
Can. J. Math., Vol. XXXII , No. 2, 1980, pp. 494-509 

THE ERDMANN CONDITION AND HAMILTONIAN 
INCLUSIONS IN OPTIMAL CONTROL AND 

THE CALCULUS OF VARIATIONS 

FRANK H. CLARKE 

1. I n t r o d u c t i o n . Consider the basic problem in the calculus of 
variat ions, t ha t of minimizing 

(1.1) I L(t,x(t),x(t))dt 
J o 

over a class of functions x satisfying certain boundary conditions a t 0 and 
1. One of the classical first order necessary conditions for opt imal i ty is 
the second E rdmann condition, which asserts, in the case in which L is 
independent of /, t ha t 

(1.2) L(x(t),x(t)) — x(t) -L-X(x(t),x(t)) = constant 

along any local solution x. This formula is the cus tomary basis for solving 
many of the classical problems, such as the brachistochrone. When it is 
possible to define via the Legendre transform a Hamil tonian H(t, x, p) 
corresponding to L, the second E r d m a n n condition, again in the autono­
mous case, is the assertion t ha t 

(1.3) H(x(t),p(t)) = constant , 

a relation which always evokes classical Hamil tonian mechanics and 
conservation laws. 

In [3] the au thor considered a variat ional problem involving (1.1) in 
which L was assumed measurable in t and locally Lipschitz in (x, x). In 
lieu of absent derivatives, the necessary conditions are couched in terms 
of generalized gradients [2], which reduce in part icular to the cus tomary 
derivat ive or subdifferential if the function is Cl or convex. In [4], we 
analyzed a general control problem defined in terms of a differential 
inclusion 

(1.4) x(t) e E(t,x(t)), 

where the multifunction E is Lipschitz in x and measurable in t. I t was 
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OPTIMAL CONTROL 495 

shown tha t a necessary condition for optimali ty was the existence of a 
solution of the Hamiltonian inclusion 

(1.5) (-p(t),x(t)) £ àH(t,x(t),p(t)), 

where H is defined by 

(1.6) H(t,x,p) = max {p-v: v £ E(t,x)}, 

and where àH refers to the generalized gradient of H in (x, p) (note 
the analogy with a Hamiltonian system: — p = HX1 x = Hv). The proper­
ties and uses of (1.4) (1.5) are discussed in [4] and [2] ; one of the motiva­
tions for s tudying (1.4) is to enable consideration of cases in which the 
control set depends on the state, a situation which renders the maximum 
principle inapplicable. 

I t is natural to ask whether, if the behaviour of L and E on t is assumed 
more regular, the classical Erdmann conditions find their counterpar t in 
this new setting. Our main purpose here is to answer this in the affirma­
tive, in § 2 for the optimal control problem, and in § 6 for the variational 
setting. In the lat ter case, when L is independent of /, we prove in par­
ticular tha t the useful formula (1.2) is valid even if L has only a deriva­
tive in x. The reader who is familiar with the Pontryagin maximum 
principle of optimal control theory may recall that , in the autonomous 
version of tha t result, the constancy of the pseudo-Hamiltonian is a con­
sequence of the other necessary conditions. In the present setting, how­
ever, the Erdmann condition is an independent conclusion. This is 
analogous to the classical setting, where (1.2) is not a consequence of the 
Euler equation unless L is assumed C2 and x smooth. We now describe 
briefly the other contents of this article. 

In § 3 we discuss "calmness", a constraint qualification assuring 
normali ty of the necessary conditions in § 2. It is shown next tha t the 
case in which the endpoint constraints in a control problem are given by 
inequalities is technically reducible to the free-endpoint case, a fact 
which seems to have been unrecognized. We go on to give a precise 
meaning to the s ta tement "most inequality constrained problems are 
normal" . We conclude the section by showing tha t the multicriterion 
(Pareto opt imum) problem can be reduced to the single criterion case, 
thus avoiding the need for special t reatment . This technique, like the 
removal of inequality constraints mentioned before, makes essential use 
of the capabili ty of treating nondifferentiable functions. In § 4 we present 
a controllability result for trajectories on the boundary of the at ta inable 
set, while in § 5 we develop a version of the results of § 2 which is con­
venient when an integral cost functional is par t of the problem. As an 
example of its application, we derive via a new variational principle 
involving a differential inclusion a theorem which asserts the existence of 
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periodic solutions of certain Hamil tonian equat ions (full details appear 
elsewhere [12]). 

