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Ruled Exceptional Surfaces and the
Poles of Motivic Zeta Functions

B. Rodrigues

Abstract. In this paper we study ruled surfaces which appear as exceptional surface in a succession of

blowing-ups. In particular we prove that the e-invariant of such a ruled exceptional surface E is strictly

positive whenever its intersection with the other exceptional surfaces does not contain a fiber (of E).

This fact immediately enables us to resolve an open problem concerning an intersection configuration

on such a ruled exceptional surface consisting of three nonintersecting sections. In the second part

of the paper we apply the non-vanishing of e to the study of the poles of the well-known topological,

Hodge and motivic zeta functions.

1 Introduction and Preliminaries

1.1 Let f ∈ C[x1, . . . , xn] \ C with f (0) = 0. One can associate with f the Hodge zeta

function ZHod( f , s), which is a geometric invariant depending in particular on the
singularities on the surface f −1{0} in An

C. It can be defined in terms of an embedded

resolution h : X → An
C of f −1{0} in An

C as follows. Denote by Ei , i ∈ T, the irre-
ducible components of h−1( f −1{0}). For each i ∈ T we denote by Ni and νi − 1 the
multiplicities of Ei in the divisor on X of f ◦h and h∗(dx1∧· · ·∧dxn), respectively. For
i ∈ T and I ⊆ T we put E◦

i := Ei \ (
⋃

j 6=i E j), EI :=
⋂

i∈I Ei and E◦
I := EI \ (

⋃
j /∈I E j).

In particular, when I = ∅ we have E∅ = X. Remark that X is the disjoint union of
the E◦

I . Then the formula of ZHod( f , s) in terms of the embedded resolution h is

(1.1) ZHod( f , s) :=
∑

I⊆T

H(E◦
I ∩ h−1{0})

∏

i∈I

uv − 1

(uv)νi +sNi − 1
∈ Q(u, v)(S),

where H( · ) denotes the Hodge polynomial and where we consider (uv)−s as a vari-
able S. By taking Euler characteristics instead of Hodge polynomials, this function
specializes to the topological zeta function Ztop( f , s), and, on the other hand, the

function itself is a specialization of the well-known motivic zeta function Zmot( f , s).
In terms of the embedded resolution h we have

Ztop( f , s) =

∑

I⊆T

χ(E◦
I ∩ h−1{0})

∏

i∈I

1

νi + sNi

∈ Q(s),

where χ( · ) denotes the topological Euler characteristic, and

sZmot( f , s) =

∑

I⊆T

[E◦
I ∩ h−1{0}]

∏

i∈I

L − 1

Lνi +sNi − 1
∈ MC[[S]],
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where we consider L−s as a variable S and where MC denotes the ring obtained from
the Grothendieck ring of complex varieties by inverting the affine line. Here [ · ]

denotes the class in MC and L = [A1
C].

It is interesting to note that the motivic zeta function was originally introduced in
by Denef and Loeser [3] as a power series over MC. They showed that it is in fact a

rational function by proving the above formula in terms of an embedded resolution
[3, Theorem 2.2.1]. Of course, this immediately implies that the above formulas are
independent of the chosen resolution h.

1.2 We are especially interested in the poles of these functions. Of course, for Ztop( f , s)
the notion of a pole is clear. For ZHod( f , s), we say that a rational number q is a pole
if (uv)−q is, considering ZHod( f , s) as a rational function in the variable S = (uv)−s.
For the definition of a pole of Zmot( f , s), we refer the reader to [7, Definition 4.7].

Obviously the possible rational poles are all of the form −νi/Ni for some i ∈ T. In
this context, we say that −νi/Ni is the candidate pole induced by Ei . One can, for
example, easily see that the absolute value mini∈T{νi/Ni} of the largest candidate
pole, which is in fact just the log canonical threshold of f at 0, really is a pole of

ZHod( f , s). The whole set {−νi/Ni | i ∈ T} is, of course, not an invariant of f ,
but its subset consisting of the poles of ZHod( f , s) is. Philosophically, the poles of
these zeta functions are induced by “important” components Ei , which occur in every
resolution. So we search for geometric conditions on the components Ei telling us

whether or not the corresponding candidate pole −νi/Ni is a pole.

1.3 When the number n of variables is 2, Veys has already given a complete geometric
determination of the poles [10, Theorem 4.3]. For n ≥ 3, one may consider for

the moment the contribution R to the residue of ZHod( f , s) at −νi/Ni of only one
component Ei , which then is supposed not to intersect any other component E j with
−νi/Ni = −ν j/N j . Of course, by the contribution of Ei to the residue of ZHod( f , s)
at −νi/Ni we mean the residue at −νi/Ni of the function obtained from ZHod( f , s)

by restricting its defining expression, see (1.1), to the terms which correspond to the
subsets I of T containing i. Note that by the above condition on the intersecting com-
ponents, the order of the candidate pole −νi/Ni of this restricted sum is at most 1.
One easily obtains the following explicit formula for R:

R =

1 − uv

Ni(uv)−νi/Ni

( ∑

i∈I⊆T

H(E◦
I ∩ h−1{0})

∏

j∈I\{i}

uv − 1

(uv)ν j−(νi/Ni )N j − 1

)
.

We will denote the occurring expressions ν j − (νi/Ni)N j by α(i)
j .

1.4 Henceforth, let us suppose that n = 3, that h(Ei) = {0} and that α(i)
j /∈ Z for all

j ∈ T with i 6= j and Ei ∩ E j 6= ∅. Veys proved the following result, which he
actually stated for Igusa’s local zeta function, and hence for the p-adic analogue of R,
but which is easily seen to remain true for the zeta function ZHod( f , s).
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Theorem 1.1 ([9, Theorem 5.9]) Suppose that the surface Ei is created in the resolu-

tion process as the exceptional surface E of a blowing-up at a nonsingular projective curve

D, and suppose that the strict transform of f −1{0} before this blowing-up is nonsingu-

lar. Denote by D j , j ∈ A, the irreducible components of the intersection of E with the

other components of the inverse image of f −1{0} (at the stage where E is just created).

Then we have R = 0, except for the situation when the genus of D is 1 and
⋃

j∈A D j

consists of three nonintersecting sections of the ruled surface E.

Moreover, Veys proved [9, Proposition 5.12] that when the origin of A3
C is an ab-

solutely isolated singularity of f −1{0}, i.e., an isolated singularity which is resolvable
by only performing point-centered blowing-ups, the exceptional situation of Theo-
rem 1.1 cannot occur. But, of course, we would like the exceptional situation also to
be impossible for more general singularities.

Secondly, consider the following special case of a result of a previous paper.

Theorem 1.2 ([6, Theorem2.3]) If χ(E◦
i ) 6= 0, then R 6= 0.

What about the reverse implication? Recall the monodromy conjecture, stating

that if s0 is a pole of ZHod( f , s), then e2πis◦ is an eigenvalue of the local monodromy of f

at some point of f −1{0}, and combine it with the formula of A’Campo [1, Theorem
3]. This formula says that the alternating product of all characteristic polynomials of
the local monodromy of f at 0 is

∏

j∈T

(1 − tN j )−χ(E◦

j ∩ h−1{0}),

making the reverse implication at least plausible. Denef and Jacobs even conjecture
this implication, but in the p-adic setting [2, Conjecture 1.2.2]. Veys already proved
some partial results about it [9]. It is interesting to note that when Ei is again created

as a ruled surface E over a nonsingular projective curve D of genus 1 and when the
intersection configuration

⋃
j∈A D j on E consists of k ≥ 3 nonintersecting sections

of E, the reverse implication seems to fail at first sight. Indeed, χ(E◦
i ) = 0 in this

case, but there is no obvious reason for the residue to be zero.

