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SURPRISING RELATIONSHIPS AMONG UNITARY
REFLECTION GROUPS

by H. S. M. COXETER

(Received 21st October 1983)

1. Introduction

The transpositions that generate a symmetric group can be represented as real
reflections: symmetry operations of a regular simplex. Analogous unitary reflections
serve to generate other factor groups of the braid group; they are symmetry operations
of regular complex polytopes. Certain relationships among these groups have, as
geometric counterparts, unexpected plane sections of the polytopes, beginning with the
square sections of the regular tetrahedron. In Section 6, 5-dimensional coordinates will
be used to exhibit pentagonal sections of the 4-dimensional regular simplex. The most
spectacular instance of such "equatorial" sections occurs in the case of the Witting
polytope in complex 4-space, so exquisitely drawn by Peter McMullen for the
frontispiece of Regular Complex Polytopes [6]. This has a plane section 3{5}3 which
appears thare as Fig. 4.8B on page 48. Shephard [9, p. 92] called it 3(360)3. Its 120
vertices will be seen to be situated "inside" 120 of the 2160 faces 3{3}3 of the Witting
polytope. These "faces" are self-inscribed octagons [7, p. 290].

2. The symmetric group <34 and its dihedral subgroup t>q

The symmetric group Qq of order q\ is obviously generated by the q — 1 transpositions

R,=(l 2), R2=(2 3), ..., Rq^=(q-l q),

in terms of which it has the presentation

«f = l, (2-1)

2), (2.2)

(2.3)

[8, p. 64]. By (2.2), the Rv are mutually conjugate, so it is unnecessary to specify Ry = l,
from which it follows that the products

P = R1R3R5... and Q = R2R4R6... (2.4)
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are likewise involutory. The permutations

-(2 3) = (1342),

(12)(34)-(23)(4 5) = (13 5 42),

(12)(34)(56)-(23)(45) = (1 35642)

serve to initiate a pattern which shows that

= \. (2.5)

Thus the elements P and Q of S , generate a subgroup T>q of order 2q.
More generally, in any finite reflection group ("Weyl group"), the generators can be

separated into two sets of mutually commutative reflections whose products generate a
dihedral subgroup T>h, where h is the appropriate "Coxeter number" [5, pp. 225-234].

3. The analogous subgroup of the braid group

Since P2 = Q2 = 1, (2.5) can be replaced by

PQP...=QPQ... (3.1)

with q factors on each side of the equation. Without making use of the permutations, we
could have derived (3.1) directly from (2.2) and (2.3). For instance, when q = 3,

= R1R2R1=R2R1R2 =

when q = 4,
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and when q = 5,

= J\3i\j/v2^ 1^*4^ 3^4*^ 2**3** 1

= Jx^R. iR-2^ i *̂  3^4^* 3^2-** 3-*̂  1

= J\ 3 /v 2 rvjiv 2 ̂ 3*^4*^2 **3**2*M

= l\2i\2^-l 2^3^2^*4^3 2-"M

^ /v2/v^/v3XV4JV2/\|

*l 3^4^*3

It is significant that this procedure is independent of (2.1). Hence,

/n t/ie infinite braid group defined by (2.2) and (2.3) [1, p. 245; 8, p. 62], t/ie elements
(2.4) generate a subgroup which has the presentation (3.1).

4. Factor groups of the braid group

Combining (2.2) and (2.3) with a new relation

K ? = l , (4.1)

where p may be greater than 2, we obtain a factor group which has been denoted by

p[3]p[3]. . .p[3]p or • • • •
P P P P
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[3, p. 114; 6, pp. 117, 152]. The graphical symbol contains q— 1 dots, one for each
generator Rv. The group so presented is finite only if

that is, only if {p, q} is a regular polyhedron or spherical tessellation. In the case when
p = 3 and q ^ 5, the order is

and the elements P and Q generate a subgroup

3[«]3 or *

of order 72q/(6-q)2 [6, p. 95]. Thus, in the group 3[3]3[3]3 or order 334! = 648 [6, pp.
119-124] the elements RiR3 and R2 generate a subgroup 3[4]3 of order 72, which is the
direct product of the binary tetrahedral group and the group of order 3 [8, p. 77; 6, p.
100]; in the group 3[3]3[3]3[3]3 of order 645! = 155520 [6, pp. 132-134], R^3 and
R2R* generate a subgroup 3[5]3 of order 360, which is the direct product of the binary
icosahedral group and the group of order 3 [8, pp. 71, 78; 6, p. 102]; and in the infinite
group 3[3]3[3]3[3]3[3]3 [6, pp. 135-137], R^Rs and R2R4 generate an infinite
subgroup 3 [6] 3 [6, p. 111].

Similarly with p = q = 4, in the infinite group 4[3]4[3]4 [6, p. 144], i?1#3.R5 and
R2R4.R6 generate an infinite subgroup 4[4]4.

