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Abstract

We introduce the concept of infinite cochain sequences and initiate a theory of homological algebra for
them. We show how these sequences simplify and improve the construction of infinite coclass families
(as introduced by Eick and Leedham-Green) and also how they can be applied to prove that almost all
groups in such a family have equivalent Quillen categories. We also include some examples of infinite
families of p-groups from different coclass families that have equivalent Quillen categories.
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1. Introduction

Coclass theory was initiated by Leedham-Green and Newman [14]. The fundamental
aim of this theory is to classify and investigate finite p-groups using the coclass as
primary invariant. The infinite coclass families of finite p-groups of fixed coclass, as
defined by Eick and Leedham-Green [10], are considered to be a step towards these
aims. Their definition is based on a splitting theorem for a certain type of second
cohomology group.

Various interesting properties of the infinite coclass families have been determined.
For example, the automorphism groups and the Schur multiplicators of the groups in
one family can be described, simultaneously, for all groups in the family (see [5-7]). It
is conjectured that almost all groups in an infinite coclass family have isomorphic mod-
p cohomology rings. This conjecture is still open, but it is underlined by computational
evidence obtained by Eick and King [9] and by our earlier result [8], which says that
the Quillen categories of almost all groups in an infinite coclass family are equivalent.
The proof of the latter theorem uses a splitting theorem for cohomology groups.
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In this paper, we derive a generalization of the splitting theorems obtained and used
in [10] and [8], and describe the splitting at the cocycle level. Based on this, we
introduce the concept of an infinite cochain sequence and take the first steps towards
the development of a theory of homological algebra for them.

We then show that the infinite coclass families of [10] can be defined using the
infinite cochain sequence. This way of defining the families is more explicit than the
definition in [10], since it is based on cocycles rather than just cohomology classes.
This difference is significant: for example, it is useful for the investigation of the
Quillen categories of the groups in a coclass family. Further, we use the infinite
cochain sequences to give a new, more conceptual proof of our main theorem in [8] on
the Quillen categories of the groups in an infinite coclass family.

In the final part of this paper, we give some examples of groups from different
coclass families with equivalent Quillen categories. Let g = p’ for a prime p, let Z,,
denote the p-adic integers and consider the irreducible action of C, on T = Z’ ~hr!
(this is unique up to equivalence). Then G, =T >~ C, is an infinite pro-p-group
of coclass £. For £ =1, it is the unique infinite pro-p-group of coclass one (or of
maximal class) and, for € > 1, it is an interesting example for an infinite pro-p-group
of coclass ¢£.

The main line groups associated with an infinite pro-p-group G of coclass r are
the infinite number of lower central series quotients G/y;(G) that have coclass r; this
infinite sequence is not necessarily a coclass family itself, but it consists of a finite
number of different coclass families. The skeleton groups associated with an infinite
pro-p-group G of coclass r form a significantly larger family of groups containing the
main line groups and they play an important role in coclass theory; we refer to [13,
Section 8.4] or [11, Section 3], for details.

TuaEOREM 1.1.

(1)  For an arbitrary, fixed prime p, the Quillen categories of almost all main line
groups associated with G, are pairwise equivalent.

(2) The Quillen categories of almost all skeleton groups associated with Gg are
pairwise equivalent.

Proor. (1) See Section 8.1 for odd p; for p = 2 the main line groups are the dihedral
2-groups, and the result is well known (see e.g. [8, Section 9]).

(2) See Section 8.2. O

RemARrk 1.2. Theorem 1.1(1) can be made more explicit: the Quillen categories of
the quotients G,/y;(G,) are equivalent for all i > p + 1. Note that G3/y;(G3) have
isomorphic mod-3 cohomology rings for i € {5, 6,7}, but the cohomology ring for i = 4
is different, see [9].
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2. Infinite cochain sequences

2.1. Preliminaries. We work, throughout, with the normalized standard resolution
(see [12, page 8]): that is, a cochain f € C"(G, M) is a map f : G" — M with the
additional property that f(g1, ..., g,) is zero if any g; is the identity element.

We denote the coboundary operator by A : C*(G, M) — C"*!(G, M). Recall that the
coboundary of a 2-cochain is given by

Af(g1,82.83) = f(g2.83) — f(g182.83) + f(g1.8283) — f(g1.82)

and, more generally, the coboundary of an n-cochain is
Af(g1s. - 8n1) =5 f(g2, .. 8nr1)
n

(“1'f(g1, - -+ 8ic1s 8i&i+1, Git2s - - - » &nt1)
i=1

+ (D)™ 8).

The n-cocycles are the elements of

+

7'(G, M) = ker(C"(G, M) = C"*\(G, M),
and the n-coboundaries are the elements of
B'(G, M) = Im(C"™ (G, M) > C"(G, M)).

Since A? =0, it follows that B"(G, M) C Z(G, M), and we set H'(G, M) =
Z"(G, M)/B"(G, M). Elements of H"(G, M) are called cohomology classes; if f is
an n-cocycle, then its cohomology class is f + B"(G, M) € H(G, M).

Remark 2.1. By transfer theory, |G| - H'(G, M) = 0 for all n > 1 (see, for example, [3,
Proposition 3.6.17]).

2.2. Splitting theorems. For the remainder of this section, we fix the following
notation.

Norarion 2.2. Let G be a finite p-group with m = log ,(|G]), let R be a commutative
ring, let M an RG-module and let N be a submodule of M with Anny(p) = {0}.

We need the following generalization of [8, Theorem 7], which is itself a
generalization of [10, Theorem 18].