The results of this paper have little overlap with the existing l i terature. 
Hamil tonian inclusions were studied in the concave-convex case by 
R. T . Rockafellar [17] [18]. J. Warga [20] and H. Halkin [15] have 
derived necessary conditions for control problems with nondifferentiable 
da t a ; since these results are obtained within the Pont ryagin framework, 
they are comparable to [6] ra ther than to the present work. Finally, 
R. P. Fedorenko [13] and V. G. Boltjanskii [1] have studied the dif­
ferential inclusion problem under strong regulari ty hypotheses. 

2. T h e E r d m a n n c o n d i t i o n i n o p t i m a l c o n t r o l . 

2.1. Statement of the problem. Let X be a given open subset of Rw. We 
shall suppose t ha t the multifunction E appearing in (1.4) has the follow­
ing properties: 

(Ei) for each / in [0, 1] and 5 in X, E(t, s) is a non-empty compact set. 
(E2) there is a constant K with the following proper ty : Given any points 
(^i, si), (t2, s2) in [0, 1] X X and vx belonging to E(ti, si), there is some 
v2 in E(t2, s2) such tha t 

\vi - v2\ g K\(h - t2}Sl - s2)\. 

(Tha t is, E is Lipschitz in (/, s) in the Hausdorff metric.) 

We define the Hamiltonian function H:[0, 1] X X X Rw —» R as 
follows: 

H(t, s, p) = max {p-v: v G E(t, s)}. 

Our hypotheses imply tha t H is Lipschitz in (/, s, p). 
Given two closed subsets C0, C\ of Rw and a locally Lipschitz function 

<t>-Ci —> R, the problem we consider is t h a t of minimizing </>(x(l)) over 
the arcs x satisfying 

%(t) e x 

x(t) e E(t, x(t)) a.e. 

x(0) G C0,x(l) e Ci. 

(An arc is an absolutely continuous function mapping [0, 1] to Rw.) An 
arc x is said to be a local solution if, for some 8 > 0, it solves this problem 
relative to the arcs x satisfying 

\x(t) - x(t)\ < 5. 

(The word " local" will always have this meaning in later sections when 
we consider other problems.) 
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2.2. Statement of the theorem. 

T H E O R E M 2.1. If the arc x is a local solution, then there exist an arc p, 
and a scalar X equal to either 0 or 1, such that \p(t)\ + X is nonvanishing and 

(2.1) (H(t), -p(t),x(t)) G àH(t,x(t),p(t)) a.e., 

(2.2) p(0) G N(C0; x (0 ) ) , - £(1) € Xd0(x( l ) ) + TV ( G ; x ( l ) ) , 

where II (t) denotes the derivative of the function 

H(t) = H(t,x(t),p(t)). 

Remark. In (2.1), diîf refers to the generalized gradient with respect 
to the variables (/, x, p). Since the function H{t) is Lipschitz, as is easily 
seen, it is differentiable for almost all t, and so H(t) exists a.e. The nota­
tion N(C; - ) for a closed set C refers to the generalized normal cone [2], 
which reduces to the customary entities if C is either a convex set or a 
smooth manifold. The case X = 1, wThich has the desirable feature t ha t </> 
is actually implicated in (2.2), is called ' ' normal" ; we shall discuss this in 
§ 3. T h e inclusion (2.1) implies H(t) = p(t) -x(t). 

COROLLARY 2.1. Suppose that E (and consequently, H) does not depend 
on t. Then p satisfies 

(2.3) (-p,x) 6 àH(x(t),p(t)), 

(2.4) H(x(t),p(t)) = constant. 

Remark. We thus recover in the autonomous case an analogue of the 
traditional Hamil tonian system evolving on a level surface of H. An 
impor tant distinction, however, is the fact tha t in the present context, 
(2.4) is not merely a consequence of (2.3), as in the classical si tuation in 
which H, x, p are smooth. 