5. The Hessian polyhedron

In unitary 3-space, the group 3[3]3[3]3 of order 648 is generated by reflections of
period of 3 in the three mirrors

U1=0, U1+U2 + U3 = 0, M3=0.

When expressed as matrices, these unitary reflections are

CO

0
0

0
1
0

0
0
1

ico2
CO2

1

1

1
CO2

1

1

1
CO

, R3 =

1

0

0

0

1

0

0

0

CO

where co = (— 1 +1\/3)/2. Hence the subgroup 3 [4] 3 is generated by

p=

CO

0

0

0

1

0

0

0

CO

co1 1 1

1 co2 1

1 1 co2

which satisfy the presentation P3 = g 3 = l, (PQ)2 = (QP)2. By Wythoffs construction [6,
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p. 104], we can obtain the 24 vertices of a regular complex polygon 3{4}3 [6, p. 47]
lying in the plane u1=u3 (orthogonal to the plane ul+u2 + u3 = 0), as the orbit of a
suitable point, namely, either a point such as (1, — 2,1) on the mirror for Q{ = R-2) or a
point such as (0, i\/3,0) on the axis u x = u 3 = 0 of the "rotation" P. Choosing the latter,
we observe that

(0, uji, 0) Q = {co\ co, co2), (co2, co, co2) P = (1, co, 1),

and so on. In fact, the 9 + 6 + 9 vertices of 3 {4} 3 are

{co»,co\co»\ (0,+i«\/3,0), (-co",-co\~co").

The orbit of the same point (0,(^/3,0) for the whole group 3 [3] 3 [3] 3 consists of the
27 + 18 + 27 = 72 points

{co\co",co"), (+ ico\/3,0,0) permuted, and {-co\-co", -cov)

which, being the vertices of the complex polyhedron

• © » = ® • • =3{3}3{4}2,
3 3 3 3 3 4

are also the edge-centres of 3{3}3{3}3 [6, p. 127]. Thus the occurence of 3[4]3 as a
subgroup of 3 [3] 3 [3] 3 has, as its geometric counterpart:

The complex polygon 3 {4} 3 arises as a plane section of the Hessian polyhedron
3{3}3{3}3 [2, p. 469 (5.3)]. More precisely, it is the section by a plane through the
centres of 24 of its 72 edges, such as the centre (0,1,0) of the edge (0,1, —of).

This is analogous to the square section of the regular tetrahedron {3,3} = <x3, which is
also an equatorial polygon or "van Oss polygon" of the octahedron {3} = /?3 = {3,4} [6,
pp. 13, 141]. In preparation for what is to come, we may conveniently call this square
the section of the tetrahedron <x3 by an equatorial plane. In fact, the geometric
counterpart for the occurrence of £>, as a subgroup of &q is the occurrence of the
regular q-gon {q}=2{q}2 as the section of the regular simplex

a,_1 = {3,3,...,3} = 2{3}2...{3}2

by an "equatorial plane".

6. The regular 4-simplex and its pentagonal sections

Returning for a moment to the case when q = 4, we may represent the 4 vertices of the
regular tetrahedron oe3 in 4 dimensions by the points

(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)
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in the 3-space X! + x2 + x3 + x4= 1. The equatorial plane corresponding to this cyclic
order is xl+x3 = x2 + x4.=j, and the vertices of the square section are

(1,1,0,0), (0,|,|,0), (0,0,ii), (i0,0,i);

for instance, (j,j,0,0) is the common point of the equatorial plane with the plane
x1+x2 = l,x3 = x4. = 0 which contains the edge (l,0,0,0)(0,1,0,0) of the tetrehedron.

Analogously in 5 dimensions, we may identify the 5 vertices 1, 2, 3, 4, 5 of the regular
simplex a4 with points

(1,0,0,0,0), (0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,0), (0,0,0,0,1)

in the hyperplane x1+x2 + x3 + x4. + x5 = l. An equatorial plane corresponding to this
cyclic order might be given by 3 equations of the form

x1—x4 = X(x2 — x3), x2— x5 = X(x3 — x4), x3 — x1=X(x4. — x5),

provided these equations would imply

x4-x2 = X(xs-x1), x5-x3 = X(xl-x2)

so as to complete the cyclic symmetry. This redundancy of the 5 equations is easily seen
to require

X2-X-l=0,

so that X = x or — z~l, where

Thus the cyclic permutation of the 5 coordinates is a "double rotation" whose two
invariant planes are

X 1 - X 4 = T ( X 2 - X 3 ) , X 2 - X 5 = T(X 3 -X 4 ) , X 3 - X 1 = T ( X 4 - X 5 ) (6.1)

and

X 2 - X 3 = T ( X 4 - X 1 ) , X 3 - X 4 = T(X 5 -X 2 ) , X 4 - X 5 = T(X 1 -X 3 ) . (6.2)

The face 234 of the simplex <x4 lies in the plane

X2+X3+X4=l, X!=X5 = 0

whose common point with (6.1) is
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Permuting the 5 coordinates, we obtain the vertices of a regular pentagon in the plane
(6.1), which is thus seen to be an equational section of a4. Another such section is the
completely orthogonal plane (6.2), yielding a congruent pentagon whose typical vertex

is the common point of (6.2) with the plane

X1+X3+X5=l, X2=X4 = O

which carries the face 135. Hence

For each subgroup T>5 of £ 5 , the regular simplex a4 has two completely orthogonal
equatorial planes, each providing a pentagonal section.