TueoreM 2.3. We use Notation 2.2 and let n > 1 and r > 2m. Then there is a splitting
H(G,M/p'N) = H"G, M) ® H"*'(G.N),

which is natural with respect to restriction to subgroups of G.
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Norarion 2.4. Projection M - M/p"N induces maps

C"(G,M) —» C"(G,M/p"N)
of cochain modules and H* (G, M) — H"(G, M/p"N) of cohomology modules. We
shall denote all three maps by pro,.
Proor. Recall that |G| = p™ and define i, : N - M : x — p"x. Consider the long exact
sequence in group cohomology induced by the following short exact sequence of

coefficient modules
pror

0 N "M M/p’N — 0.
The proof of [8, Theorem 7] readily generalizes, showing that, if n > 0 and r > 2m,
then
0 —— H"(G,M) =, H"(G,M/p"N) —— H""Y(G,N) —— 0
is a split short exact sequence, where con, is the connecting homomorphism. O

We now describe how Theorem 2.3 works at the cocycle level.

ProposiTioN 2.5. Use Notation 2.2. Let n>1, and pick p € Z"(G, M) and n €

Z"(G,N).
(1) There is a (not necessarily unique) n-cochain o € C"(G, N) such that A(o) =
P

(2) For every r > m and for every choice of o in (1), the induced cochain pro,(p +
p o) lies in Z'" (G, M/p"N).
(3) Forevery r = 2m and for every choice of o in (1), the cohomology class
pro,(p + p"™o) + B"(G,M/p"N) € H'(G, M/p"N)
is the unique class corresponding, via the isomorphism of Theorem 2.3, to
(p + BY(G,M),n + B""\(G,N)) e H'(G, M) ® H""'(G, N).
Proor. (1) p™n is a coboundary, since p” H"*!(G, N) = 0, by Remark 2.1.
(2) pro, and A commute, and A(p + p"™0) = p'n lies in the kernel of pro,.
(3) The proof of [8, Theorem 7] says that the component maps of the isomorphism
H'(G,M/p"N) — H"(G, M) ® H"*!(G, N) are the connecting homomorphism con, :
H"(G,M/p"N) — H™(G, N) and the map

Ty ( T r—m)il
H(G, M/p'N) 55 H'(G, M/ p"™"N) 2225 (G, M),

where 7 : M/p"N — M/p"™™N, is the projection map x + p"N — x + p""N. As
m pro(p + p" o) = pro,_,(p + p" o) = pro,_,,(p),
the image in H"(G, M) is p + B(G, M).
Recall from, for example, the proof of [13, Theorem 9.1.5], that con, is constructed
as the composition

7G, M/ p’N) C"(G w5 7@, M) G e (G,N),
with i, as in the proof of Theorem 2.3. So pro,(p + p" o) p+p o= 0+ p'n=
i,(n) — n. Uniqueness follows. O
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2.3. The definition of cochain sequences. Using the ideas of Proposition 2.5, we
now define infinite cochain sequences.

DeriniTiON 2.6. We use Notation 2.2 and let n > 1 and ro > 0. We call a sequence
(ay)rsr, of cochains «, € C"(G, M/p"N) a cochain sequence if there are cochains
p€C'(G,M)and o € C"(G,N) and an w € {0, 1,. .., ro} such that

a, =pro,(p+p~“o)e C"(G,M/p"N) forallrz=r.

Note that the cochain sequences defined by (p, o; o, w) and (p’, 0”; 1), w’) are equal
if and only if ro = r; and the cochains pro,(p + p"~“c) and pro,(p" + P~ o) are equal
as elements of C"(G, M/p"N) for all r > ry.

Often, ry will be clear from the context. We then also write «, for (a, | ¥ > rg) and
M/p°N for (M/p"N | r > rp). If @, is induced from ( p, o; ry, w), then we also write

e =pro,(p + p* o).

Notarion 2.7. Often, ryp and N will be fixed from the context. We then denote
M, = M/p"N, we write M, for (M, | r > ry) and we denote by C; (G, M,) the set of all
cochain sequences which start at r.

2.4. Homological algebra for cochain sequences. Our next aim is to develop some
elementary homological algebra for cochain sequences.

Norarion 2.8. We continue to use the Notation 2.2, imposing minor additional
restrictions. We assume from now on that R is a noetherian integral domain and that
pis a prime number, which, in R, is neither zero nor a unit. Further, M is a finitely
generated RG-module which is free as an R-module. Then (), p"M = {0}, by Krull’s
theorem [2, 10.17] and Anny(p) = {0}.

Lemma 2.9. The set C; (G, M.) of cochain sequences is an R-module.
Proor. Let @, be defined by (p, o; ro, w) and B, by (p’,0”; rg, w’). Then
a,+Br=pro(p+p +pl(pCo+ pa’)) for £ = max(w,w),

and so @, + S, is the cochain sequence defined by (p + p’, p“o + p"~“'0”; ry, £). For
X € R, xa, is the cochain sequence defined by (xp; xo; g, W). O
LemMma 2.10. Let @, € C;’O(G, M.) be the cochain sequence defined by ( p; o; ro, w).

(1) Either ay =0, that is, a, = 0 for all r > ry, or a, # 0 for all sufficiently large r.
(2) a.=0ifandonly if p=0in C*(G, M) and o lies in p*C"(G, N).

Proor. If p = 0 and o is not divisible by p®, then p"~“o is not divisible by p”, and so
a, is nonzero for all . If p # 0, then there is k such that pro,(p) # 0 in C"(G, M/p*N),
and hence a, # O for all r > k + w. |

Norarion 2.11. Let ae € C} (G, M.). We define the level of a, to be the smallest value
of w such that a, is defined by (p, o; 1y, w) for some p, o.
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Remark 2.12. By definition, the cochain sequence, defined by ( p, o; ry, w), has level at
most w. Note that (p, o; 1y, w) and (p, po; ry, w + 1) define the same cochain sequence.
Thus the level of the cochain sequence defined by ( p, 07; ry, w) can be strictly smaller
than w.

Derivition 2.13. Define C7 (G, M.) A) C;‘;l(G, M.,) by (Aa), := Ale,). So if a, is
defined by (p, o; rg, w), then A(a,) is defined by (A(p), A(0); ro, w). Further, write
Zy (G, M,) = ker(A) and B™1(G, M,) = Im(A).

ro

The map A is R-linear and satisfies A” = 0. Thus B} (G, M.) C Z; (G, M.).