Furthermore, it is intriguing that one can easily see that such an intersection con-
figuration consisting of k ≥ 3 nonintersecting sections is in fact impossible when E is
a ruled surface over a curve D of any genus g different from 1. Indeed, since k ≥ 3, we
know[8, Example 7.2] that in E all the self-intersection numbers of the D j are zero.

Hence we obtain by [8, Example 6.6(c)] that 0 = 2g − 2, providing a contradiction
when g 6= 1.

1.5 In this paper we consider ruled surfaces which are created as exceptional surfaces of
a blowing-up in a resolution process. In particular we study their e-invariant (see
[4, §V.2] for the definition of this integer.) An immediate consequence of our first

main result is the fact that the e-invariant of a ruled exceptional surface E in a resolu-

tion process is (strictly) positive whenever the intersection configuration
⋃

j∈A D j on E

does not contain a fiber. This result will immediately imply that the intersection con-
figuration on such a ruled surface in a resolution process, no matter what the genus is
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of the curve over which it is a ruled surface, can never consist of three disjoint curves,
clarifying the two problem situations sketched out above.

In the second part of the paper, we apply this result to the study of the poles of the
zeta functions Ztop( f , s), ZHod( f , s) and Zmot( f , s). As a contribution to a geometric
determination of their poles, we prove the reverse implication of Theorem 1.2 in the
following case.

Theorem 1.3 Suppose that the intersection configuration
⋃

j∈A D j on E is not con-

nected. Then, except for the situation described below, we have

χ
(

E \
⋃
j∈A

D j

)
= 0 ⇒ R = 0,

where R stands for the contribution of Ei to the residue at −νi/Ni of any of the three

zeta functions mentioned above.

We are in the exceptional situation when E is rational, e ≥ 3 and
⋃

j∈A D j consists

of precisely two connected components, one of them consisting only of a section and the

other one containing at least one singular curve.

Veys [13] studied the case of a connected intersection configuration.

As a part of the proof of our result we find, under the conditions of the theorem,
all the possible intersection configurations

⋃
j∈A D j on a rational ruled exceptional

surface with all the curves D j nonsingular and with χ(E \
⋃

j∈A D j) = 0. It turns
out that there are only two possible configurations, both of them consisting only
of sections. Except for a section which is disjoint from all the other curves D j , say

D0, the two possibilities for the intersection configuration have the following form.
Either there exist two points on E, say P and Q, such that D j ∩ Dk = {P, Q} for
j, k ∈ A\{0}with j 6= k (Figure 1) or there exist |A|−1 points, say P j for j ∈ A\{0},
on one of the sections D j , say D j1

, such that D j1
∩ D j = {P j1

, P j} for j ∈ A \ {0, j1}
and D j ∩ Dk = {P j1

} for j, k ∈ A \ {0, j1} with j 6= k (Figure 2).
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Figure 1 Figure 2

1.6 Embedded Resolutions

Let f ∈ C[x1, . . . , xn] \ C. By Hironaka’s Main Theorem II [5, p. 142] we know that
we can construct an embedded resolution h : X → An

C of f −1{0} in An
C by means of

blowing-ups. We explain what we mean by this.
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Set X0 = An
C and Y [0]

= f −1{0}. Then Hironaka’s result says that we can find a
finite succession of blowing-ups πi : Xi+1 → Xi , for i = 0, . . . , r − 1, with irreducible

nonsingular center Di ⊂ Xi and exceptional variety E[i+1]
i+1 ⊂ Xi+1 subject to the

following conditions. Let E[i+1]
j and Y [i+1] denote the strict transform of E[i]

j and Y [i],
respectively, in Xi+1 by πi for j = 1, . . . , i. Then

(i) X = Xr and h = π0 ◦ · · · ◦ πr−1;
(ii) for i = 0, . . . , r − 1 we have Di ⊂ Y [i] and codim(Di , Xi) ≥ 2;

(iii)
⋃

1≤ j≤i E[i]
j is a normal crossings divisor and it has only normal crossings with

Di for i = 1, . . . , r − 1;
(iv) (

⋃
1≤ j≤r E[r]

j ) ∪ Y [r]
= h−1( f −1{0}) is a normal crossings divisor.

From now on by embedded resolution we will mean an embedded resolution which
is constructed as a succession of blowing-ups satisfying the above conditions.

Let n = 3 and fix an exceptional surface E[m]
m , for some m ∈ {1, . . . , r}. Of

course, the center Dm−1 can only be a point or a nonsingular curve. We are especially

interested in the latter case, in which we know by [4, Theorem II.8.24] that E[m]
m ,

together with the induced projection map π = πm−1 E[m]
m

: E[m]
m → Dm−1, is a ruled

surface.

1.7 Ruled Surfaces

For a projective ruled surface E we denote by e and C0 the invariant and the section,
respectively, introduced in [4, Section V.2]. In particular, C2

0 = −e. When more than
one ruled surface comes into the picture at the same time, we use the notations C0(E)
and e(E) to avoid confusion. Moreover, by f , or sometimes f (E), we denote any fiber

of the ruled surface E. When we use the symbols e, f or C0 throughout this paper we
will implicitly assume that the ruled surface E with which we are dealing is projective.

The following result will be used frequently.

Proposition 1.4 ([4, Propositions V.2.20 andV.2.21]) Let E be a ruled surface and

let D be an irreducible curve on E, different from C0 and f . Write D ≡ aC0 + b f with

a, b ∈ Z.

(i) If e ≥ 0, then a > 0, b ≥ ae.

(ii) If e < 0, then either a = 1, b ≥ 0 or a ≥ 2, b ≥ 1
2
ae.

2 The Positivity of the e-Invariant

Let X and Y be two 3-folds and let h : Y → X be a composition of blowing-ups. Let

E be the exceptional surface of the last blowing-up in this succession. Suppose that E

is a ruled surface and that h(E) is a point. We will show in this section that the extra
condition saying that the intersection of E and the exceptional locus minus E contains
no fiber, gives us a lot of information about the surface E and the possible ways it can

be created. More concretely, we will first find a restriction on (the position of) the
centers of the successive blowing-ups, caused by the extra condition above. This is
Theorem 2.1. Secondly, from this restricting fact we will be able to deduce that the
e-invariant of E is (strictly) positive in this case.
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2.1 Let us fix the data for the theorem providing a restriction on the centers. Let X and
Y be 3-folds and put X0 = X. Let h : Y → X be a finite succession of blowing-ups

πi : Xi+1 → Xi with irreducible nonsingular center Di ⊂ Xi and exceptional variety
E[i+1]

i+1 ⊂ Xi+1. Suppose that h = π0◦· · ·◦πm−1, such that Y = Xm, and put E := E[m]
m .

We denote by E[i+1]
j the strict transform of E[i]

j in Xi+1 under πi for j = 1, . . . , i. Now

we can state the following theorem.

Theorem 2.1 Suppose that Dm−1 is a curve (hence E is a ruled surface over Dm−1) and

that h(E) is a point. If the intersection E ∩ (
⋃

1≤ j≤m−1 E[m]
j ) does not contain any fiber

of the ruled surface E, then there exists a number k ∈ {1, . . . , m−2} such that, starting

from Xk, the part of the succession of blowing-ups being relevant for the creation of E, i.e.,

the composition of those πi , i = k, . . . , m−1, for which Di∩(πi◦πi+1◦· · ·◦πm−1)(E) 6=
∅, satisfies the following. We may as well assume that all πi , i = k, . . . , m − 1 are

relevant. All the centers Di , i = k, . . . , m − 1 are (nonsingular) projective curves. The

first center, i.e., Dk, is a fiber of the ruled surface E[k]
k when Dk−1 is a curve, and it is an

arbitrary nonsingular projective curve in the projective plane E[k]
k

∼
= P2

C when Dk−1 is a

point. Each of the following centers Di , i = k + 1, . . . , m − 1 is contained in E[i]
i , is not

a fiber of E[i]
i and is either disjoint from or contained in

⋃
k≤ j≤i−1 E[i]

j .

