends

to V = [a − δ, b + δ] ∩ [0, 1] and that Λ(s) vanishes on V . Let x ∈ [a, b]. Since

the intervals of Cn have length ≤ 1/n, after increasing n and replacing s by Ψ̂n,m(s) if

necessary, we may arrange that [x − ε, x + ε] ⊂ Xk ∪ Xk+1 ⊂ [x − δ, x + δ], for some

0 < ε < δ, where Xk and Xk+1 are consecutive intervals in the elementary diagram

Cn of Dn.

The restriction of s to Xk∪Xk+1 is of the form ( f k, f k+1) , where f i ∈ Fi
= Dm(Xi),

i = k, k + 1. Let ηi : Fi → S(Xi), i = k, k + 1, denote the corresponding components
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of Ψn,∞. Then Ψ̂n,∞(s) is equal to the element of S(Xk ∪ Xk+1) given by the pair

(ηk( f k), ηk+1( f k+1)) ∈ S(Xk) ⊕ S(Xk+1), and hence ηi( f i) = 0, i = k, k + 1. Since

(5.13) is an interpolant, so is

Dn(Xi)
ηi

//

Ψn,n+1

%%KKKKKKKKKK
S|Xi

Dn+1|Cn+1∩Xi

Ψn+1,∞

::uuuuuuuuuu

for i = k, k + 1, since Cn+1 is finer than Cn. Therefore, Ψn,n+1( f i) = 0 for i = k, k + 1

and hence Ψn,n+1(s) is zero on the interval Xk ∪ Xk+1 which contains [x − ε, x + ε].

Therefore, the map

Λ : lim
−→

(D̂n, Ψ̂n,n+1) → S

is an isomorphism. For a given nonzero element ν ∈ S[0, 1]+, we may assume that

there are nonzero elements νn ∈ D̂n[0, 1]+ such that the sequence (νn) is sent to ν.

Then one lifts each diagram Dn to an elementary diagram D′
n of finite dimensional

C∗-algebras with [1An
] = νn, where An is the pullback of D′

n, and lifts each morphism

Ψn,n+1 to Ψ
′
n,n+1 ∈ HomD ′

n
(D′

n,D
′
n+1). Then lim

−→
(An, Ψ̂

′
n,n+1) is a continuous field of

AF-algebras, and satisfies the requirements of the theorem.

5.3 K0-Sheaves of One-Parameter Continuous Fields of Certain Kirchberg Algebras

Let C denote the class of Kirchberg algebras satisfying the UCT with torsion free

K0-group and trivial K1-group. The separable unital continuous fields of C∗-algebras

on [0, 1] with fibres in C are known to be classified by their K0-sheaves pointed by

the class of the unit; see [2].

In analogy with Theorem 5.7, we have the following Effros–Handelman–Shen

type theorem for this class of continuous fields.

Theorem 5.8 A pointed sheaf S of countable abelian groups over [0, 1] is isomorphic to

the K0-sheaf of a continuous field over [0, 1] of Kirchberg algebras with trivial K1-group

if and only if S is continuous. If, moreover, the stalks of S are torsion free abelian groups,

then the fibres of A can be chosen to be in the class C.

Proof Recall first that the K0- and K1-groups of Kirchberg algebras, even with the

UCT, are arbitrary countable abelian groups (this is due to Elliott and Rørdam; see

[4]). The proof of the first part of the theorem is contained implicitly in the proof of

Theorem 5.7. The finite dimensional algebras are replaced by Kirchberg algebras and

the ordered abelian groups are replaced by abelian groups. The second part of the

theorem follows from the fact that Kirchberg algebras satisfying the UCT are known

having arbitrary countable abelian groups as K0- and K1-groups.
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6 Examples

6.1 Fields Whose Fibres are Matrix Algebras

Here, we use Theorem 5.7 to give a concise classification of the one-parameter, unital,

separable, continuous fields of matrix algebras.