2.3. Reduction to the autonomous case. Our purpose here is to show tha t 
it suffices to prove Corollary 2.1, since the theorem then follows from it. 
T o see this, suppose tha t x = x satisfies the hypotheses of the theorem. 
We shall shift the problem to R n + 1 from Kn by adding a zero t h coordinate; 
variables in Rw + 1 will be indicated by an overbar, so t ha t x = (x0, x) lies 
in Rw+1, with x0 in R, x in Kn. We define 

E(x) = {1} X E(x0,x), 

Co = {0} X Co, & = R X Ci, X = R X X, 

4>{x) = cj)(x), 

H(x, p) = p0 + H(x0, x, p). 

Then the arc x = (t, x) minimizes (locally) 4>(y(\)) subject to 

Ht) € X, 

y (? E(y) a.e., 

y(0) É Co, y(l) G d. 
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We apply the corollary to deduce the existence of p and X such that 
\p{i)\ + X is never 0 and 

(2.5) (-£<,, -P, h*) e àH(x,p) 

(2.6) p(0) Ç N(CQ; x(0)), -p(l) G Xô«(*(l)) + N(Ci; x ( l ) ) , 

Po(D = 0, 
(2.7) H(x, p) = constant = c. 

Consequently (2.2) holds, and furthermore these conditions imply 

(-Po, -p,x) e àH(t,x,p) 

H(x, p) = p-x = po + p-x = po + H(t, x, p) = c. 

It follows that^o = — H(t), and so (2.1) ensues. It remains to prove that 
\p(t) | + X is nonvanishing. Suppose to the contrary that X = 0, and that 
p(t) is somewhere 0. Relation (2.1) implies a differential inequality 
\p\ ^ K\p\, so that p is identically zero. But then \(po(t), p(t))\ + X 
vanishes at / = 1, a contradiction. 

2.4. Proof of Corollary 2.1. As in § 2.3, x = (x0, x) denotes points in 
Rn+1. Let a in (0, 1) be given. The following observation is fundamental. 

LEMMA 2.1. The arc (0, x) is a local solution to the problem of minimizing 
cj)(y(l)) over the (n + 1)-dimensional arcs (y0l y) satisfying 

(2.8) y(r) e ( l + y o ( r ) ) E ( y ( r ) ) a . e . , 

(2.9) IJO(r)| g a, 

(2.10) y(0) G Co, y(l) G Clf 3̂ o(0) = y0(l) = 0. 

Proof. (By contradiction). Suppose (3^0,^) satisfies (2.8)-(2.10) and 
0(3>(1)) < 0(x( l ) ) . Let us define an arc z(t) as follows. For each / in 
[0, 1], determine r in [0, 1] from the equation 

T + yo(r) = t. 

This is possible because the function r —> r + yo(r) is monotonie, with 
value 0 at 0 and value 1 at 1. We set 

z(t) = y(r). 

Since the implicit function r(t) is Lipschitz by [5, Theorem 1], it follows 
that z is an arc, and since 2(0) = 3>(0), z(l) = y (I), it follows also that z 
satisfies the boundary conditions. If we verify that z(t) is given by 
y(r)/(l + yo(r)), then by (2.8) we have 

z(t) e E(z(t)) a.e. 

Thus z is feasible for the problem that x solves, and if (y0, y) is close to 
(0, x), then z is close to x. Yet 0(z(l)) < </>(x(l)). This is the required 
contradiction, so the lemma is proved. 
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We now proceed by applying the necessary conditions of [4, Theorem 
2] to the problem (2.8-2.10). These imply the existence of an arc (po,p) 
and a scalar s ^ 0 such tha t \(p0, p)\ + s \s non-vanishing, || (p0, p)\\ + 
s = 1 (|| • || denotes U° norm) , and 

(2.11) (-K-P,0, x) G àH*(0,x,po,p)a.e„ 

(2.12) p(0) G N(CQ;x(0)), -p{\) G sà<t>(x(l)) +N(Ci\x(l)), 

where 

(2.13) H*(y0,y,po,p) = max{p0v0 + p-v:\v0\ ^ a, v Ç (1 + v0)E(y)} 

= max^o^o + (1 + v0)H(y, p) : |i;0| g «} 

= # ( ? , / > ) + a | ^ o + i ? ( y , ^ ) | . 