Remark It is easily seen that the intersection E[i]
i ∩ (

⋃
k≤ j≤i−1 E[i]

j ) then precisely
consists of one or two disjoint sections. So, for i = k + 1, . . . , m − 1 the center Di is

either one of these sections or a curve disjoint from them.

Proof We take for k the largest integer in {1, . . . , m − 2} such that (πk−1 ◦ πk ◦
· · · ◦ πm−1)(E) is a point. This number certainly exists by our assumption that h(E)
is a point. By the definition of k we know that C := (πk ◦ · · · ◦ πm−1)(E) is a curve.
So, either Dk−1 is a curve and C is a fiber of the ruled surface E[k]

k , or Dk−1 is a point

and C is contained in E[k]
k . Let us suppose from now on that all the blowing-ups πi ,

i = k, . . . , m − 1, are relevant for the creation of E.

We will show that C = Dk. We already have that C ∩Dk 6= ∅, since πk is supposed

to be relevant for the creation of E. If C 6= Dk, then E[k+1]
k+1 ∩ C̃ 6= ∅ consists of a finite

number of points, where we denote by C̃ the strict transform of C under πk. Note

moreover that C̃ = (πk+1 ◦ · · · ◦ πm−1)(E). By Lemma 2.2 we then obtain that there
exists an exceptional surface E[m−1]

i such that E[m−1]
i ∩ Dm−1 6= ∅ consists of a finite

number of points. Blowing up at Dm−1 results in fibers on the ruled surface E, which
is a contradiction. Hence C = Dk.

Since πk((πk+1◦· · ·◦πm−1)(E)) = Dk, it is clear that the curve (πk+1◦· · ·◦πm−1)(E)

is contained in E[k+1]
k+1 and that it is not a fiber of E[k+1]

k+1 . As above we find that

(πk+1 ◦ · · · ◦ πm−1)(E) = Dk+1.

The fact that Dk+1 is either disjoint from or contained in
⋃

k≤ j≤(k+1)−1 E[k+1]
j is again

an easy corollary of Lemma 2.2. Obviously the reader can finish this argument by
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induction. Note that this implies, for example, that Di = (πi ◦ · · · ◦ πm−1)(E) for
each i ∈ {k, . . . , m−1}. In particular, (π0◦· · ·◦πi−1)(Di) = h(E) is a point, yielding

that the curve Di is complete.

Lemma 2.2 Using the notation of Section 2.1, suppose that Dm−1 is a curve. Let i ≤ j

be elements of {1, . . . , m − 1} such that C := (π j ◦ · · · ◦ πm−1)(E) is a curve and

E
[ j]
i ∩ C 6= ∅ consists of a finite number of points. Then there exists an exceptional

surface E[m−1]
l in Xm−1 such that E[m−1]

l ∩ Dm−1 6= ∅ consists of a finite number of

points.

Proof Put D := (π j+1 ◦ · · · ◦ πm−1)(E). Obviously it is sufficient to show that there

exists an exceptional surface E
[ j+1]
l in X j+1 such that E

[ j+1]
l ∩D 6= ∅ consists of a finite

number of points.
Let us first treat the case that D j 6= C . If D j ∩C = ∅, we take l = i. If D j ∩C 6= ∅,

we take l = j + 1.

When D j = C , the (irreducible) curve D is contained in E
[ j+1]
j+1 and is not a fiber

of it. Because E
[ j]
i ∩ C 6= ∅ consists of a finite number of points, we have that

E
[ j+1]
i ∩ E

[ j+1]
j+1 6= ∅ consists of a finite number of fibers of E

[ j+1]
j+1 . Hence we can take

l = i.

Remark We will often use Theorem 2.1 in the case that h is an embedded resolu-
tion. Then the centers of the blowing-ups are chosen in such a way that for each i

the exceptional locus
⋃

1≤ j≤i E[i]
j of π0 ◦ · · · ◦ πi−1 is a normal crossings divisor. In

particular the surfaces E[i]
j are all nonsingular. In this case the center Dk−1 in Theo-

rem 2.1 is either a point or a curve which is not entirely mapped onto one point by

π0◦· · ·◦πk−2. Indeed, suppose that Dk−1 is a curve and that (π0◦· · ·◦πk−2)(Dk−1) is a
point. Then Dk−1 belongs to the exceptional locus of π0◦· · ·◦πk−2. Thus, there exists
an exceptional surface E[k−1]

i for some i ∈ {1, . . . , k − 1}, such that Dk−1 ⊆ E[k−1]
i .

By the smoothness of E[k−1]
i this implies that E[k]

k ∩E[k]
i is exactly a section of the ruled

surface E[k]
k . Since we already know that Dk is a fiber of E[k]

k , we see that Dk ∩E[k]
i 6= ∅

consists of a finite number of points. As in the proof of the theorem, this leads to a
contradiction.

Now let f ∈ C[x, y, z] \ C such that the origin 0 of A3
C is an isolated singular-

ity of the surface f −1{0}. Then it is reasonable to consider an embedded resolution
h : X → A3

C of f −1{0} in A3
C which satisfies the condition that h(Ei) = {0} for any

exceptional surface Ei of h with h−1{0} ∩ Ei 6= ∅. For the surface E of Theorem 2.1,
we take an exceptional surface of this resolution map h and suppose that it is mapped

onto the origin of A3
C. Then obviously the center Dk−1 of Theorem 2.1 also has to

be mapped entirely onto 0, implying that in this situation of an isolated surface sin-
gularity (and an appropriate embedded resolution) the only possibility for Dk−1 is a
point.

Now we are ready to prove the positivity of the e-invariant of E. We will use the
following lemma. Its proof is trivial using Proposition 1.4.
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Lemma 2.3 Let E be a ruled surface and let D be an irreducible curve on E with

D2 < 0. Then e > 0 and D = C0.

Theorem 2.4 We use the notation of Section 2.1 and we suppose that Dm−1 is a curve

and that h(E) is a point. Denote by g(Dm−1) the geometric genus of Dm−1. If the

intersection E ∩ (
⋃

1≤ j≤m−1 E[m]
j ) does not contain any fiber of the ruled surface E, then

(i) 2g(Dm−1) < 2 + e;

(ii) e > 0;

(iii) C0 ⊆ E ∩
(⋃

k≤ j≤m−1 E[m]
j

)
.

Proof Fix k ∈ {1, . . . , m − 2} satisfying Theorem 2.1. Let us assume again that all
the πi , i = k, . . . , m−1, are relevant for the creation of E. We will show by induction
that for all i ∈ {k + 1, . . . , m} we have 2g(Di−1) < 2 + e(E[i]

i ), e(E[i]
i ) > 0 and

C0(E[i]
i ) ⊆ E[i]

i ∩ (
⋃

k≤ j≤i−1 E[i]
j ).

Let us first treat the case i = k + 1. We distinguish two possibilities: the center

Dk−1 is either a point or a curve. Suppose that Dk−1 is a point. Then E[k]
k

∼
= P2

C

and Dk is a nonsingular projective curve in P2
C, say of degree d. We must consider

the exceptional surface E[k+1]
k+1 , which is a ruled surface over Dk and which intersects

E[k+1]
k

∼
= P2

C in a curve isomorphic to Dk, say F. Now we introduce some notation.