Let us call a function f : [0, 1] → N
∗

= {1, 2, 3, . . . } divisibility continuous, or

d-continuous, if for each x ∈ [0, 1] the set {y ∈ [0, 1] ; f (y) is divisible by f (x)}
is open. In other words f is d-continuous if and only if it is continuous with re-

spect to the (non-Hausdorff) topology of N
∗ with basis {nN

∗ ; n ∈ N
∗}. For a

continuous field A of matrix algebras let us denote by fA the dimension function

f (x) = order(A(x)), where order(A(x)) denotes the order of the matrix algebra A(x),

i.e., order(Mn(C)) = n for any natural number. We shall use the same notation in

the rest of the paper.

Theorem 6.1 The map A 7→ fA is a bijection from the isomorphism classes of one-

parameter unital separable continuous fields of matrix algebras to the set of all d-conti-

nuous functions [0, 1] → N
∗.

Proof Let V denote the family of nondegenerate subintervals of [0, 1] and let

( fU )U∈V be a family of functions fU : U → N
∗ satisfying the following conditions:

(i) If V ⊂ U , then fU |V = n fV for some integer n > 0.

(ii) Each x ∈ [0, 1] has a neighbourhood U such that fU (x) = 1.

(iii) If U = [a, b], V = [b, c] and p fU (b) = q fV (b) for some positive integers p, q

and the function g on [a, c] is defined by

g(x) =

{
p fU (x) if x ∈ [a, b],

q fV (x) if x ∈ [b, c],

then g = n fU∪V for some integer n > 0.

Using Proposition 2.4 one verifies immediately that the ordered groups S(U ) =

Z fU , together with the maps φU
V : S(U ) → S(V ), V ⊂ U , φU

V (k fU ) = k fU |V ,

form a faithful continuous sheaf (over [0, 1]). Using Proposition 4.5 one shows

that if A is a continuous field as in the statement of the theorem, then its K0-sheaf

is isomorphic to a sheaf S as above with [1A] corresponding to n f[0,1] for some

n ∈ N
∗. This isomorphism is obtained by considering the images of K0(A(U ))

in
∏

x∈U K0(A(x)) =
∏

x∈U Z. Conversely, if S is as above and n ≥ 1, then by

Theorem 5.7, S is isomorphic to the K0-sheaf associated to a unital separable one-

parameter continuous field A of matrix algebras with [1A] = n f[0,1].

In the second part of the proof we show that a sheaf S defined by a family ( fU )U∈V

satisfying Conditions (i), (ii), and (iii) is uniquely determined by the d-continuous

function α := f[0,1]. For x ∈ [0, 1] let U be a neighbourhood of x given by (ii), such

that fU (x) = 1. By (i) we have that α|U = n fU for some integer n and hence that

α|U = α(x) fU . It follows that α(x) divides all numbers α(y) for y ∈ U and so α is

d-continuous. For U ∈ V let dU denote the greatest common divisor of the elements

of the set α(U ), dU = gcd(α(U )). We assert that

(6.1) fU =
α|U
dU

.
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First let us show that d[0,1] = 1. Set d[0,1] = d. Arguing as above we find 0 = a1 <
a2 < · · · < am = 1 and points xi ∈ Ui = [ai−1, ai] such that α|Ui

= α(xi) fUi
=

dki fUi
for some ki ∈ N

∗. Since ki fUi
(ai) = ki+1 fUi+1

(ai) =
1
d
α(ai), it follows by

Condition (iii) that the sections ki fUi
glue together to a global section g that satisfies

α = dg. Since α is the generator of S[0, 1] = Zα, we must have d = 1. Arguing in a

similar way one shows that gcd( fU (U )) = 1 for all U ∈ V. By Condition (i) for each

U there is n such that α|U = n fU . Therefore, dU = gcd(α(U )) = gcd(n fU (U )) = n,

which proves (6.1).