I t follows from [10, Art . 15] and from convex analysis t ha t (2.11) implies 

H*(Q,x,p,,p) = PoO + p-x g H(x,p), 

so we deduce (in view of (2.13)) 

(2.14) H(t) = - po, 

where H(t) = H(x(t), p(t)). 
Since H* does not actually depend on y0, (2.11) implies tha t p0 = 0 

a.e., and so p0 is constant . The expression (2.13) for H*, together with 
(2.11) and [10, Art. 8] yields: 

(2.15) (-p,x) G àH(x,p) +aKB2na.e., 

where Bj is the open unit ball in Rj. Finally, we note 

(2.16) \\H(t),p(t))\\ +s = 1. 

We now proceed to do the above for a sequence of values of a de­
creasing to 0. In so doing, we generate a sequence of arcs p (uniformly 
bounded) and scalars p0, s (bounded) such tha t (2.12), (2.14), (2.15) 
and (2.16) hold (with the K in (2.15) independent of a). As shown in 
[9, Lemma 8] and [6, Lemma 5] we may choose a subsequence of (p, po, s) 
converging (in an appropriate sense) to a triple (p, p0, X) for which (2.2), 
(2.3) and (2.4) hold. These limits also satisfy (2.16), which rules out the 
simultaneous vanishing of X and p(t) (since H( •, 0) = 0) . If X is positive, 
the conclusions still hold if p is replaced by p/\ and X by 1 (see [9, Lemma 
3], in the s ta tement of which q, in its last appearance, should be multiplied 
by e), so tha t there is no loss of generality in taking X = 0 or 1. 

3. C o n s t r a i n t behaviour , c a l m n e s s and n o r m a l i t y . Consider now 
the problem P(s) of minimizing </>(x(l)) subject to x(t) G X, x(0) 6 C0, 
x Ç E(t, x) a.e. and 

x ( l ) Ç d + s. 
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Let the infimum for this problem be $(s ) £ [—00,00] (we take the 

infimum over the empty set to be + 00 ). 

Definition. T h e problem P ( 0 ) is calm if $ (0 ) is finite and 

lim infs^o [Hs) ~ $ ( 0 ) ] / | s | > - 00. 

3.1. Calmness implies normality. 

T H E O R E M 3.1. / / to Theorem 2.1 we add the hypothesis that the problem 
is calm and C0 is compact then the conclusions hold with X = 1. 

Proof. We claim tha t , for some integer j , x solves the problem of 
minimizing (d(C\\ s) is the Euclidean distance from 5 to Ci) 

(3.1) 0(y(l) +jd(C1;y(l)) 

over the trajectories y for E satisfying y(0) £ CQ, y(t) Ç X. If this were 
false, there would be an admissible arc y$ for each j such tha t 

0 ( ^ ( 1 ) ) + Jd(C1;yJ(l)) < 0 (* (1 ) ) = $ ( 0 ) . 

I t follows tha t d(Ci; 3>j(l)) —» 0. Let Sj be a point of least magni tude such 
tha t 

y , ( l ) 6 d + ^,. 

Then d(Ci ; 3^(1)) = |^ ;| > 0, and the last inequali ty implies 

$(*,) - * ( 0 ) < -j\Sj\. 

But this would contradict the calmness assumption. 
We proceed to apply Theorem 2.1 to the problem in which the roles of 

4> and C\ in the theorem are played by (3.1) and Rw. In the theorem, it 
always follows t ha t X = 1 when C\ = Kn, for otherwise (2.2) would imply 
tha t p(l) vanishes along with X. T h e result now follows when we recall 
[2] t h a t the set 

jàd(Cùx(l)) 

is contained in N(Ci; x(l)). 

Remark. The calmness of a given problem is au tomat ic when the solu­
tion x is such t h a t x(l) lies in the interior of C\. I t can also be guaranteed 
by certain convexity hypotheses (see [7, Proposition 5]) or other special 
s t ructure . 

3.2. Inequality endpoint constraints. T h e endpoint constraints in an 
optimal control problem are sometimes given in the form 

(3.2) gt(x(l)) g 0 ( i = 1,2, ...K), 

where the gt: Rn —» R are given functions. Let us consider the problem 
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of minimizing 0(x(l)) over the trajectories x for E satisfying x(0) € Co, 
x(t) £ X, and (3.2). We posit the hypotheses of § 2, and we assume as 
well that each gf is locally Lipschitz. 