When C is a projective curve on a nonsingular projective surface S, possibly also
belonging to some other surfaces, we write C2

S to indicate that we consider C as a
curve on S while calculating its self-intersection number. So, for example, we have
F2

E[k+1]
k

= d2. We will show that F2
E[k+1]

k+1
< 0. Restricting everything to some Zariski

open neighbourhood of the point Dk−1, we clearly have

K(Xk+1) = 2E[k+1]
k + 3E[k+1]

k+1

in Pic Xk+1. By the adjunction formula (see [4, Proposition II.8.20]), we obtain in
Pic E[k+1]

k that

3E[k+1]
k · E[k+1]

k = −3L − 3F,

where L stands for an arbitrary line in P2
C. Using the commutative diagram

E[k+1]
k+1

// Xk+1

F

OO

p

// E[k+1]
k

q

OO

where all maps are the canonical inclusions, we see by calculating (q ◦ p)∗(E[k+1]
k ) in

two different ways (and taking degrees) that

F2
E[k+1]

k+1
= deg p∗(E[k+1]

k · E[k+1]
k ) = (−L − F) · F = −d − d2 < 0.
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By Lemma 2.3, we then know that e(E[k+1]
k+1 ) > 0 and that

C0(E[k+1]
k+1 ) = F ⊆ E[k+1]

k+1 ∩ E[k+1]
k .

Moreover, we have

2g(Dk) − 2 − e(E[k+1]
k+1 ) = 2

(d − 1)(d − 2)

2
− 2 − d(d + 1) = −4d < 0,

ending the argument for the first case of the induction basis. When Dk−1 is a curve,
we can use a very similar argument. In this case one obtains that e(E[k+1]

k+1 ) = 1. The
details are left to the reader.

Fix i ∈ {k + 2, . . . , m} and suppose that for each j ∈ {k + 1, . . . , i − 1} we

have 2g(D j−1) < 2 + e(E
[ j]
j ), e(E

[ j]
j ) > 0 and C0(E

[ j]
j ) ⊆ E

[ j]
j ∩ (

⋃
k≤l≤ j−1 E

[ j]
l ).

Furthermore we suppose that for each projective curve C which belongs to two ex-
ceptional surfaces E[ j]

l1
and E[ j]

l2
, with l1, l2 ∈ {k, . . . , j}, we have that the product

C2
E[ j]

l1
C2

E[ j]
l2

is (strictly) negative. An exception is when l1 or l2 equals k, say for ex-
ample l1 = k, and when moreover Dk−1 is a curve, since in this case the intersection

curve C := E
[ j]
k ∩ E

[ j]
l2

is a fiber of the ruled surface E
[ j]
k , implying that C2

E
[ j]

k

= 0.

In this case we will still suppose that C2
E

[ j]

l2

< 0. Note that we can make this extra

assumption on the self-intersection numbers since they are fulfilled in the induction

basis. Again we distinguish two possibilities, this time according to the position of
the center Di−1.

We start with the situation that the center Di−1 ⊆ E[i−1]
i−1 is disjoint from⋃

k≤l≤i−2E[i−1]
l . Blowing up at Di−1 results in a ruled surface E[i]

i , which intersects

the ruled surface E[i]
i−1 (over Di−2) in a curve F isomorphic to Di−1. Write Di−1 ≡

aC0 + b f (on E[i−1]
i−1 ) with a, b ∈ Z. Because Di−1 is disjoint from

⋃
k≤l≤i−2 E[i−1]

l , we

have Di−1∩C0 = ∅ implying that b = ae. Hence F2
E[i]

i−1
= D2

i−1 = a2(−e+2e) = ea2,

which is (strictly) positive by the induction hypothesis and Proposition 1.4. We will
now prove that F2

E[i]
i

< 0, following the argument for the induction basis. Here we

have, eventually after restricting everything to some Zariski open in Xk−1, that

K(Xi) =

∑

k≤l≤i

(νl − 1)E[i]
l

with νl ∈ Z>1. Denote the inclusion F → E[i]
i−1 by p. By the adjunction formula and

[4, Corollary V.2.11] we obtain that

F2
E[i]

i
= deg p∗(E[i]

i−1 · E[i]
i−1) = −e(E[i]

i−1)a2 +
a

νi−1

(
2g(Di−2) − 2 − e(E[i]

i−1)
)
,

which is (strictly) negative by the induction hypothesis. Finally we have

2g(Di−1) − 2 − e(E[i]
i ) = deg K(F) − e(E[i]

i )

= deg
(

(K(E[i]
i−1) + F) · F

)
− e(E[i]

i )

= a
(

2g(Di−2) − 2 − e(E[i]
i−1)

)(
1 +

1

νi−1

)
,
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which is also (strictly) negative by the induction hypothesis, ending the proof of the
first case.

Now we consider the situation where the center Di−1 ⊆ E[i−1]
i−1 is contained in⋃

k≤l≤i−2 E[i−1]
l . Then Di−1 is contained in precisely two exceptional surfaces E[i−1]

l

with l ∈ {k, . . . , i − 1}, say, for example, E[i−1]
l1

and E[i−1]
l2

. We may suppose that

D2
i−1 E[i−1]

l1

> 0 and D2
i−1 E[i−1]

l2

< 0 (or D2
i−1 E[i−1]

l2

< 0, D2
i−1 E[i−1]

l1

= 0, l1 = k and Dk−1

is a curve). Blowing up at Di−1 results in a ruled surface E[i]
i which intersects E[i]

l1
and

E[i]
l2

in the disjoint curves F and G, respectively. Obviously F2
E[i]

l1

> 0 (or F2
E[i]

l1

= 0,

l1 = k and Dk−1 is a curve) and G2
E[i]

l2

< 0. We will now prove that F2
E[i]

i
< 0. In

exactly the same way as in the previous case, one finds that

F2
E[i]

i
=

1

νl1

(
−(νi − 1)F2

E[i]
l1

+ K(E[i]
l1

) · F
)
≤

1

νl1

K(E[i]
l1

) · F.

Suppose from now on that l1 6= k. We leave the easy case l1 = k to the reader.

Then E[i]
l1

is a ruled surface over Dl1−1 and F 6= C0(E[i]
l1

). This last fact is true since

e(E[i]
l1

) > 0 (induction hypothesis) and F2
E[i]

l1

> 0. We then have

F2
E[i]

i
≤

1

νl1

(
2g(Dl1−1) − 2 − e(E[i]

l1
)
)

f (E[i]
l1

) · F,

which is (strictly) negative by the induction hypothesis. Let us calculate 2g(Di−1) −
2 − e(E[i]

i ) by the same method as in the previous case:

2g(Di−1) − 2 − e(E[i]
i ) = deg

(
(K(E[i]

l1
) + F) · F

)
− e(E[i]

i )

=

(
1 +

1

νl1

)(
2g(Dl1−1) − 2 − e(E[i]

l1
)
)

f (E[i]
l1

) · F

+ F2
E[i]

l1

(
1 −

νi − 1

νl1

)
,

which is (strictly) negative by the induction hypothesis and the fact that νi =

νl1 +νl2 ≥ νl1 + 1. Finally we prove that G2
E[i]

i
> 0. Since F = C0(E[i]

i ), G is a

section of E[i]
i and F ∩ G = ∅, we have G ≡ C0 + e f in Pic E[i]

i . Hence G2
E[i]

i
= e,

which was just proved to be positive. This ends the proof of Theorem 2.4.

Now we come to the generalization of [9, Proposition 5.12], concerning the prob-
lem case of an intersection configuration on E consisting of three nonintersecting
sections. We will need the following proposition.

Proposition 2.5 Let E be a ruled surface and let D1 and D2 be two irreducible curves

on E such that D1, D2 and C0 are disjoint in twos. Then e = 0.