RemARrk 2.14. By Lemma 2.10, A(a,) = 0 if and only if A(p) = 0 and A(0o) is divisible
by p“. So we may rephrase Proposition 2.5 as the following corollary.

CoroLLARY 2.15. Let n > 1 and rg > 2m. For every p € H'(G, M) and every ij €
H””(G, N), there is a cocycle sequence a. € Z;’O (G, M,) of level at most m such that,
forevery r > ry, the cohomology class a, + B'(G, M,) € H(G, M,) corresponds, under
the isomorphism of Theorem 2.3, to (p,77) € H'(G, M) ® H™(G, N). m|

Lemma 2.16. Let n > 1. Suppose that a. € Z; (G, M,) has level w <ro—m. The
following statements are equivalent:

(1) a, € B(G,M,) for some value r| > ry of r;

2) «a,€ BYG,M,) foreveryr > ry,

(3) . €B; (G, M.), and

4)  a.=A(B.) for some . € C;‘O‘I(G, M.,) of level at most w + m.

Proor. The implications (4) = (3) = (2) = (1) are clear.
(1) > 4): Let @, =pro,(p + p*“o0). Since a, € B"(G, M,,), there are ¢ €
C" (G, M) and y € C"(G, N) such that p + p""~“o = A(¢) + p"', and hence

po = pPY) = Alg) - p.
By Lemma 2.10, we may replace o by o — p“y without altering «,. Hence
plo = Alg) - p.

Now, the right-hand side is a cocycle, since @, € Z"(G, M,) means that p is a cocycle.
Hence the left-hand side lies in Z"(G, N). So o € Z"(G, N), by regularity of p, and
therefore, since p"H"(G,N) = 0, there is y € C"~'(G, N) with A(y) = p"o. Hence p =
AQ) for A= ¢ — p"=9"y € C" (G, M). So s = A(B,) for B, = pro, (1 + p*~“"y). O

The next result will be needed in the proof of Lemma 4.6.

Lemmva 2.17. Let n > 1 and ry > ro > 2m. For each z € Z'(G, M,,) there is an a, €
Zy (G, M.,) of level at most m with a,, = z.
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Proor. Let ¢ be the element of H"(G, M)® H"'(G, N) corresponding to z +
B'(G, M,,) € H'(G, M,,) under the isomorphism of Theorem 2.3. By Corollary 2.15,
there is some B, = pro,(p + p*™™0) € Z; (G, M,) such that 8, + B"(G, M,) corresponds
to & for every r > ry. Hence z -8, € B"(G, M,,). Pick 1€ c (G, M,) with z =
A1) + B,,, and choose A € C"'(G, M) with pro, (1) = A. Forp’ = p + A(Q) € Z"(G, M)
we then have z = @,, for @, = pro,(p’ + p*~"0). O

3. Coclass families of p-groups

Coclass families are certain infinite families of finite p-groups of fixed coclass.
Their construction has been introduced in [10] based on a version of Theorem 2.3.
Here we exhibit a construction based on Proposition 2.5. The construction differs
from [10] in that it uses cocycles rather than their corresponding cocycle classes and
thus is slightly more explicit. This difference will be essential in our later applications.

Every coclass family of p-groups of coclass r is associated with an infinite pro-
p-group S of coclass r. The structure of the infinite pro-p-groups of finite coclass
is well investigated. For example, it is known that, for each such group S, there
exist natural numbers / and d so that the /th term of the lower central series y;(S)
satisfies that y,(S) = Zg, where Z,, denotes the p-adic numbers and S /y;(S) is a finite
p-group of coclass r. The integer d is an invariant of S called the dimension of S.
The integer / is not an invariant; in fact, each integer larger than / can be used instead
of [. The subgroup ¥,(S) is often denoted by T and called a translation subgroup of
S. Its subgroup series, defined by 7o = T and T,y = [T}, S], satisfies [T; : T;+1] = p for
i € Ny. Thus the series T =T, > T; > --- is the unique series of S-normal subgroups
in T, and T is called a uniserial S-module. We refer to [13] for many more details on
the structure of the infinite pro-p-groups of coclass r.

Given S and [, we write S; = §/v;4:(S) for i € Ny. Then S, Sy, ... is an infinite
sequence of finite p-groups of coclass r. This sequence is called the main line
associated with S. The main line is not necessarily a coclass family itself, but it always
consists of d coclass families and a finite number of other groups. More precisely,
there exists an integer & > [ so that the d infinite sequences (Sp+i, Sh+itd> Sh+i+2ds - - -) for
0 <i < d are coclass families. Note that the group S can be viewed as an extension of
Sh+ixja by its natural module T}y jq, for each h,i and j, and that the group Shiirja+k
can be viewed as an extension of Sy, jq by its natural module Ty ja/Theis jark, for
each h, i, j and k.

For each coclass family (Gg, Gy, ...) associated with the infinite pro-p-group S,
there exists an integer k so that each group G is a certain extension of Sy, j; with its
natural module T4 ja/Th+ir ja+k- The extensions can be chosen so that the main line
group Sp+i+ja+1 18 not a quotient of G;. In this case, the integer k is an invariant of the
coclass family called its distance to the main line.

To describe the groups in a coclass family explicitly, it is more convenient to use a
different type of extension construction. Instead of describing a group G; in a coclass
family as extension of an associated main line group Sj4;; s by its natural module
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of fixed size p*, we describe each G as an extension of a fixed main line group S,
for some suitable £ by a module of variable size M; := T¢/T¢, jq. It is not difficult to
observe that Tr, 4 = p’T;, and thus the group M; is isomorphic to a direct product of
d copies of cyclic groups of order p/.

We now use Proposition 2.5 to exhibit a complete construction for a coclass family
(Gy, Gy, . ..) associated with the infinite pro-p-group S of coclass r. For this purpose,
let m = Ing(Sg) =r+¢—1andlet j>3m+1. Let peZ*S;,T;) so that S is an
extension of S, with T via p.