The following result shows that (in the context of non-difïerentiable 
optimization) the inequality-constraint case is technically equivalent to 
the free-endpoint case. 

LEMMA 3.1. If x solves the above problem, then x minimizes <j>(y(l)) over 
all trajectories y for E satisfying y(t) £ X, y{0) Ç C , where the locally 
Lipschitz function </> : Kn —» R is defined by 

<p(s) = max \<j>(s) - 0(x(l)) , g^s), g2(s), . . . , gK(s)\. 

Proof. Note that 0(x(l)) = 0. If y is such that 

#(y(i)) < o. 

then y satisfies (3.2), and 

4>(y(l)) < « ( * ( D ) , 

a contradiction. 

COROLLARY 3.1. If x solves the above problem, then there exist an arc p 
and nonnegative numbers X0, Ai, . . . \K not all zero such that the inclusion 
(2.1) holds, as well as 

(3.3) -p(l) e Xoô*(*(l)) + \iàgi(x(l)) + . . . + \KàgK(x(l)), 

(3.4) X,g,(x(l)) = 0 (i = 1, 2, . . . K), 

(3.5) p(0) G iV(C0;x(0)). 

Proof. We apply Theorem 2.1 to the problem described in the lemma; 
since C\ = Rw, it follows that X = 1, so that we have 

(3.6) -p(l) G Ô0(x(l)). 

From a general characterization of generalized gradients of pointwise 
maxima [8, Proposition 9], it follows that (3.6) implies (3.3)-(3.4). 

Remark. Note that if 0 belongs to ^\iàgi(x(l)) for suitable X*, then 
we generally satisfy all the necessary conditions by taking X0 = 0, p = 0. 
Consequently, if one attempts to represent a constraint such as x(l) = f 
by inequalities 

gi(x(i)) ^ o, 

the fact that 0 necessarily belongs to J^^iàgt(x(l)) for certain X* not all 
0 implies that no non-trivial necessary conditions will result. This further 
delineates the fact that assuming inequality constraints (2.2) rather than 
the abstract constraint x(l) £ C\ (as many authors do) is a considerable 
simplification. 
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3.3. Most inequality constrained problems are normal. Consider again the. 
problem of § 3.2, bu t with the inequali ty endpoint constraints (3.2) 
per turbed to: 

(3.7) gt(x(l)) S*i(i= 1,2, ...K), 

where a = (ai, a2, . . . aK) lies in R*\ We denote by <ï>(a) the infimum in 
the problem when the endpoint constraints are given by (3.7) (cf. § 3.1) 

T H E O R E M 3.2. Suppose that in a neighbourhood N of 0, $ is finite. Then 
fo? almost every a in N, the problem with constraints (3.7) is normal, in the 
following sense: given any solution to the problem, the necessary conditions 
of Corollary 3.1 hold with X = 1. 

Proof. T h e very definition of $ implies t ha t it is decreasing in each 
coordinate. Such a function is known to be differentiable a.e. [19], so t ha t 
for almost every a, we must have 

lim inf^o [$(<* + s) — &(&)] > — oo. 

A simple a rgument paralleling tha t in the proof of Theorem 3.1 shows 
tha t any solution x to the problem must (for j large) minimize <frj(x(l)) 
over the admissible trajectories, where the locally Lipschitz function (fij 
is defined by 

0,(*O = <t>(x) + j m a x \gi(x) - au 0 : 1 g i g K). 

I t suffices then to apply Theorem 2.1 to this problem with (X = 1 
automat ic) to see t ha t the conclusions of Corollary 3.1 (with X = 1) hold 
(for gf replaced by gt — au of course). 

Remark. Other au thors use the word " n o r m a l " to mean t ha t the neces­
sary conditions must hold with X = 1, for any possible p. Our use of this 
term signifies ra ther the existence of some p for which the necessary 
conditions hold with X = 1. A result similar to the above, in the context 
of mathemat ica l programming, is given in [8, Theorem 3]. 