In the last part of the proof we show that each d-continuous function f : [0, 1] →
N
∗ defines a sheaf S as above, given by a family of functions ( fU )U∈V satisfying Con-

ditions (i), (ii), and (iii). To that purpose we set α = f /(gcd( f [0, 1]) and let the

functions fU be defined by (6.1). Equivalently, fU = f /(gcd( f (U )). If V ⊂ U , then

dU divides dV and hence (i) holds with n = dV /dU . To verify (ii) let us note that for

x ∈ [0, 1], by the d-continuity of α there is a neighbourhood U of x such that α(x)

divides all the elements in α(U ) and hence α(x) = dU . Therefore, fU (x) = 1. To

verify (iii), suppose that p fU (b) = q fV (b) for some p, q ∈ N
∗. By (6.1) this implies

that pdV = qdU and hence pr = qs, where dV = rdU∪V and dU = sdU∪V , since

dU∪V = gcd{dU , dV}. It follows that s divides p, since r and s are relatively prime

and hence n =
p
s
∈ N

∗. Therefore, if g is given by the same formula as in (iii), then

for x ∈ U ,

g(x) = p
α|U (x)

dU

=
p

s

α|U∪V (x)

dU∪V

= n fU∪V (x),

and similarly g(x) = n fU∪V (x) for x ∈ V .

Given fA as in the statement, we set f[0,1] = fA/(gcd fA[0, 1]) and then construct

the corresponding sheaf. Let us note that [1A] corresponds to the function fA in

K0(A) = Z f[0,1].

Example 6.2 Here we construct explicitly a continuous field A corresponding to

a given d-continuous function f : [0, 1] → N
∗. The values assumed by f form a

sequence n1, n2, . . . such that nk divides nk+1. Each set Ek := {x ∈ X ; f (x) ≤ nk}
is closed in [0, 1] and Ek ⊂ Ek+1. Fix unital embeddings Mnk

⊂ Mnk+1
and define an

increasing sequence (Ak) of unital continuous fields on [0, 1] as follows. Set

A1 = C([0, 1], Mn1
), A2 = { f ∈ C([0, 1], Mn2

) ; f (x) ∈ Mn1
,∀x ∈ E1}, . . . ,

Ak = { f ∈ C([0, 1], Mnk
) ; f (x) ∈ Mni

,∀x ∈ Ei \ Ei−1, i = 1, 2, . . . , k},

with the convention that E0 = Ø. Then the completion of
⋃∞

k=1 Ak is a unital contin-

uous field of matrix algebras with dimension function fA = f . It is also clear that the

isomorphism classes of unital, separable, continuous fields of matrix algebras over

[0, 1] are in bijection with the pairs of sequences (Ek)k, (nk)k of the same length (fi-

nite or infinite), where E1 ⊂ E2 ⊂ · · · are closed sets whose union is equal to [0, 1]

and each number nk ∈ N
∗ divides its successor nk+1.

A dimension function fA is not necessarily bounded. Indeed if we set I0 = [ 1
2
, 1]
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and In = [ 1
2n+1 ,

1
2n ) for n ≥ 1, then the function fA defined by

fA(x) =

{
2n if x ∈ In,

1 if x = 0

is d-continuous and unbounded. With the notation from above, Ek = I0 ∪· · ·∪ Ik−1.

Nevertheless, fA must be constant on some open set as is shown by the following

proposition.

Proposition 6.3 For any unital, separable, continuous field of matrix algebras over a

compact metrizable space X, there is a closed subspace U of X with nonempty interior

such that the restriction of the field to U is the trivial field.

Proof Let A be a field as in the statement with unit e. Define f : X → N
∗ by f (x) =

rank(e(x)) = order(A(x)). We assert that this map is d-continuous. Indeed, fix x and

set n = rank(e(x)). If qx is a minimal projection of A(x), then qx lifts to a projection

q ∈ A(U ) for some closed neighbourhood U of x such that πU (e) is equivalent to n ·q
in matrices over A(U ), and so f (y) is divisible by n = f (x) for all x ∈ U .