Derinition 3.1. There exists 17 € Z2(Sg, Ty) so that G is an extension of S, by M; via
7, where 7, = pro,(p + p*™"0) and A(c) = p"'n.

The definition of coclass families asserts that, for each coclass family, there exists
an 7 yielding this family. It may happen that different cocycles 7,1, yield coclass
families with pairwise isomorphic groups; for example, this is the case if n; =
n2 mod B*(Sy, T¢). We note that every n € Z*(Sy, M;) yields a coclass family via the
above construction.

The significance of coclass families is underlined by the fact that, for (p,r) = (2,7)
or (p,r) =(3,1), all but a finite number of p-groups of coclass r are contained in a
coclass family.

4. Cochain sequences and elementary abelians

We now apply the results of Section 2.4 to the coclass family G, of Section 3. In the
language of Notation 2.8, this means that M = T. It would be natural to take N = T as
well, but we shall actually take N = pT, for the following technical reason: it simplifies
Remark 4.4 and, especially, Lemma 5.2 if M/p"N and M/N have the same elementary
abelian subgroups. Hence M, = M/p*N = T/p**'T, and G.,, = M,.P with extension
cocycle 7, € Z%O(P, M,).

Recall that if N < G and U < G/N, then a lift of U is a subgroup U < G such that
the projection map G — G/N maps U isomorphically to U.

Suppose that we are given H < G,,;. Setting K := HN M, and Q := HM,/M,, we
see that H is an extension H = K - Q, with Q < P, and K a Q-submodule of M,. If K
has a complement C in H (which is certainly the case if H is elementary abelian), then
C <G,y is alift of Q.

4.1. Extension theory. We recall some details of extension theory (see, for example,
[3, Section 3.7]). Let G be a finite group and M a left ZG-module. Recall that every
group extension I' = M - G can be constructed using a 2-cocycle 1 € Z*(G, M): the
underlying set is M X G, with multiplication

(t1,81)(t2, 82) = (11 +8't2 + T(81, 82), 8182)-

Associativity is equivalent to the cocycle condition. The extension splits as a
semidirect product I' = M = G if and only 7 € B*(G, M). If T = A(f), then G(f) =
{(—f(2),8) | g € G} < Tis alift of G, and every lift arises thus.
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Lemma 4.1. If f, f € CY(G, M) satisfy A(f) = T = A(f"), then ' — f € Z\(G, M) and,
moreover,

f' - feBY(G,M) & G(f)and G(f') are conjugate by an element of M.

Proor. This is Proposition 3.7.2 of [3]. Observe, from the proof of that result, that
conjugation by elements of M induces every coboundary. O

4.2. Lifting elementary abelians.

Lemma 4.2. Let Q < P and suppose ro > 2m. Then the three following statements are
equivalent:

(1)  Q has alift Q, < G,y forall r > ro; and
(2)  Qhas alift Q, < G,y for at least one r > ry;
(3)  T.lo = A(fs) for some cochain sequence f, € CiO(Q, M.) of level at most m.

Proor. Let H, < G,,; be the subgroup with M, < H, and H,/M, = Q. Then H, =
M, - O with extension class 7,|p, and Q has a lift O, < G, if and only if T,|p lies in

B%*(Q, M,). Now apply Lemma 2.16. O

Now suppose that E < G, is elementary abelian. Setting K = EN M, and U =
EM,/M, < P, as above, we have E = K x U for a lift U < G,,; of U. Recall that
U = U(¢) for some ¢ € C' (U, M,), with A(¢) = 7,|y.

Noration 4.3. We shall need to refer to several different maps between cohomology
modules. Let L € M be a submodule.

e Inclusion L — M induces H"(G, L) K HY (G, M).
e mul": M/L - M/p'L, x+ L p'x+ p'L induces H"(G, M/L) Eil—> H"
(G,M/p"L).
Note that mul” o mul®* = mul’**, and that
pro,(p + p""o) = pro,(p) + mul"" pro,,(c).

REMARK 4.4. Since K < M, = T/p’*!'T is elementary abelian, it follows that

-

r r+1 (mul")!

K<QM,)=pT/p""'T —— T/pT.

So K = mul" (W) for some W < T/pT. Since E is abelian, [U, K] =1, which is
equivalent to W < (T/pT)Y.

Norarion 4.5. & is the set of all triples (U, f., W) with U < P an elementary abelian,
fe € C}O(U, M,) is a cochain sequence of level at most 2m such that A(f,) = 7.|y and
W < (T/pT)Y.

Lemma 4.6. Suppose that r > ry = 2m. Every elementary abelian E < G,y has the
form E = E,(U, fo, W) := mul"(W) x U(f,) for some (U, f,, W) € E.
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Proor. We saw above that E = mul"(W) x U(¢) with U < P elementary abelian,
W < (T/pT)Y and ¢ € C'(U, M,) with A(¢) = 7,|y. As U(¢) is a lift of U in G,,,
there is f, € C}O(U, M.,) of level at most 2m with A(f,) = 7.|y, by Lemma 4.2. Hence
¢ — f, € Z'(U, M,), so, by Lemma 2.17, there is z, € Z} (U, M,) of level at most m with
Z=¢—fr. So (U, fo + 2., W) € E,and E = mul (W) X U(f, + z,). o

5. Change of module

The following technical lemma is required in the proofs of Proposition 6.2 and
Lemma 7.1. We revert to Notation 2.8, and consider the case of two submodules
L, N C M satisfying the condition pL. C N C L.

ExampLe 5.1. If (U, fo, W) € E, then W < T/pT,and so W = L/pT for some pT C L C
T. Hence pLC N C L, since N = pT.

We shall investigate the cohomology maps induced by the short exact sequence

0— LN M/p'N — M/p'L — 0.
As we now have to distinguish between two different projection maps, we shall denote
them by M ﬂ M/p"N and M ﬁ M/p'L.
LemmA 5.2. Suppose the RG-submodule L € M satisfies pL € N C L.