3.4. Pareto optima. Considerable a t ten t ion has been paid of late to 
optimization problems incorporating multiple criteria. Our purpose here 
is to demonst ra te t ha t necessary conditions for such problems can be 
obtained as a simple corollary to the usual case; once again our capabil i ty 
to t rea t nondifferentiable functions is vital . Consider K locally Lipschitz 
functions g\, g2, • . • gK mapping Kn to R, in relation to the trajectories y 
of a given differential inclusion y £ E(t,y), y(0) £ Co, y(l) Ç C\, 
y(t) G X. Such a trajectory x is said to be (locally) Pareto optimal if 
there is no other trajectory y such t h a t gi(y(l)) < gi(x(l)), i = 1, 
2, . . . K (this is the least restrictive sense in which x can be opt imal) . 
We posit the hypotheses of § 2. 
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THEOREM 3.3. Let x be locally Pareto optimal. Then there exist an arc p 
and nonnegative numbers Xi, . . . X̂  such that \p(t)\ + 2X* is nonvanishing, 
the inclusion (2.1) holds, and 

(3.8) -p(l) Ç Z^tàgt(x(l)) + N(Ci;x(D), 

(3.9) p(0) e N(Co\x(0)). 

Proof. The key is the easily verified assertion that x must minimize 
(locally) the function 

$(y(l)) = m3xt{gt(y(l)) - g<(*(l))} 

over the admissible trajectories y for E. We now apply Theorem 3.1, 
and the characterization of àf [8, Proposition 9] provides the conclusion. 

4. Controllability. Let C be a closed subset of Rn, X an open subset, 
and consider the differential inclusion 

(4.1) x G E(t, x) a.e., 0 g t g* 1, x(0) G C, x(0 Ç X, 

where E satisfies the hypotheses (Ei) (E2) of § 2.1. We define the 
attainable set A (C) as the set of all points x(l) where x( • ) is a solution 
of (4.1). 

We now give necessary conditions that an arc x be such that g(x(l)) 
lies on the boundary of g(A(C)), where g: R* —> Rm is a given locally 
Lipschitz function. 

THEOREM 4.1. Let the trajectory x satisfy (4.1), and suppose that g(x(l)) 
lies in àg(A (C)). Then there exist an arc p and a unit vector v such that 

(4.2) (H(t), -p(t),x(t)) e àH(t,x(t),p(t)) a.e., 

(4.3) p(0) 6 N(C;x(0)),P(D £ àg(x(l))v. 

Remark. The notation àg refers to the generalized Jacobian of g [4]. 
The proof is sufficiently like that of Theorem 2.1 to be left to the reader; 
reduce to the autonomous case (§ 2.3), apply the transformation of 
Lemma 2.1, and then invoke [4, Theorem 1]. 

5. Explicit integral cost functionals; example. Our purpose here 
is to deduce from the results of § 2 necessary conditions for the following 
problem: to minimize 

(5.1) </>(x(l)) + I L(t,x,x)dt 
J o 

over the arcs x satisfying x(t) Ç X and 

x Ç E(t, x) a.e., 

x(0) Ç Co,x(l) G CL 
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We suppose that L\ [0, 1] X Rw X Rn -» R is locally Lipschitz; the 
hypotheses of § 2 remain in force for the other data. 

It is not hard to reformulate the above problem so as to have it assume 
the shape of the problem considered in § 2; it is a matter of redefining E 
so as to "absorb" L (see [4, Example]). But cost functionals are often 
given in the form (5.1), so conditions specifically adapted to this case are 
convenient; it is the case also that the theorem below says something 
rather different than what is obtained by merely reformulating. When L 
exhibits discontinuous behaviour in x (which is the case in the example 
cited above), the reformulation must, however, be resorted to. In the 
following, we assume either that the problem is calm or that E has no 
dependence on x. 

THEOREM 5.1. If x is a local solution to the above problem, then there is 
an arc p, and a scalar X equal to 0 or 1, such that \p(t)\ + X is nonvanishing 
and 

(5.1) (#*(*), ~p(t),x(t)) g àH*(t,x(t),p(t)) a.e., 

(5.2) p(fl) g 7V(C0;x(0)), -P(\) e Xd<Kx(l)) + iV(C i ; x(l ) ) , 

where H* is defined by 

H*(t, x, p) = max {p>v - \L(t,x,v): v G E(t,x)\, 

and where 

H*(t) = H*(t,x{t),p{t)). 