Proof Trivial, using Proposition 1.4.
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Corollary 2.6 Let f ∈ C[x, y, z] \ C. Fix an embedded resolution h : X → A3
C of

f −1{0} in A3
C and use the notation of Section 1.6. Let Ẽ be an exceptional surface with

h(Ẽ) = {0} and which is created as a ruled surface E, say as an exceptional surface of

the blowing-up πm−1 in the resolution process. Denote by Ei the (reduced) irreducible

components, different from E, of ( f ◦ π0 ◦ · · · ◦ πm−1)−1{0}. Then the intersection

E ∩ (
⋃

i Ei) cannot consist of three nonintersecting sections of E.

Proof This is an immediate consequence of Theorem 2.4 and Proposition 2.5.

3 Ruled Surfaces E with χ(E◦) = 0

3.1 Let f ∈ C[x, y, z] \ C. Fix an embedded resolution h : X → A3
C of f −1{0} in A3

C and
use the notation of Section 1. Let E[r]

m be an exceptional surface with h(E[r]
m ) = {0}

and suppose that it is created as a ruled surface π : E[m]
m → Dm−1. Note that in fact

we only suppose here that the center Dm−1 is a nonsingular projective curve. Put

E := E[m]
m , D := Dm−1, ν := νm and N := Nm. Let Ei, i ∈ T ′, be the irreducible

components (different from E[r]
m ) of h−1( f −1{0}) intersecting E[r]

m and put αi :=
νi −(ν/N)Ni . Then we suppose that αi /∈ Z for i ∈ T ′. We denote by E◦ the part of E

that does not belong to any other irreducible component of ( f ◦π0◦· · ·◦πm−1)−1{0}.

Note that E◦ ∼
= E[r]

m \ (
⋃

i∈T ′ Ei). Then in this (and the next) section we study the
implication

χ(E◦) = 0 ⇒ R = 0,

where R stands for the contribution of E[r]
m to the residue at −ν/N of any of the zeta

functions defined in Section 1.

3.2 Clearly E \E◦ is a union of irreducible curves. The case that this union is a connected
subset of E is studied by Veys in [13]. From now on we suppose that E \ E◦ is not

connected. Hence none of the curves is a fiber of E, implying by Theorem 2.4 that C0

is one of them. We denote the other curves by Di , for i = 1, . . . , s.

Moreover, by Theorem 2.4 we know that e > 0. So Proposition 2.5 implies that
E \ E◦ consists of at most two connected components. Hence we put ourselves in the

situation of exactly two connected components. Proposition 1.4 easily implies that
the component containing C0 only consists of the curve C0.

3.3 Let D j be a curve on E \ E◦. We consider the restriction

ϕ := (πm ◦ · · · ◦ πr−1)E[r]
m

: E[r]
m → E[m]

m

to E[r]
m of the morphism πm◦· · ·◦πr−1 : Xr → Xm. Then we know that the strict trans-

form of D j in E[r]
m under ϕ is equal to some irreducible component of the intersection

of E[r]
m with another component of h−1( f −1{0}), say with Ei( j). For j = 1, . . . , s we

define

β j := αi( j) = νi( j) −
ν

N
Ni( j).
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Analogously we associate a rational number β to the curve C0. Note that

β, β j /∈ Z for j = 1, . . . , s.

3.4 Let κ j denote the self-intersection number of D j . Then by [8, Example 6.6(b),(c)] we
have

s∑

j=1

d j(β j − 1) + (β − 1) = −2,

s∑

j=1

κ j

2d j
(β j − 1) −

e

2
(β − 1) = 2g − 2,

where g stands for the genus of D and d j , j = 1, . . . , s, is the number of intersections
of the curve D j with a “general” fiber of π : E → D.

Write D j ≡ a j(C0 + e f ) in Pic E, with a j ∈ Z>0. Then κ j = D2
j = ea2

j and
d j = D j · f = a j . From the two relations above we now obtain

β =

−2

e
(g − 1).

Hence we may suppose that e ≥ 3 and g 6= 1, because otherwise β ∈ Z.

3.5 Suppose that g ≥ 2. By [9, Proposition 5.13] we know that χ(E◦) = 0 can only
occur when s = 1 and D1 itself is a section. Obviously R = 0 in this case; see also
[9, Proposition 5.1(i)]. Thus the only case which still must be investigated is the case
g = 0.

3.6 From now on we will study the case that g = 0 and that E \ E◦ consists of two
connected components, one of them consisting only of the curve C0. Moreover, we
restrict ourselves to the situation when all the curves Di , i = 1, . . . , s, are nonsingu-

lar. In this case, we will be able to prove the implication we are after, i.e., the vanishing
of χ(E◦) implies the vanishing of R. For this, we first try to find out what the pos-
sible intersection configurations on E (only consisting of nonsingular curves) with
χ(E◦) = 0 look like. We need some lemmata.

Notation 3.1 For two curves C1 and C2 on E and a point P ∈ C1 ∩ C2 we denote

by (C1,C2)P the intersection multiplicity of C1 and C2 at P.

Lemma 3.2

(i) The intersection Di ∩ D j is nonempty for each pair {i, j} ⊆ {1, . . . , s}.

(ii) If the nonsingular curve Di , i ∈ {1, . . . , s}, on E is rational, then it is a section.
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Proof (i) Trivial. (ii) By the adjunction formula, we have

(K(E) + Di) · Di = 2g(Di) − 2 = −2.

Because Di ∩C0 = ∅, we can write Di ≡ a(C0 + e f ) with a ∈ Z>0. Since

K(E) ≡ −2C0 − (2 + e) f ,

see [4, Corollary V.2.11], we obtain that (a − 1)(ae − 2) = 0, implying that a = 1.

Hence Di is a section.

Lemma 3.3 Let Ci ,C j ,Ck be three nonsingular curves on E and let P ∈ Ci ∩C j ∩Ck.

If (Ci ,C j)P < (Ci,Ck)P, then (C j ,Ck)P = (Ci ,C j)P.

Proof Easy.

Proposition 3.4 We use the notation of Sections 3.1 and 3.2. Suppose that g(D) = 0

and that E \ E◦ consists of two connected components, one of them consisting only of the

curve C0. If all the curves Di , i = 1, . . . , s, are nonsingular and χ(E◦) = 0, then all the

curves Di are sections.

Proof By Lemma 3.2(ii), it is sufficient to prove that all curves Di are rational. Let
us suppose that (at least) one of the curves Di is not rational, say D1. The condition
χ(E◦) = 0 is equivalent to χ(

⋃s
i=1 Di) = 2. Recall that χ(Di) = 2 − 2g(Di). Hence

χ(D1) ≤ 0. By Lemma 3.2(i) and the additivity of χ(·), we see that the condition
χ(

⋃s
i=1 Di) = 2 implies that there exist (at least) two rational curves, say D2 and D3,

which moreover satisfy D1 ∩ D2 = D1 ∩ D3 = {P} for some point P on E.

Since D2 and D3 are sections by Lemma 3.2(ii), we see that

(D2, D3)P ≤ D2 · D3 = e.

Write D1 ≡ a(C0 + e f ) with a ∈ Z>1. Then for i ∈ {2, 3} we have

(D1, Di)P = D1 · Di = a(C0 + e f )2
= ae > e,

contradicting Lemma 3.3.

From now on we suppose that
⋃s

i=1 Di is a union of sections. We will investi-
gate the possible connected configurations

⋃s
i=1 Di of sections on the rational ruled

surface E, with all sections disjoint from C0 and such that χ(
⋃s

i=1 Di) = 2.

Lemma 3.5 Let π : E → P1 be a projective ruled surface, let f be a fiber on E and

let C be a section. Then there exists an isomorphism ϕ : E \ ( f ∪ C) → A2 such that

p1 ◦ ϕ = π, where p1 stands for the first projection A2 → A1.
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Proof By [4, Proposition V.2.2] and [4, Corollary V.2.14] it is clear that there exists
an isomorphism between E \ f and A1 × P1 under which π corresponds to the first

projection A1 × P1 → A1.