(1) Assume rg > 1. Then j, o i, = 0 for the chain maps

C*(G, LIN) -5 C.(G, M/p*N) > C.(G. M/ p°L)

o
given by i,(c), = mul’(c) and j,(a.), = a, + p'L.

(2)  Suppose that as € Z; (G, M/p®N) satisfies ju(@.) € By (G, M/p*L). If a. has
level w < ry — m, then

@e = in(€)e + A(proY (k + p*~@r™ 1))
for some ¢ € Z"(G,L/N), k€ C""'(G, M) and A € C""\(G, L).
Proor. (1) Pick ¢ € C*(G, L) with proé(E) = ¢, then pc € C*(G, N) and
in(c)e = prol/(0 + p*' - p¢) € C}. (G, M/p°N) with level 1 < ry.

If @, = prol/(p + p*~“0) € C} (G, M/p*N), then j,(as) = prol(p + p*~“o).

Clearly i, j. are chain maps. And j,i, = 0, since c takes values in L.

(2) Let a, = pro¥(p + p*=“o), 50 ju(as) = prok(p + p*~“o). By Lemma 2.16,
Jn(a@e) = A(y.) for some y, € C?O‘I(G, M/ p°®L) of the form

Yo = prol(k + p*~™1) withk € C"" (G, M), 1€ C"'(G, L).
Applying Lemma 2.10, we have p = A(x), and
p"o = Ad) + p“*"¢  for some ¢ € C"(G, L).
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From a, € Z} (G, M/p*N), it follows that A(c) takes values in p“N, and so A(c) takes
values in N. So ¢ := pro})(¢) lies in Z*(G, L/N), and i,(c), = pro" (p"¢). Hence

-—wa_)

@, =pro)(p+p
= prol (A(x + p*~“*™ 1) + p°c)

= i,(c) + A(pro, (k + p*~ @™ 1)). o

6. Morphisms in the Quillen category

Norarion 6.1. Consider the triple (U, f,, W) € & Recall from Section 2 that G,
has underlying set M, X P and that U(f,) = {(—f.(u),u) | u € U}. So the subgroup
E.(U, f,, W) < G,y of Lemma 4.6 is

E(U, fo,W)={(p'w— fy(w),u) |lue Uwe W}.
Let j{ :Wx U — E.(U, f,, W) be the isomorphism (w, u) — (p"w — f.(u), u).
ProposITION 6.2. Suppose that ro > 3m and m > 1. For elements (U, f,, W), (U’, f., W)
€ & the set of isomorphisms W x U — W’ x U’ of the form

/ conjugation ( j,.’

WxU —2— E(U, f.,W) TS EAUL L W) = WX U
n Gry

is independent of r.

For the proof, we need two lemmas. Observe that mul’™" embeds M,, = T/p™*'T
inG,.j as p" 0T/ p™*'T < M,.

Lemma 6.3. Suppose that m > 1 and ry > 2m. Let (U, f,, W) € &.

(1) Auty, (E(U, fo, W) = Autour—om, (Er(U, fo, W)).
(2) The subgroup

N ={xe M, | mul""(x) € Ng,, (E-(U, fo, W))}

depends on neither r nor f,; nor does the action of N on W x U obtained by
using . to identify E,(U, f., W) with W x U.

Write W for the module pT € W € T with W = W/pT.

Proor. (1) Conjugation by ¢t € T fixes M, U(f,)/M, and W pointwise and is described
by A(t) € BN(U, M,):

O pw = frw),u) = (P'w — A (w) — fi(u), w).

If ¢ normalizes mul’ (W) x U(f,) < G,+ then A(f) must take values in p"W. Hence
A(t) € p"Z" (U, W) C p~"BY (U, W). So there is ¥ € W such that A(f) = p""A(¥), and
pro,(p"~"¥) = mul"" pro, (p"*™"'¥) € mul""(M,,) has the same conjugation action
ast.

(2) Conversely, if v =¥ + p*!T € M,,, then mul"~"(v) normalizes mul” (W) x U(f;)
if and only if A(p"~"*¥) € Z' (U, T) takes values in p"W, that is, if A(v) = mul™(z) for
some z € Z'(U, W). The action on W x U is then (w, u) — (w — z(), ). O
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LemmA 6.4. Suppose ro > 2m and g € P. Let (U, fo,, W), (U, f.,8W) € &. Define
Xr € C'(8U, M,) by
Xr(0) = C ) = 1,(8,v%) + (v, 8) — i ().

Then y. € Z}”(g U, M.,) is a cocycle sequence of level at most 2m.

Proor. For ¢ € C"(H, M) we, of course, define éc € C"(*H, M) by
Ee)ky, ... k) = Ec(kS, ... KS).
Everything is of level at most 2m. Since A(f)) = T.|sy and A3 f,) = 4(T.|v)
ACx V1, v2) = 51,0, v5) = 1,(8,V5) + T,(8, ViV5) = 7,(8, V)
+ 7:(v2,8) — T:(Viv2, 8) + T,(V1, 8) — T, (v, v2)
= A(T,)(g, v, V5) = A(T)(v1, g, V5) + A(T,)(v1,v2,8) = 0. O

ProOF oF ProposiTioN 6.2. If “OE. (U, f,, W) = E(U’, f/, W), then U = U’ and
SW =W’. So we assume that g € P is fixed, and consider which ¢ € M, satisfy
WOE (U, f., W) = E.(8U, f.,8W) and which isomorphisms arise in this way.