For any natural number n, define En := {x ∈ X ; f (x) ≤ n}. The set En is

closed by the d-continuity of f and X =
⋃∞

n=1 En. It follows by the Baire category

theorem that there is n such that (En)◦ 6= Ø. Consequently, after restricting A to a

closed subspace of X with nonempty interior, we may assume that the function f is

bounded. If n = max f (X), then the set Fn := {x ∈ X ; f (x) = n} is nonempty and

open, since we also have Fn = {x ∈ X ; f (x) > n − 1}. Let Y be a closed subspace of

Fn with nonempty interior. Then A(Y ) is a separable unital continuous field with all

fibres isomorphic to Mn, and therefore it is locally trivial by [10].

6.2 Fields Whose Fibres are Unital Hereditary Sub-C∗-Algebras of O∞

As a counterpart to continuous fields of matrix algebras in the stably finite case, we

consider a special class of unital continuous fields of unital hereditary sub-C∗-alge-

bras of O∞, where O∞ is the Cuntz algebra with K0(O∞) ∼= Z. For any integer

n, let pn be a nonzero projection in O∞ such that [pn] = n, and denote by Mn

the unital hereditary sub-C∗-algebra pnO∞pn. Note that the (K0(Mn), [1]0) is then

isomorphic to (Z, n). Up to isomorphism, these C∗-algebras are the only nonzero,

unital, hereditary sub-C∗-algebras of O∞. Since K0(O∞) ∼= Z, we can again represent

the K0-sheaf of a continuous field C∗-algebra as integer valued functions, and have

the following result of Effros–Handelman–Shen type. For each U , let F(U ) be a set

of maps from U to Z satisfying the following conditions:

(i) If V ⊂ U and f ∈ F(U ), then f |V ∈ F(V );

(ii) For any x ∈ [0, 1] there is a neighbourhood U ∈ U of x and there is f ∈ F(U )

such that f (x) = 1;

(iii) For any U ∈ U and f ∈ F(U ), the null set of f , null( f ) = {x ∈ U ; f (x) = 0}
is open in U ;

(iv) F[a, b] ∼= {( f , g) ∈ F[a, c] ⊕ F[c, b] ; f (c) = g(c)}, for a < c < b.
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Corollary 6.4 A sheaf F on [0, 1] of countable abelian groups consisting of integer

valued functions is isomorphic to the K0-sheaf of a unital continuous field of hereditary

sub-C∗-algebras of O∞ if and only if it satisfies Conditions (i) through (iv) above.

Proof We have seen earlier that F is a continuous sheaf and that all continuous

sheaves with stalk Z are of this form, up to isomorphism; see Proposition 2.4. Thus

the result follows from Theorem 5.8.

Comparing the corollary above with Theorem 5.8, we see that the nonzero in-

teger valued functions associated with a continuous field of unital hereditary sub-

C∗-algebras of O∞ may vanish at certain points. For example, denote by φ the unital
∗-homomorphism M1 → M0 that induces the K0-map (Z, 1) → (Z, 0), n 7→ 0. Then

the continuous field C∗-algebra

A = { f ∈ C([0, 1],M0) ; f (x) ∈ Image(φ) if x ∈ [0, 1/2]}

is simple on [0, 1/2] with fibre M1 and simple on (1/2, 1] with fibre M0, and the

function Φ([1]) of A[0, 1] is 1 on [0, 1/2] and 0 on (1/2, 1].

7 The Null Set of Sheaves with Integer Fibres

Let S be a continuous sheaf of abelian groups over X = [0, 1] with all stalks iso-

morphic to Z. By Corollary 6.4, the sheaf S is isomorphic to the K0-sheaf of a unital

continuous field of hereditary sub-C∗-algebras of O∞. In what follows, we shall study

the set of null sets of S in detail.

For any p ∈ S[0, 1], by Corollary 6.4, null(p) = {x ∈ [0, 1] : p(x) = 0} is an

open subset of [0, 1]. Denote by null(S) the set of the points where all the elements

of S[0, 1] vanish:

null(S) :=
⋂

p∈S[0,1]

null(p).