Since C is a section, its equation in A1 ×P1 is of the form C : f (x)y0 + g(x)y1 = 0,
with x the affine coordinate on A1, (y0 : y1) homogeneous coordinates on P1 and
f (x), g(x) ∈ C[x]. Clearly f (x) and g(x) do not have a common zero.

By the Nullstellensatz there exist polynomials f̃ , g̃ ∈ C[x] such that f g̃ + g f̃ = 1.
We consider the family of curves which are given by the following equations:

c( f y0 + g y1) + ( f̃ y0 + g̃ y1) = 0,

with c ∈ C. One can check that all these curves are disjoint from C , and moreover that
they are disjoint in twos. We obtain an appropriate isomorphism (A1 ×P1)\C ∼

= A2

by transforming the curves above into the “canonical” sections of the first projection

A2 → A1. Concretely, we consider the isomorphism

ϕ : (A1 × P1) \C −→ A2

(a, t0 : t1) 7−→
(

a,
−( f̃ (a)t0 + g̃(a)t1)

f (a)t0 + g(a)t1

)
.

This ends the proof of Lemma 3.5.

Proposition 3.6 Let π : E → P1 be a ruled surface with invariant e ∈ Z>0 and let

C1,C2,C3 be sections of E. Suppose that C1,C2 and C3 are disjoint from C0. Let P and

Q be different points on C1 such that C1 ∩C2 = {P} and C1 ∩C3 = {Q}; see Figure 3.

Then C2 and C3 intersect each other in e different points.

C
1

C
3

P

Q

C0

E

p

1

Ã

C
2

Figure 3
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Proof We first note that (C1,C3)Q = C1 ·C3 = (C0 + e f )2
= e. By removing from E

the section C0 and the fiber through P and by applying Lemma 3.5 to this situation,

we reduce the proof to the following problem in A2. Let C1 and C2 be two disjoint
sections of p1 : A1 × A1 → A1, and let C3 be a section that intersects C1 in precisely
one point, say Q, with, moreover, (C1,C3)Q = e. Then we have to prove that C2 and
C3 intersect each other in e different points.

Obviously the equations of the sections Ci of p1 : A2 → A1 are of the form

Ci : y = fi(x),

where x and y are the affine coordinates on A2 and fi(x) ∈ C[x]. Since C1 ∩C2 = ∅,
there exists a nonzero complex number c such that f2(x) = f1(x) + c. The condition
on C3 implies that there exist complex numbers a and c ′, with c ′ 6= 0, such that

f3(x) − f1(x) = c ′(x − a)e. Then C2 and C3 clearly intersect each other in e different
intersection points.

Now we are ready to prove the following theorem.

Theorem 3.7 Let π : E → P1 be a ruled surface with invariant e ∈ Z>2 and let⋃s
i=1 Di be a connected configuration of sections on E. Suppose that all sections Di are

disjoint from C0 and that χ(E \
(

(
⋃s

i=1 Di) ∪ C0)
)

= 0. Then
⋃s

i=1 Di has one of the

following two forms:

(i) there exist two points on E, say P and Q, such that Di

⋂
D j = {P, Q} for i, j =

1, . . . , s with i 6= j (Figure 4),

(ii) there exist s points, say P1, . . . , Ps, on one of the sections Di , say D1, such that

D1 ∩ Di = {P1, Pi} for i = 2, . . . , s and Di ∩ D j = {P1} for i, j = 2, . . . , s with

i 6= j (Figure 5).

P

Q

C0

E

D
2

. . .

p

. . .

. . .

. . .

D
S

D
3

1

Ã

C
0

E

SP

p

1

Ã
D

1 D
2

D
S

D
1

. . .

. . .

2
P

3
P

1
P

P

Figure 4 Figure 5

Remark In Figures 4 and 5 the curves Di and D j do not have to be tangent in their
intersection points.
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Proof We search for the configurations
⋃s

i=1 Di with χ(
⋃s

i=1 Di) = 2. First recall
that for any two sections Di and D j we have Di · D j = (C0 + e f )2

= e. We distin-

guish two possibilities: either there exists a section Di , say D, for which there exists
another section D j intersecting D in precisely one point, or there does not exist such
a section D.

We start with the first possibility. Denote by r the number of points R on D such

that there exists a section D j with D ∩ D j = {R}. For each of these points Ri , i =

1, . . . , r, let D(i)
j , j = 1, . . . , si , be the sections satisfying D ∩ D(i)

j = {Ri}. Then, by
Lemma 3.2(i) and the additivity of χ( · ), we have

χ
( s⋃

i=1

Di

)
≤ χ

(
D ∪

( r⋃
i=1

si⋃
j=1

D(i)
j

))
.

Note that D(i)
j1
∩ D(i)

j2
= {Ri} for j1 6= j2. Indeed, since (D, D(i)

j1
)Ri

= D · D(i)
j1

= e and

(D, D(i)
j2

)Ri
= e, we have by Lemma 3.3 that

(D(i)
j1

, D(i)
j2

)Ri
= e = D(i)

j1
· D(i)

j2
.

Furthermore, by Proposition 3.6 the intersection D(i)
j1
∩ D(1)

j2
, with i 6= 1, consists of e

different points. Hence we see that

χ
( s⋃

i=1

Di

)
≤ 2 + s1 +

r∑

i=2

si(1 − s1e).

If r ≥ 2, then we have

χ
( s⋃

i=1

Di

)
≤ 2 + s1 + (1 − s1e) ≤ 1.

So we suppose that r = 1. Then one easily finds that

χ
(

D ∪ (
s1⋃

j=1

D(1)
j )

)
= 2 + s1 ≥ 3.

Thus, there still has to be another section Di , say D ′. Of course,

χ
( s⋃

i=1

Di

)
≤ χ

(
D ∪ (

s1⋃
j=1

D(1)
j ) ∪ D ′

)
.

Suppose that R1 /∈ D ′. Since D ′ has to intersect D in at least two different points
and all the curves D(1)

j in at least one point, we obtain that

χ
(

D ∪ (
s1⋃

j=1

D(1)
j ) ∪ D ′

)
≤ 2 + s1 + (2 − 2 − s1) = 2,
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the equality occurring when D ′ intersects D precisely twice and each D(1)
j precisely

once. But this configuration realizing the equality is impossible on a rational ruled

surface E with invariant e ≥ 3. This follows immediately from Proposition 3.6 by
taking D(1)

1 , D and D ′ for C1,C2 and C3, respectively.

We now treat the case that R1 ∈ D ′. By Lemma 3.3 the curve D ′ still has to
intersect the curves D(1)

j in a point different from R1. Hence we obtain again that

χ
(

D ∪ (
s1⋃

j=1

D(1)
j ) ∪ D ′

)
≤ 2 + s1 + (2 − 2 − s1) = 2,

the equality occurring when D ′ intersects all the curves D and D(1)
j in precisely one

point different from R1. The reader can easily check that this configuration D ∪
(
⋃s1

j=1 D(1)
j )∪D ′ satisfies condition (ii) of the statement of the theorem. There cannot

be another section Di anymore. Indeed, suppose that D3 still is another section. Then

D3 has to intersect D ∪ (
⋃s1

j=1 D(1)
j ) ∪ D ′ in precisely two points. Since D3 also has

to intersect D in at least two points, we obtain that R1 ∈ R3. But then also D3 has to
intersect the curves D(1)

j in a point different from R1, which yields a contradiction.