The map F: Wx U — $W x 8U, given by jf, then conjugation by (¢, g) and then
(jf’)‘1 must have the form F(w, u) = ($w — n(%u), $u) for some 7 € Z'($U,$W). So we
consider g, 7 to be fixed and ask for which values of r there is t + p"*!T € M, realizing
this F. The condition on ¢, i can be phrased as

& Q)(p'w = frw),u) = (p" - w = p'n(u) = £ Cw), *u)(t, o).
Equality in #U is immediate. We are left with the condition in M, given by

t+p" 8w =S8(fw) + T.(g, u) = p'Cw — 7(w) — £1Cu) + Ut + 7,(u, g).
So, with y, as in Lemma 6.4,
p'ru) = G f)Cu) - 7.(8, u) + 7.(u, 8) — £ Cu) + A)(*u)
= (xr + AD)Cuw).
That is, F is realizable for this r if and only if
p'n—x, € B'CUM,). 6.1)

Since & takes values in ¢W = 8W/pT, a necessary condition for any such F to be
realizable is that
xr+p - SWeB'\GU,T/p -EW). (6.2)

Since y. € Zio(g U, M,) has level at most 2m and ry > 2m + m, we deduce, from
Lemma 2.16, that (6.2) is either satisfied for all rg or for none.

If (6.2) is satisfied, then we apply Lemma 5.2 withG = 8U, @, = yo. and L = W, and
hence L/N = 8W. Note that y, has level at most 2m < ry — m. We conclude that there
are c € Z' (U, W), k € C°(U,T) and A € C°(8U,8W) with y, = mul®(c) + A(pro, (k +
p*3"1)). We also conclude that if we take 7 = ¢, then (6.1) is solvable for all r: that
is, thisone map F : W x U — 8W x 8U is independent of r. But all other maps for this
value of g correspond to a M,-automorphism of U X W followed by F, and we saw in
Lemma 6.3 that these isomorphisms are independent of r too. O
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CoOROLLARY 6.5. Suppose that e > 3m and m > 1. For elements (U, fo, W),(U’, f.,W’') €
& the following statements are equivalent:

() E.U, fo,Wyand E.(U’, f., W) are G,1-conjugate for some r; and
2) E.(U, fo,W)and E.(U', f.,W’) are G,,1-conjugate for every r.

Proor. They are G,,i-conjugate if and only if the set of isomorphisms in
Proposition 6.2 is nonempty. But this set does not depend on r. O

7. Wrapping up the main theorem
Lemma 7.1. Suppose ro >2m. Let (U, fo,, W)€ & For each V< W X U there is
W, f.,W") € & such that, for all r, j‘rf(V) =E.(U', f.,W). Moreover, the map

faol
W x U’;>E(U'f.,W’)%E(Uf.,W)(J') WxU

has image V and is independent of r.

Proor. Take W =VNWand U’ ={ue U |uW e VW/W} < U. Then V/W’ = U’ and
W’ is a direct factor of V, so there is ¢ € Z'(U’, W) with V = {(w — c(u), u) | w € W’,
u e U’}). Then

W) =™ w = p* o) — fu),w) [we W ue U').

In the terminology of Lemma 5.2, f! = f.|y + i1(c)e. In particular, k¥(w,u) = (w —
c(u), u). O

CoROLLARY 7.2. Suppose that ro > 3mand m > 1. For elements (U, f,, W),(U’, f.,W') €
&, the set of homomorphisms W x U — W' X U’ of the form

il morphism (j{/ )
WxU —2— EJU, f., W) o EU, [, W) —— W XU’
m p(Gryg

is independent of r.

Proor. Every such map 1s an 1somorph1sm to some V < W’ x U’. From Lemma 7.1,
for some (U”, fI', W), ], (V) E.(U”, fI’,W"”) for all r. From Proposition 6.2, the
set Iy of isomorphlsms of the form

conjugation (],f” )~

P
WxU —L— E.(U, fo,W) —— E.(U", f/,W'") —— W’ xU”

inGy

is independent of r. But ¢ — k" o ¢ is a bijection from 7'y to the set of homomorphisms

of the form
f orphism , (j, ) ! , ,
W><U—>E,(Uf.,W)T>E,(U oL, W W xU
p r+l
whose image is V. O
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ProrosiTioN 7.3. Suppose e > 3m and m > 1. Choose a subset &y C & such that, for
every conjugacy class C of elementary abelian subgroups in G, there is exactly
one (U, fo, W) € & such that E, (U, f,, W) lies in C. Define C, to be the full
subcategory of the Quillen category /,(G,41) on the E.(U, fo, W) with (U, f,, W) in
&o. Then:

(1) C, is a skeleton of ,(G,1) for every r > ro; and

(2) the categories C, are all isomorphic to each other.

Hence the Quillen categories <7,(G,.1) are all equivalent to each other.

Proor. &y exists, by Lemma 4.6.

(1) We need to show that each conjugacy class C in G, contains E,.(U, f,, W) for
precisely one (U, fo, W) € &. From Corollary 6.5, there is, at most, one such triple.
From Lemma 4.6, there is some (U’, f,, W’) € & such that E.(U’, f,, W’) lies in C. By
construction of &y, there is (U, f,, W) € & such that Ey(U, f., W), Eo(U’, f., W’) are
Go-conjugate. So E.(U, f,, W) lies in C, by Corollary 6.5.

(2) For r, " > ry and (U, f,, W) € &y have isomorphism

)1 7
X EAU fu W) Z Wx U L Ep(U £ W),

with A7 = (2!, For a morphism E,(U, fu. W) > E.(U", f;,W") in C,, define F(¢)
in C~ by

/lf, /lf,,
F(®) : Ep (U, fuu W) =5 E/(U, o, W) 5 EAU, 1 W) =55 Ep (U, fL W),

This is a bijection
CHEU, fo, W), E[(U', o, W) = Cr(Ex (U, fo, W), E (U, 3, W")),
by Corollary 7.2, and it is functorial since F'(Idwxy,s) = /l{r, Id /l'rf;r = Idwxuy, (). Also,
for EXU, f1, W) 5 E.U”, f7,W")in C,,
FWF@®) = AL, ydl, 0 AL.gAL, = Al wgdl, = FW9).