We observe that each vertex of either pentagon is situated in the appropriate
triangular face in a position which is given by barycentric coordinates (1,T, 1), so that it
divides a median (from vertex to opposite side) in the ratio 2:T. This ratio is, of course,
maintained in Figure 1, which is the standard orthogonal projection [5, pp. 120, 245].

Figure 1. {3,3,3} and its equatorial section {5} = 2{5}2.
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Here 12345 appears as a regular pentagon with an inscribed pentagram 13524. Since
the circumradius and inradius of a regular pentagon are in the ratio 2:T, the relevant
point in the isosceles triangle 7 55 coincides with the centre of the pentagon. In the
isosceles triangle 234, the point divides the median from 3 in the same ratio, enabling
us to draw the section (in heavy lines) in Figure 1. Thus

In the standard projection of a4, one of the two equatorial pentagons is foreshortened
into a single point {the centre) while the other is represented faithfully.

7. The Witting polytope

Passing now from the simplex

a4 = {3,3,3} = 2{3}2{3}2{3}2,

with its section {5} = 2{5}2, to the Witting polytope

3{3}3{3}3{3}3,

we recall that , in unitary 4-space, the group 3[3]3[3]3[3]3, of order 155520, is generated
by the reflections

co 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 co 0

0 0 0 1

[6, p. 132], which combine to form

ICO

ico

CO 1 1

CO2 1

1 CO2

0

0

0

0 0 0 icOy/3

= RlR3 =

co 0 0 0

0 1 0 0

0 0 co 0

0 0 0 1

and Q = R2R^=

V
0
0
0

3 0
co2

- 1

1

im2

2

l

0
- 1

CO2

- 1

1

— CO

0

1

- 1

O)2

1

0
0
1

0 -co - 1

0 1 -I co2

These two "rotat ions" satisfy the presentation P 3 = Q 3 = 1 , PQPQP = QPQPQ. Their
axial planes are

u1 = u3 = 0 and
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Being real, the planes may be treated like lines with Pliicker coordinates

(0,1,0; 0,0,0) and ( -2 ,1 ,1 ; 1,1,1)

in elliptic 3-space [4, pp. 88-92]. The two orthogonal traversals (or "common
perpendiculars") of these lines may be found with the help of the remark that the
condition for two lines

and («?14, q24, q34;

to intersect orthogonally is

In the present case the two orthogonal transversals are thus seen to be

(1,0,T; 1,0,-T-1) (1 ,0 , -T" 1 ; 1,0,T).

In other words, the group generated by P and Q leaves invariant the two planes

TU1 — u3 = tu2 + u4 = 0 and M1 + TH3 = H2 —TU4 = 0.

These meet the axial planes of P and Q along lines joining the origin to the four points

( 0 , - 1 , 0 , T ) , ( 1 , - T 2 , T , T 3 ) , (0,T,0,1) , ( - T 3 , T , T 2 , 1 )

any one of which will yield the 120 vertices of a complex polygon 3{5}3 (see Figure 2)
under the action of the group generated by P and Q.

Since (1, - 1 ,0 , 1) + T(0, -1,1,2) = (1, - T 2 , T , T 3 ) , the • line joining the origin to (1,
— T2,T,T3) lies in the plane joining the origin to the vertex (1, —1,0,1) and the centre
j(0, — 1,1,2) of the face 3 {3} 3 whose 8 vertices are

(0,a>,-cw2,l), (0,a>2,-co, 1), (-co\ 0,1,1), (a>\-1,0,1)

[6, pp. 119 (12.35), 120 (Figure 12.3A), 132]. Thus the orbit of (1, - T 2 , T , T 3 ) for the
group generated by P and Q consists of the 120 vertices of a 3 {5} 3 lying in the
equatorial plane

T«!— U 3 = 0 , TM2 + "4 = 0;

and a typical vertex of the 3{5}3 is the point of intersection of this plane with the plane

which carries a face of the Witting polytope. In other words,

The section o/3{3}3{3}3{3}3 by an equatorial plane is 3{5}3.
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Figure 2. The equatorial section 3{5}3 of 3{3}3{3}3{3}3.
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