We come to the second possibility, i.e., we suppose that there does not exist a
section Di intersecting some other section D j in precisely one point. An important

remark is that this assumption implies that for any j ∈ {1, . . . , s} we have

χ
( s⋃

i=1

Di

)
≤ χ

( s⋃
i=1
i 6= j

Di

)
,

the equality occurring when D j intersects
⋃

i 6= j Di in precisely two points. In fact,

we see that χ(
⋃s

i=2 Di) = 2 can only occur when each curve D j intersects
⋃

i 6= j Di in
precisely two points. The case of one section obviously satisfies both conditions (i)

and (ii). So we assume that s ≥ 2. Denote by P and Q the two points in which D1

and D2 intersect. Since any two sections have to intersect each other in precisely two
points, we obtain that each section D j , with j ∈ {1, . . . , s}, has to intersect

⋃
i 6= j Di

precisely in P and Q. Of course, this Theorem 3.7(i).

4 Calculation of the Residue

4.1 We continue using the notation of Sections 3.1, 3.2 and 3.3. In this section we verify
that for the two possible configurations on E = E[m]

m of Theorem 3.7 we have R = 0,
where R stands for the contribution of E[r]

m to the residue at −νm/Nm of any of the

zeta functions defined in Section 1. We will only give the details for the Hodge zeta
function, the argument for the motivic and topological zeta function being similar
and easier, respectively.

4.2 To calculate the residue R, we will use the technique of Veys in [9, Section 2], which
is explained there for Igusa’s local zeta function, but which can easily be seen also to
be true for the zeta functions of the present paper. Hence, as soon as E is created we
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will “forget” the remaining part of the resolution process h, and we will construct the
minimal embedded resolution of C0 ∪ (

⋃s
i=1 Di) in E. For this we have to perform

a finite number of point-centered blowing-ups, say f j , j = 1, . . . , t , each of them
creating a new exceptional curve F j . We will also denote by C0, Di and Fl the strict
transforms of the corresponding curves under the blowing-ups f j further on in the
embedded resolution process. For each j ∈ {1, . . . , t} we associate to F j the rational

number

γ j :=

s∑

i=1

µi(βi − 1) +

j−1∑

l=1

δl(γl − 1) + 2,

where µi denotes the multiplicity on Di of the center of the blowing-up f j and where

δl = 1 if this center belongs to Fl and δl = 0 otherwise.
Let Ci , i ∈ S, be a finite number of irreducible curves on some nonsingular surface

V , such that
⋃

i∈S Ci is a normal crossings divisor on V . Suppose that to each Ci we
have associated a rational number ai ∈ Q \ {0}. Then we define

R
( ⋃

i∈S

Ci

)
:= H

(
V \

⋃
i∈S

Ci

)
+

∑

i∈S

H
(

Ci \
⋃
l 6=i

Cl

) uv − 1

(uv)ai − 1

+
∑

{i, j}⊆S
i 6= j

card(Ci ∩C j)
(uv − 1)2

((uv)ai − 1)((uv)a j − 1)
.

With this notation the technique of Veys yields that

RHod =

(1 − uv)

Nm(uv)−νm/Nm
R

(
C0 ∪

( s⋃
i=1

Di

)
∪ (

t⋃
j=1

F j)
)
.

4.3 Let P be a point on a nonsingular surface V and let C1, . . . ,Cr be nonsingular irre-

ducible curves on V such that P ∈ Ci for each i ∈ {1, . . . , r}. To each of the curves
Ci we associate a rational number ai ∈ Q \ {0}. Suppose that there exists a positive
integer n ∈ Z>1 such that (Ci ,C j)P = n for all pairs {i, j} ⊆ {1, . . . , r}; recall No-
tation 3.1. To obtain an embedded resolution of the germ of

⋃r
i=1 Cr at P we have to

blow up precisely n times. Denote by F j , j = 1, . . . , n, the corresponding exceptional
curves. Then the resolution graph looks as in Figure 6.
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To the curves F j we associate rational numbers γ j as in Section 4.2. We will need the
following lemmata.
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Lemma 4.1

(i) For i ∈ {1, . . . , n} we have γi = iγ1 − (i − 1).

(ii) For i, j ∈ {1, . . . , n} we have γi + γ j−1 = γi−1 + γ j , where we put γ0 := 1.

Proof (i) By induction. (ii) Trivial, using (i).

The following lemma is a special case of [11, Theorem 6.1, Example 6.2]. Again
Veys worked in his paper with Igusa’s local zeta function, but it is easily seen that the

argument remains true in our situation. Using Lemma 4.1(ii), this fact can also easily
be checked by induction on n.

Lemma 4.2 Suppose that n ≥ 2. Then we have

uv(uv − 1)

(uv)γ1 − 1
+

n−1∑

j=2

(uv − 1)2

(uv)γ j − 1
+

n−1∑

j=1

(uv − 1)2

((uv)γ j − 1)((uv)γ j+1 − 1)

=

(uv − 1)(1 +
∑n−1

j=1 (uv)γ j )

(uv)γn − 1
.

Remark Of course, when we take for V and the Ci the surface E and the curves Di ,

respectively, the expression in the left-hand side of the equality above is just (except
for some nonzero factor) the contribution of

⋃n−1
j=1 F j to the residue R.

Lemma 4.3 Let C1,C2 and C3 be three sections on a ruled surface E, each of them

disjoint from C0. Suppose that there exists points P and Q on E such that C1 ∩ C2 =

C1 ∩C3 = C2 ∩C3 = {P, Q}. Then there exists an integer n ∈ {1, . . . , e−1} such that

for all pairs {i, j} ⊆ {1, 2, 3} we have (Ci,C j)P = n and (Ci,C j)Q = e − n.

Proof First recall that Ci · C j = (C0 + e f )2
= e for all i, j ∈ {1, 2, 3} with i 6= j.

Hence e = (Ci ,C j)P + (Ci ,C j)Q. By Lemma 3.3 we know that either the three self-
intersection numbers at P are equal or one of them is strictly larger than the other

two. In the second case we would obtain that one of the self-intersection numbers at
Q is strictly smaller than the other two, which of course contradicts Lemma 3.3.

We now can prove the first vanishing result.

Proposition 4.4 We use the notation of Sections 4.1 and 4.2. Then for configuration

(i) of Theorem 3.7 we have R = 0.

Proof If s = 1, one easily computes that R = 0 using the fact that β1 + β = 0,
see Section 3.4. Now suppose that s ≥ 2. By Lemma 4.3 we know that all the self-
intersection numbers (Di, D j)P are equal, say equal to n ∈ {1, . . . , e − 1}. Then
(Di , D j)Q = e − n for all pairs {i, j} ⊆ {1, . . . , s}. For the situations with n = 1
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or e − n = 1, the reader is invited to make the trivial modifications to the following
argument. Now we proceed for both the points P and Q as in Subsection 4.3. We

use the notation FP
j , FQ

j , γP
j and γQ

j to indicate the point to which these curves and
numbers are related. Then we must show that

R := R
(

C0 ∪
( s⋃

i=1

Di

)
∪

( n⋃
j=1

FP
j

)
∪

( e−n⋃
j=1

FQ
j

))
= 0.

Recall that β = 2/e, see Section 3.4. By Lemma 4.2 we obtain that

R = (uv + 1)
uv − 1

(uv)2/e − 1
+

uv − 1

(uv)γP
n − 1

( n∑

j=1

(uv)γP
j

)
+

uv − 1

(uv)γQ
e−n − 1

( e−n∑

j=1

(uv)γQ
j

)

+
(

1 +
1

(uv)γP
n − 1

+
1

(uv)γQ
e−n − 1

)( s∑

i=1

(uv − 1)2

(uv)βi − 1
+ (uv − 1)(uv − s)

)
.