This establishes (2). The last part follows from (1) and (2). O

8. Examples

8.1. Main line maximal class groups. If p is an odd prime, then G(p, 1) consists
of one infinite tree, together with the isolated point C.: so there is only one uniserial
p-adic space group of coclass one. We recall the construction of the main line groups
from [13, Example 3.1.5(ii)].
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The pth local cyclotomic number field is K = Q,(6), where 6 has minimal
polynomial ®,(X) = (X? —1)/(X —1). The ring of integers in K is O = Z,[6],
which is a free Z,-module of rank p — 1 with basis 1,6, ... ,0P~2. The coclass one
uniserial p-adic space group is then G := O = C,,, where the generator 7 of C,, acts as
multiplication by 6: that is, 'v = 6v for v € O.

The valuation ring O has unique maximal ideal @O, where @ = 6 — 1. So ¥;(G) =
a0 for i > 2; and, by considering ®,(X + 1), one observes that pO = a?~'O.
Since 1,a,...,a”% is a Zp-basis of O, this means that O/@O = F,, and hence
iG)/7i11(G) = C, for i > 2.

The main line groups are the quotients G; = G/y;(G). These main line groups
fall into p — 1 coclass families, where, for 0 < r < p — 2, the ith group in the rth family
is Gy4(p-1yi- From [8] (see, also, Proposition 7.3), we know that all groups in one
coclass family have equivalent Quillen categories. But here a stronger result holds: all
p — 1 coclass families have the same equivalence class of Quillen categories.

Lemwma 8.1. For this group G = O < C,, the Quillen category of G/y(G) is independent
(up to equivalence of categories) of i fori > p + 1.

Remark 8.2. For p = 3, the first author and King [9] have shown that G/ys(G),
G/v6(G) and G/y7(G) have isomorphic cohomology rings, and that these differ from
the cohomology ring of G/y4(G) = 312,

Proor. If v € O, then (vr)? = (®,_1(6) - v)r” =1, and so vr has order p. Since
pO = a?~10, there are two kinds of order p elements of G/v;(G):

e elements of the form vi’"y;(G), withve Qand 1 <r < p—1;and
e clements of y;_p+1(G)/vi(G) = (C,)P~".

Moreover, the conjugacy class of vt in G is {wr | w € v + @O}, and the centralizer
of vry;(G) in G/y;(G) is elementary abelian of rank two, generated by vry;(G) and
Yi-1(G)/¥(G). So, as T acts on yi_ps1(G)/7(G) = & PO/~ as multiplication by
1 + a, the objects of the Quillen category form the following equivalence classes:

e the class of (v;7yi(G), yi—1(G)/yi(G)) = ny for some fixed transversal vy, ..., v,
of O/a0;

e the class of (v;7y;(G)) = C,, for the same transversal v, ..., v,; and

e the conjugacy classes of subgroups of y;_,.1(G)/yi(G) = O/ar~10 = CZ_I under
the action of C,, given by multiplication by 1 + a.

So the equivalence classes of objects admit a description which is independent
of i. From this description and the fact that (v;7y;(G), ¥,—1(G)/yi(G)) has normalizer
@;1yi(G), ¥i-2(G)/vi(G)), it follows that the morphisms between these representatives
also admit a description which is independent of i. O
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As p € @O, we may always take the transversal vi,...,v, tobe 0,1,...,p — 1. For
p =3 and i = 4, the Quillen category has skeleton
(@)
(a?,a?) (07, 0) (1,0%) (21,0%)

1

where the three automorphisms of each rank two elementary abelian are omitted, for
clarity. Specifically, the three maps (27) — (27,¢@°) are 2+ (2 + da’)r for 1 =0, 1,2,
and three automorphisms of (27, @) fix & and act on 27 as one of these three maps.

8.2. A more substantial example. Together with Leedham-Green, Newman and
O’Brien, the first author studied the 3-groups of coclass two in [11]. In particular,
they construct the skeleton groups in the four coclass trees (out of sixteen) whose
branches have unbounded depth. Here we consider the skeleton groups in one of these
unbounded depth trees: that is, the tree associated to the pro-3-group, which they
denote as R (see their Theorem 4.2(a)).

We briefly recall the construction of the skeleton groups R; 3,, from [11,
Section 5]. Let j > 7. Let K = Q3(6) be the ninth local cyclotomic number field, so 6
is a root of ®g(X) = X® + X> + 1. Let O be the ring of integers in K; then O = Z3[6] is
free as a Z;-module, with basis 1,6, ..., 6. Moreover, O is a local ring, with maximal
ideal p = (6 — 1)O. Observing that (8 — 1)° and 3 are associates, one sees that 30 = p°.

We now recall the twisting map p A p — O, which we shall denote by y,. Note,
however, that, in [11], it is called . It is the map

Yo(x Ay) = oa(x)o-1(y) — -1 (X)o2(y),

where the automorphism o, € Gal(K/Q3) is given by o(0) = 6. Lemma 5.1 of [11]
shows that
3 i=jmod3,

p' AP =pE fore= .
ol ) 2 otherwise.

Pick j > 7 and set T = p/=, Ty = p/=**. Then yo(T AT) =T}, and yo(T; A T) = Ty,

for
5 .
PR 317
2j-1 3¢

Now pick a unit ¢ € O* and set v = cyyg. Forany me{j,j+1,...,k}, one defines
T';_3,m to be the group with underlying set T'/T,, and product

(x+T)x(+Tpw)=(x+y+y(x A )+ Ty
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Finally, one sets R;_3,,,, = Tj-3,,, > C, where C = (1) has order nine and acts on T
via"v =6y forv e T. Note that |[R;_3 5 | = 3m+2,

LemMma 8.3. Letv,weT.

(1) +T) =rv+T,inT; 3, forallrelZ
(2) The order three elements of R;j_3 ., are:

o elements of the form (v + T,,)T>", withv € T and r € {1,2}; and
o clements of the form v + T,, withv € T, .

(3)  Ifv+T, has order three, then y(v Aw) € T, for allw € T. Hence Qi(Tj_3,,m) <
Z(Tj—3,y,m)-

Proor. (1) This follows by induction, since y(v A rv) = ry(v A v) = 0.