Lemma 7.1 Let p 6= 0 be an element of S[0, 1] and let U = (a, b) be a maximal open

subinterval of null(p). Then, for any q in S[0, 1], there are c, d ∈ (a, b) such that q

vanishes on (a, c)∪ (d, b). A similar statement holds if U = (a, 1] or U = [0, b). Thus,

∂(null(p)) ⊂ null(q).

Proof Let us prove the existence of c, in the case that U = (a, b). The existence of d

is proved in a similar way. Set m = p(a) ∈ Z and n = q(a) ∈ Z and note that m 6= 0

by maximality of (a, b). Then (np − mq)(a) = 0 and hence np − mq vanishes on a

neighbourhood V of a, since null(np − mq) is open. If c ∈ (a, b) ∩V and x ∈ (a, c),

then −mq(x) = (np − mq)(x) = 0 and hence q(x) = 0, since m 6= 0. The remaining

cases of the statement (U = (a, 1] or U = [0, b)) follow from the first one, since

any point in ∂(null(p)) is either equal to a boundary point of some maximal open

subinterval of null(p) or it is a limit point of the set of all such boundary points.

Since S[0, 1] is at most countable, we can write S[0, 1] = {0, p1, p2, . . . , pn, . . . }.

For p ∈ S[0, 1], let us set supp(p) = {x ∈ [0, 1] ; p(x) 6= 0}. This is a closed subset

of [0, 1]. Note that the decompositions

[0, 1] = null(p) ∪ ∂(null(p)) ∪ supp(p)◦ = null(p) ∪ supp(p)◦
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are partitions of [0, 1].

Suppose that there is a nonzero p ∈ S[0, 1] such that null(p) 6= Ø. Then

∂(null(p)) 6= Ø, since [0, 1] is connected. The set

E =
⋂
n

null(pn) = [0, 1] \
⋃
n

supp(pn)◦

is closed and nonempty, since ∂(null(p)) ⊂ null(pn) for all n by Lemma 7.1, and

therefore ∂(null(p)) ⊂ E.

Lemma 7.2 For any pn, the (relatively) open set null(pn) ∩ E is dense in E.

Proof Fix n. For any x ∈ E and V an open interval containing x, we shall show that

null(pn) ∩ E ∩ V 6= Ø. If x ∈ E◦, then there is an open interval (a, b) containing x

such that (a, b) ⊂ V ∩ E. On the other hand, x ∈ null(pn) by the definition of E and

hence null(pn) ∩ (a, b) 6= Ø. Thus null(pn) ∩ E ∩V 6= Ø since (a, b) ⊂ E ∩V .

If x /∈ E◦, then V intersects the complement of E nontrivially and hence

V ∩ supp(pm)◦ 6= Ø for some m. Since x ∈ E, x ∈ null(pm) and hence

V ∩ null(pm) 6= Ø. Since V is connected, we cannot have V ⊂ null(pm)∪supp(pm)◦,

and so V ∩ ∂(null(pm)) 6= Ø. Therefore, in order to show that x is in the closure of

null(pn) ∩ E, it is enough to show that any point y in any boundary set ∂(null(pm))

can be approximated by points in null(pn) ∩ E. We distinguish two cases in this

situation.

Case 1. pn(y) = 0. Then y ∈ null(pn) ∩ ∂(null(pm)) ⊂ null(pn) ∩ E, since

∂(null(pm)) ⊂ E by Lemma 7.1.

Case 2. pn(y) 6= 0. Since y ∈ E ⊂ null(pn) and hence y ∈ ∂(null(pn)), there

is a sequence (ck, dk) of maximal open subintervals of null(pn) such that either the

sequence ck is nonincreasing and converges to y, or the sequence dk is nondecreasing

and converges to y. Let us assume that we are in the first situation with ck ց y. The

other situation when dk ր y is treated similarly. Set ek = ck + (dk − ck)/k. Suppose

that (ck, ek) is contained in E for infinitely many indices k. Then the midpoints yk of

the corresponding intervals (ck, ek) form a sequence of points in null(pn)∩E that con-

verges to y. Therefore, we may assume that each (ck, ek) intersects the complement

of E nontrivially. Thus there is a sequence n(k) such that (ck, ek) ∩ supp(pn(k))
◦ 6= Ø.