Remark. As in § 2.2, the conclusions in the autonomous case become 

(5.3) (~p,x) G àH*(x,p) a.e., 

(5.4) H*(t) = constant. 

It may be shown as in § 2.3 that the general case can be reduced to this 
one, for which we now prove the theorem. Using once again the notation 
x = (xo, x) for points in Rn+1, we define 

£(x) - {(L(x, v),v): v e E(x)\ 

Co = {0} X Co, C\ = R X Ci, X = R X X 

4>{x) = Xo + 4>(x). 

It is not difficult to see that the arc x(t) = [Jo L{x, x)dr, x(t)] minimizes 
0(y( l ) ) subject to 

y(t) G x , 

y(0) Ç Co,y(l) e Ci. 

https://doi.org/10.4153/CJM-1980-039-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-039-9


OPTIMAL CONTROL 505 

We apply Corollary 2.1 to deduce the existence of p = (po, p) and X such 
tha t \p(t)\ + X does not vanish, and 

(5.5) (-po, -p,L(x,x),x) e àH(x0lx,po,p)ai.e., 

p(0) e N(C0;x(0)), -p(l) e Xd0(x( l ) ) + N(Ci;x(l)), 

-MD = \ 
H(xQ, x, po, p) = poL(x, x) + p 'X = constant, 

where 

H(x0, x, po, p) = max {p-v + p0L(x, v) : v G E(x)}. 

These relations imply tha t p0 is identically —X (and so \p{t)\ + X is 
nonvanishing), and consequently 

H*(t) = Hit) = constant , 

as required. I t suffices therefore to prove tha t (o.o) implies (5.3), which 
we now proceed to do. 

Suppose first tha t X = 1, as we may if the problem is calm; then we 
have 

(~p,L(t),x) e àH(x, -l,p), 

where L(t) = L(x(t),x(t)). This was shown in [9, p. 364] to imply tha t 
(—p,x) belongs to the generalized gradient of the function (x,p)—> 
H(x, —l,p), as required. The case X = 0 must be treated differently, 
and hinges upon the fact t ha t 5i7*(x, p) consists of the convex hull of all 
vectors of the form [0, v], where v in E{t) yields the maximum defining H* 
[2, Theorem 2.1]. On the other hand, it follows tha t aH(x,0,p) is 
contained in the convex hull of all points of the form [0, L(x, x), v], see 
[6, Lemma 6]. Hence (5.3) holds. 

Consider now the problem treated in Theorem 5.1 when E(t,-) and 
L(t,-,-) are Lipschitz for each t but merely measurable in /. The same 
proof, with [4, Theorem 1] being invoked instead of Corollary 2.1, will 
lead to the following result, which simply eliminates from (5.1) the 
reference to derivatives of if* in t : (we continue to assume either calmness 
or no dependence of E on x). 

COROLLARY 5.1. Let x solve locally the problem described at the beginning 
of this section, where we assume instead that E and L are measurable in t, 
and that there exists a function k(t) Ç Ll(0, 1) such that E(t, • ) is Lipschitz 
on X (with constant k(t)), and such that 

\L(t, su vi) - L(t, s2, v2)\ S k(t)\(si - j 2 , vi - v2)\ 
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whenever sh s2 belong to X, Vi and v2 belong to E(t, si), E(t, s2) respectively. 
Then there exist an arc p, and a scalar X equal to 0 or 1, such that \p(t)\ + X 
is nonvanishing, (5.2) holds, and 

(5.6) (-P(t),x(t)) G àH*(t,x(t),p(t)) a.e., 

where àH* refers to the generalized gradient in (x, p). 

Example. Most readers will be familiar with the impor tance in physics 
of Hamil tonian systems of differential equat ions: 

(5.7) ~p(t) = Hx(x(t), p(t)), x(t) = Hp(x(t), p{t)) 

(5.8) H(x(t),p(t)) = cons tant = c. 