(2) Firstly, [(v + T,)T°1? = (1 + 6® + 6%)v + T,, = 0. Secondly, (v + T},)* = 3v + T),..
This is zero for v € 37'T,, = Typ_s.

(3) Suppose thatv € T,,_¢ and w € T. Then y(v A w) lies in T j4 -9+, With € € {2, 3}.
Since € > 2 and j > 7, this means that y(v A w) lies in T,. O

Lemma 8.4.
(1) The orbit of (v + T,,)T> under conjugation by Ti3ymis

(V' + T |vev+Ts).

2) v+ T and (w+ T, are conjugate in Rj-3ym if and only if v+ T3 and
w + T3 lie in the same orbit under the action of C on T [Tj;.

(3) The action of Rj_3, on Ty_c/Ty factors through C and coincides with the
action of C on T /T via the isomorphism v + Tg +— (0 — 1Y" %y + T,,.

(4) Cr, ((V + Tm)T3) = Tm—3/Tm‘

=3..m

Proor. (1) Since T}, and the image of y liein T'; C T7,

(w+Tm)[(v + Tm)T3] =[(W+Tp)*(v+Tp) = (—93w + Tm)]‘l'3

e+ (1-6w+T)r.

Since p = (6 — 1)O and 30 = 1°, it follows that (1 — 63T = (1 — )°T = p°T = Ts.

So, for each v/ € v + T3, we find w € T with YT [(v + T,,)7*] = "/ + T,,)7> and
V" €V + T;. If we now adjust w by adding u € T, then, since Y(T AT,) = T34 €
T,.¢, we alter v’ by an element of (1 — P)u + Trr6. So if the error v/ — V' lies in Tyy3,
then, with one correction, we can reduce to an error in 7'y¢. Iterating reduces the error
to an element of T,.

(2) This follows from (1).

(3) The action factors, by Lemma 8.3(3). The second statement follows, since C
acts as multiplication by 6.

(4) This follows from (3), since 73/T¢ is the subspace of T/T¢ consisting of
elements fixed by 7°. O
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Let d be the number of orbits for the action of C on 7/T3. One easily verifies that
d =11. Pick vy,...,v; € T such that the v; + T3 form a set of orbit representatives for
this action.

Lemma 8.5. Every maximal elementary abelian subgroup of Rj_3,, . is conjugate to
precisely one of the following:

(1) d rank four groups of the form V; = ((v; + Ty))T>) X T3/ Tn; oF
) Vo =T,-¢/T, of rank six.

If U <V, is not contained in Vy, then it is not conjugate to a subgroup of any other V.

Proor. Any elementary abelian outside T),-¢/T, must contain some element of the
form (v + T,,)7° and is therefore contained in (v + T,,)7T>) X Cros,, (v + T,)7>): that
is, (v + Ty)T3) X Typ_3/Ton. Since m > j > 7 and, therefore, m —3 >3, no two of the
rank four elementary abelians in (1) are conjugate. This argument also demonstrates

the last part. O

TueoreM 8.6. Up to equivalence of categories, the Quillen category of the skeleton
group R;_3,, , is independent of j,7y,m.

Proor. Vjy is a normal subgroup, and Lemma 8.4(3) describes the conjugation action.
So, by the last part of Lemma 8.5, it suffices to show that if U < V; is not contained
in Vy, then the set of homomorphisms U — V; lying in the Quillen category is
independent of j,y, m.

So U ={(v+T,)7?) x A for some A < T,,_3/T,, and some v € v; + T,,_3. Consider
conjugation by (u + T,,)". By Lemma 8.4, this can only send (v + T,)7° to an element
of V if 6"v; lies in v; + T3 and, if 8"v; does lie there, then, by adjusting u, we may send
(v + T,,)7° to any element of the form (V' + T,,)7> with v € v; + T,,_3. Moreover, the
restriction to A of conjugation by (# + 7,,)7" only depends on r. O

8.3. The generalized quaternion groups. Let G be a finite group, and & a field of
characteristic p. Write
H*(G,k) = lim H*(E,k).
Eed,(G)

Quillen [16, Theorem 6.2] proved that the induced homomorphism
¢c : H (G, k) = H' (G, k)

induces a homeomorphism between prime ideal spectra.

Our result shows that if G, is a coclass family, then H*(G,, k) is independent of r.
However, this does not mean that the map ¢¢, is an isomorphism for large r. The
(generalized) quaternion groups Oy« (n > 3) provide a good example.

The quaternion groups form a coclass sequence. The mod-2 cohomology ring
H*(Qn,Fy) is well known

H*(Qs,F2) = Fax,y, 21/ (&% + xy + ¥, %y + xy%)
H (Q,Fy) 2 Fy[x, v, 2)/(X* + xy,y")  (n>4),
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with x,y € H' and z € H*. To our knowledge, the earliest references are [4, pages 253—
254] for the additive structure and [15, page 244] for the ring structure. By 1987,
Rusin [17, page 316] could quote the result without needing to give a reference.

Since H'(G, F,) = Hom(G, F,) and all order two elements lie in the Frattini
subgroup, it follows that x, y € ker(¢y,,). In fact, H*(Qa,F>) = F,[z], since z restricts
to the central C, as t* € H*(C», F,) = F,[f] (see Rusin’s construction of z as a top
Stiefel-Whitney class [17, page 316]). So both H*(Q.:,F,) and H*(Q»,F,) are
constant for n > 4, but ¢o,, is never injective.

In fact, one can demonstrate that ¢,, is never injective without even knowing the
cohomology of Q,.. Recall that a class x € H*(G, k) is called essential if its restriction
to every proper subgroup H < G vanishes: so if G is not elementary abelian, then every
essential class lies in the kernel of ¢;. Now, Adem and Karagueuzian showed [1] that
H*(G,F,) is Cohen—Macaulay and has nonzero essential elements if and only if G is
a p-group and all order p elements are central. As QO satisfies this group-theoretic
condition, it follows that ker(¢y,.) # 0.
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