We also have (ck, ek) ∩ null(pn(k)) 6= Ø by Lemma 7.1. Since (ck, ek) is connected,

there is yk ∈ (ck, ek) ∩ ∂(null(pn(k))) ⊂ null(pn) ∩ E. Since each of the sequences ck

and ek converges to y, so also does yk.

The following two results apply to the K-theory sheaf of a separable continuous

field of C∗-algebras over [0, 1] with all fibres stably isomorphic to O∞.

Theorem 7.3 The set null(S) is nonempty if and only if the set null(p) is nonempty

for some nonzero p ∈ S[0, 1]. For each p ∈ S[0, 1], the boundary points of null(p) are

in the closure of null(S).

Proof Lemma 7.2, together with the Baire Category Theorem, shows that the set

⋂
n

(
null(pn) ∩ E

)
=

(⋂
n

null(pn)
)
∩ E = null(S) ∩ E
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is dense in E and hence nonempty. In particular, null(S) is nonempty and for each p,

∂(null(p)) ⊂ E = null(S) ∩ E ⊂ null(S).

Let us call a subset Z of [0, 1] half open if for each x ∈ Z, there is ε > 0 such that

either Ø 6= (x − ε, x] ⊂ Z or Ø 6= [x, x + ε) ⊂ Z. If Z is half open and Z 6= Ø, then

Z is a countable disjoint union of subintervals of [0, 1] of types [a, b], [a, b), (a, b],

or (a, b) with a < b. In particular, Z is contained in the closure of its interior Z◦.

Proposition 7.4 The set null(S) is half open. For each p ∈ S[0, 1], the boundary

points of null(p) are in the closure of null(S)◦.

Proof Denote the complement set of null(S) by supp(S). Note that x ∈ supp(S) if

and only if there is p ∈ S[0, 1] such that p(x) 6= 0. In order to prove the lemma, it is

enough to prove that if x ∈ [0, 1] and if there exist an increasing sequence (xn) and

a decreasing sequence (yn) in supp(S) both convergent to x, then x ∈ supp(S). Let

us assume that 0 < x < 1. If x = 0 or x = 1, only one of these sequences will be

considered.

Let (pn) and (qn) be sequences in S[0, 1] such that pn(xn) 6= 0 and qn(yn) 6= 0.

Let us construct p ∈ S[0, 1] such that p(x) 6= 0. Since the stalk of S at x is nonzero,

there is a closed subinterval V = [α, β] with x ∈ V ◦ and an element pV ∈ S(V ) such

that pV (x) 6= 0.

On the other hand, we may assume that pn(x) = 0 for any pn. Otherwise, one of

the (pn) will be the desired element. By Corollary 6.4, for each pn, the set null(pn)

is open. Denote by Un the maximal open subinterval of null(pn) containing x. Then

Un = (an, bn) or Un = (an, 1]. Since pn(xn) 6= 0, we have that xn /∈ Un and hence

xn ≤ an. Since xn converges to x, there is n such that xn ∈ V . Therefore, [an, β] ⊂ V .

By Lemma 7.1, there is cn ∈ (an, x) such that pV is zero on (an, cn]. By Corollary 6.4,

we can glue the restriction of pV to [ an+cn

2
, β] with the restriction of pn to [0, cn], since

both these elements vanish on [ an+cn

2
, cn]. The outcome is an element p ′ ∈ S[0, β]

such that p ′(x) = pV (x) 6= 0. Arguing in a similar way, one shows that there is

β ′ ∈ (x, β] such that the restriction of p ′ to [0, β ′] extends to some p ∈ S[0, 1]. In

particular, p(x) 6= 0.

The cases x = 0 and x = 1 are treated in a similar way.
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