A long-standing problem concerning such systems is t ha t of finding con­
ditions on H guaranteeing the existence of periodic solutions for a given 
c (i.e., x('),p(>) satisfying (5.7) (5.8) such t h a t x(0) = x(T), p(Q) = 
p(T) for some positive T). Significant progress on this question has 
recently been made by P. H. Rabinowitz [16] and A. Weinstein [21]. In 
[12] we present an approach which for the first t ime deals with this 
problem by means of a direct variat ional principle, one which involves a 
differential inclusion. As shown in [12], the existence problem for a general 
class of Hamil tonians can be reduced to the case in which H is the 
support function of a compact convex subset S of K2n containing 0 in its 
interior: 

H(x, p) = max {(x, p) • (v, w): (v, w) (z S}. 

The crux of the approach is the following result, a consequence of 
Theorem 5.1 (details and related mat te r s may be found in [12]) : 

T H E O R E M . / / H is as above, then there exists, for some c > 0, a periodic 
nonvanishing solution (x, p) of (5.7) (5.8). 

Proof. Consider the problem of minimizing 

I -p(t)-x(t)dt 
J 0 

subject to x(0) = x(l) = 0, p(0) = p(l) = 0, and 

(—p,x) G S a.e. 

This problem is calm, and admi ts a solution (x, p). T h e function 77* 
of Theorem 5.1 is easily calculated: 

H*(x, p, y, q) = max {(y, q) • (v, w) + P -v: ( — w,v) G S\ 

- H(-g,y + p). 
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(Note t ha t the role of x is played here by (x, p), and tha t of p be (y, q).) 
Then there exist (y, q) and a constant c such tha t (5.3) (5.4) hold, and 
we have merely to set 

x — —q, p = y + p 

to obtain the desired conclusion. 

6. T h e E r d m a n n c o n d i t i o n in t h e c a l c u l u s of var ia t ions . Let 
L: Rn X Rn -> R and <£: Rn -> R be locally Lipschitz. We consider the 
problem of minimizing 

0(*(1)) + I L{x(t),x{t))dt 
J o 

over the arcs x satisfying x(0) Ç Co, x ( l ) £ Ci and having essentially 
bounded derivatives. We assume tha t C0 and G are closed. Below, we 
denote the partial generalized gradients of L(s, v) by àsL, àvL respec­
tively. 

T H E O R E M 6.1. If x is a local solution, then there exist a constant c, and an 
arc p such that (L(t) stands for L(x(t),x(t)) 

(6.1) p(t) G àsL(t),p(t) G àvL(t)} 

(6.2) p(0) G N(C0;x(P))> ~P(\) ^ à$(x(l)) + N(Ci; x(l)), 

(6.3) L{t) - p(t)-x(t) = c ax., 

(6.4) L(x(t),x(t) + v) - L{x{t),x(t)) ^ p(t)-v for allv, a.e. 

Remark. The above extends all the classical first-order necessary 
conditions of the calculus of variations. The Euler-Lagrange equation 

is represented via (6.1). The first E rdmann condition ( that \7vL(t) is 
continuous) corresponds to the continuity of p(t), and the second to 
(6.3). The Weierstrass and Legendre conditions appear in (6.4), while 
(6.2) generalizes the natural boundary (or transversali ty) conditions. 
The theorem may be used (as in § 2.3) to derive an extended form of the 
above when L has Lipschitz dependence on t. We shall only sketch the 
proof of the theorem, since it uses techniques not unlike those employed 
in § 2. T h e first step is to establish (cf. Lemma 2.1) 

LEMMA 6.1. The arc (0, x) minimizes 

*CV(1)) + f 1 ^ ( 3 ' , 3 ' / ( l + ^ ) ) ( l + 3 ' o ) ^ 
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over all arcs (yo,y) having y essentially bounded, \y0\ ^ 1/2, yo(0) = 
yo(l) = 0,y(0) e C0 ,y( l) 6 Ci. 

Next, we apply the necessary conditions of [6] to the above problem. 
An interpretation of these leads directly to the desired conclusions. 

COROLLARY 6.1. Suppose in the above that L is differentiable in v. Then 

L(x(t),x(t)) — x(t)\7vL(x(t), x(t)) = constant. 

Proof. It follows from (6.4) that p(t) = VvL(t) a.e.; note (6.3). 
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