By Section 3.4 we have γ1 := γP
1 = γQ

1 =

∑s
i=1(βi −1)+2 = 1− 2

e
, such that Lemma

4.1(i) implies that γP
n + γQ

e−n = nγ1 − (n − 1) + (e − n)γ1 − (e − n − 1) = 0. This
easily yields that

1 +
1

(uv)γP
n − 1

+
1

(uv)γQ
e−n − 1

= 0,

implying by Lemma 4.1(i) that

R = (uv − 1)

(
uv + 1

(uv)2/e − 1

+
uv

(uv)γP
n − 1

( n∑

j=1

( (uv)γ1

uv

) j

− (uv)γP
n

e−n∑

j=1

( (uv)γ1

uv

) j))

= (uv − 1)
( uv + 1

(uv)2/e − 1
+

(uv)γ1 ((uv − (uv)γP
n ) − (uv)γP

n (uv − (uv)−γP
n ))

((uv)γP
n − 1)(uv − (uv)γ1 )

)

= 0.

Before we prove the second vanishing fact, we reduce the possibilities in configu-

ration (ii) of Theorem 3.12.

Lemma 4.5 If s ≥ 3 in configuration (ii) of Theorem 3.7, we have that for each

i ∈ {2, . . . , s} the curves D1 and Di intersect transversally at Pi .

Proof We have to prove that (D1, Di)Pi
= 1 for all i ∈ {2, . . . , s}. Fix two different

indices in {2, . . . , s}, say i1 and i2, and suppose that (D1, Di1
)Pi1

> 1. By remov-
ing from E the section C0 and the fiber through P1 and by applying Lemma 3.5 to

this situation, we find ourselves in precisely the same affine settings as in the proof
of Proposition 3.6. Now rereading the argument of that proof shows that D1 and
Di2

have to intersect each other in (D1, Di1
)Pi1

different points, all of them of course
different from P1 by construction. This is a contradiction.
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Proposition 4.6 We use the notation of Sections 4.1 and 4.2. Then for configuration

(ii) of Theorem 3.7 we have R = 0.

Proof We may assume that s ≥ 3, since the configurations with s = 1 or s = 2 were
already part of Proposition 4.4. By Lemma 4.5, we then know that (D1, Di)Pi

= 1 for
all i ∈ {2, . . . , s}. Hence (D1, Di)P1

= e − 1 > 1 for all i ∈ {2, . . . , s}. Furthermore

we have (Di , D j)P1
= Di · D j = e for all pairs {i, j} ⊆ {2, . . . , s}. To obtain the

minimal embedded resolution of C0 ∪ (
⋃s

i=1 Di) in E we have to blow up precisely e

times, creating the exceptional curves Fi , i = 1, . . . , e, as in Figure 7 below. Note that
Figure 7 only shows the resolution graph of the germ C0 ∪ (

⋃s
i=1 Di) at P1.
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We have to prove that

R := R

(
C0 ∪

( s⋃
i=1

Di

)
∪

( e⋃
j=1

F j

))
= 0.

One easily checks that Lemma 4.1 and Lemma 4.2 are also true in this situation when
we put n := e − 1. Then the contribution R1 of

⋃e−1
j=1 F j to R is equal to

R1 =

(uv − 1)(1 +
∑e−2

j=1(uv)γ j )

(uv)γe−1 − 1
+ (uv − 2)

uv − 1

(uv)γe−1 − 1

+
(uv − 1)2

(uv)γe−1 − 1

( 1

(uv)β1 − 1
+

1

(uv)γe − 1

)
.

Since

γe =

s∑

i=2

(βi − 1) + (γe−1 − 1) + 2

= −β1 + γe−1 +

s∑

i=1

(βi − 1) + 2 = −β1,

we have

R1 =

(uv − 1)(uv)γ1 (uv − (uv)γe−2 )

((uv)γe−1 − 1)(uv − (uv)γ1 )
,
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following from Lemma 4.1(i) as in the proof of Proposition 4.4. The relations
γ1 + γe−2 = γe−1 + 1 and γ1 = −γe−1 = 1 − 2/e, which follow from Lemma

4.1, imply that

R = uv − 1 + (uv + 1)
uv − 1

(uv)2/e − 1
+ R1

+
(

1 +
1

(uv)β1 − 1
+

1

(uv)γe − 1

)(
(uv − (s − 1))(uv − 1) +

s∑

i=2

(uv − 1)2

(uv)βi − 1

)

= (uv − 1)(uv + 1)
( 1

(uv)2/e − 1
+

(uv)γ1 − 1

((uv)γe−1 − 1)(uv − (uv)γ1 )

)
= 0.

As some kind of conclusion of Sections 3 and 4 we can state the following theorem.

Theorem 4.7 Let f ∈ C[x, y, z] \ C. Fix an embedded resolution h : X → A3
C of

f −1{0} in A3
C and use the notation of Section 1.6. Let Ẽ be an exceptional surface with

h(Ẽ) = {0} and which is created as a ruled surface E, say as exceptional surface E[m]
m of

the blowing-up πm−1 in the resolution process. Suppose that νi − (νm/Nm)Ni /∈ Z for

each irreducible component Ei of h−1( f −1{0}) which intersects Ẽ but is different from

it. Denote by Di , i ∈ A, the irreducible components of the intersection of E with the

union of the other irreducible components of ( f ◦ π0 ◦ · · · ◦ πm−1)−1{0}. Suppose that⋃
i∈A Di is not connected. Then, except for the situation described below, we have

χ
(

E \
⋃

i∈A

Di

)
= 0 ⇒ R = 0,

where R stands for the contribution of Ẽ = E[r]
m to the residue at −νm/Nm of any of the

zeta functions defined in Section 1.

We are in the exceptional situation when E is rational, e ≥ 3 and
⋃

i∈A Di consists

of precisely two connected components, one of them consisting only of the section C0 and

the other one containing at least one singular curve.

Recall that Veys [13] studied the case that
⋃

i∈A Di is connected. Furthermore we
would like to recall that the other implication, i.e.,

R = 0 ⇒ χ
(

E \
⋃

i∈A

Di

)
= 0,

is also true. This follows from [6, Theorem 2.3] and is actually true for any excep-
tional surface Ẽ = E[r]

m with h(Ẽ) = 0 and satisfying νi −(νm/Nm)Ni /∈ Z for all other

irreducible components Ei of h−1( f −1{0}) which intersect Ẽ.
We end with the following theorem, which is a nice consequence of some older

results and the results of the present paper.

Theorem 4.8 We use the notation and conditions of Theorem 4.7, except for the fact

that here the ruled surface E is supposed to be non-rational and the union
⋃

i∈A Di is

also allowed to be connected. Then the following conditions are equivalent.
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(i) R = 0;

(ii) χ(E \
⋃

i∈A Di) = 0;

(iii)
⋃

i∈A Di consists of two sections, a fiber through each of their intersection points,

and any number of other fibers.

Proof The implication (i) ⇒ (ii) is explained in the remark above.

Since h(Ẽ) = {0}, at least one of the curves Di is a section of the ruled surface E.
Hence the implication (ii) ⇒ (iii) follows from [12, Theorem 5.1], except when E

is a ruled surface over an elliptic curve. In this problem case we know by [12, The-
orem 5.5] that

⋃
i∈A Di has either the form of condition (iii) or consists of k ≥ 1

irreducible nonsingular curves of genus 1 which are all disjoint. But the latter possi-
bility can be excluded, since by Theorem 2.4(iii) one of the curves Di equals C0 and
by Section 3.4 the rational number β associated to C0 is an integer.

Finally, the implication (iii) ⇒ (i) is proven in [9, Proposition 5.3] for Igusa’s local

zeta function. It is an easy exercise to verify that the arguments remain true in our
situation.
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