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Turbulence induced by a swarm of rising bubbles
from coarse-grained simulations
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We performed numerical simulations of a homogeneous swarm of bubbles rising at large
Reynolds number, Re = 760, with volume fractions ranging from 1 % to 10 %. We consider
a simplified model in which the interfaces are not resolved, but which allows us to simulate
flows with a large number of bubbles and to emphasize the interactions between bubble
wakes. The liquid phase is described by solving, on an Eulerian grid, the Navier—Stokes
equations, including sources of momentum which model the effect of the bubbles. The
dynamics of each bubble is determined within the Lagrangian framework by solving an
equation of motion involving the hydrodynamic forces exerted by the fluid accounting
for the correction of the fictitious self-interaction of a bubble with its own wake. The
comparison with experiments shows that this coarse-grained simulations approach can
reliably describe the dynamics of the resolved flow scales. We use conditional averaging
to characterize the mean bubble wakes and obtain in particular the typical shear imposed
by the rising bubbles. On the basis of the spectral decomposition of the energy budget, we
observe that the flow is dominated by production at large scales and by dissipation at small
scales and we rule out the presence of an intermediate range in which the production and
dissipation are locally in balance. We propose that the k—> subrange of the energy spectra
results from the mean shear rate imposed by the bubbles, which controls the rate of return
to isotropy.
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1. Introduction

In this paper, we are interested in the flow induced by the rise of a swarm of bubbles. In
the configuration considered here, the only source of momentum is the buoyancy acting
on the bubbles, and without the bubbles the liquid would remain at rest. It is a complex

+ Email address for correspondence: remi.zamansky @imft.fr
1 Present address: Institute of Meteorology and Climate Research, Institute for Hydromechanics,

Karlsruhe Institute of Technology, Germany.

© The Author(s), 2024. Published by Cambridge University Press 984 A68-1

L))

Check for
updates


mailto:remi.zamansky@imft.fr
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.230&domain=pdf
https://doi.org/10.1017/jfm.2024.230

https://doi.org/10.1017/jfm.2024.230 Published online by Cambridge University Press

R. Zamansky, F. Le Roy De Bonneville and F. Risso

system in which the movements of the bubbles and the liquid are coupled, leading to the
emergence of collective phenomena and original properties of the flow (Risso 2018). We
consider the case of a homogeneous swarm of large deformed bubbles, with a Reynolds
number, based on the bubble size and terminal velocity vy, of a few hundreds, so that each
bubble generates an intense wake.

A first manifestation of collective effects is the decrease in the average bubble rising
speed as the gas volume fraction « increases (Zenit, Koch & Sangani 2001; Garnier,
Lance & Marié 2002; Riboux, Risso & Legendre 2010). On the other hand, the main
cause of bubble velocity fluctuations is attributed to wake instabilities. Indeed, when
the deformation of a bubble and its Reynolds number are large enough, the wake
becomes unstable and the bubbles exhibit path oscillations (Mougin & Magnaudet
2001; Zenit & Magnaudet 2008; Ern er al. 2012) and this seems to remain the
case even for high volume fractions, of the order of 30% (Colombet et al. 2015).
These wake-induced fluctuations are probably the reason why bubbly flows can remain
homogeneous, and be generated in laboratory bubble columns (van Wijngaarden 2005).
However, the stability of homogeneous bubble columns remains an open problem and is
limited to reasonably small geometries (of the order of one metre) with well-controlled
uniform bubble injection. In most industrial applications, the gas volume fraction is not
homogeneous throughout the flow and large-scale buoyancy-induced motions develop
(Mudde 2005).

Fluid fluctuations exhibit very specific properties that have been identified
experimentally (Lance & Bataille 1991; Zenit et al. 2001; Garnier et al. 2002; Risso
& Ellingsen 2002; Rensen, Luther & Lohse 2005; Martinez Mercado, Palacios-Morales
& Zenit 2007; Riboux et al. 2010; Mendez-Diaz et al. 2013; Prakash et al. 2016;
Alméras et al. 2017). Several contributions to fluid fluctuations can be distinguished (Risso
2018). For a homogeneous swarm of bubbles, there are, on the one hand, the localized
perturbations around the bubbles (due to both potential effects and their direct wake) and
the turbulence induced by the bubbles. The latter is essentially driven by the interactions
between the bubble wakes (Riboux ef al. 2010; Riboux, Legendre & Risso 2013; Amoura
et al. 2017; Risso 2018). The mean kinetic energy varies approximately as K ~ ow(z). The
velocity fluctuations are strongly anisotropic, with the variance of the vertical velocity
being more intense than that of the horizontal velocity. Their probability density functions
(PDFs) are non-Gaussian, with exponential tails and a strong asymmetry between the
upward and downward directions.

The structure of this flow is also characteristic, and the velocity spectrum exhibits a
rapid k—3 decay in a wavenumber range extending around the bubble diameter (Lance
& Bataille 1991; Riboux et al. 2010; Alméras et al. 2017). The origin of such a scaling
law as well as its precise limits in the spectral domain remain poorly understood. From a
dimensional point of view, we can state that the energy spectrum must be written as

E(k) = f2k73, (1.1)

where f is the inverse of a time scale. Lance & Bataille (1991) have proposed that the k—>
regime is associated with an equilibrium between production and dissipation and that this
frequency results from the characteristic shear rate of the wakes. Other flows also present
a k=3 spectrum. This is the case, for example, of two-dimensional turbulence at scales
smaller than the energy injection scale. In this flow, the flow time scale is imposed by the
conservation of the enstrophy (Kraichnan & Nagarajan 1967; Batchelor 1969). Decaying
turbulence subjected to intense rotation also develops a k—> spectrum with the time scale
imposed by the rotation rate (Bellet ef al. 2006). Another example concerns the turbulence
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Figure 1. Snapshots of the vertical component of the liquid velocity field in a vertical plane for (a) « =2 %
and (b) @ = 10 %. The blue points represent the positions of the bubbles.

under the wave surface and this time the time scale results from the frequency imposed by
the swell (Magnaudet & Thais 1995; Thais & Magnaudet 1995).

In § 2, we present the numerical approach and the physical parameters used to simulate
the flow that is subsequently analysed. Detailed comparisons between the numerical
simulations and experimental results are presented in § 3. In § 4, we propose characteristic
scales of the flow based, in particular, on the properties of the mean wakes. Finally, to
study the mechanisms underlying the k~ regime, we consider the spectral decomposition
of the energy budget in § 5, and we characterize the scale-by-scale anisotropy of the flow
in § 6.

2. Simulation of the bubble swarm

Although the equations describing precisely this type of flow are relatively well known,
their numerical simulation remains out of reach, due to the large spectrum of temporal
and spatial scales involved. The smallest scales are a priori associated with the interfacial
dynamics and the development of a very thin boundary layer around the bubbles, while
the largest scales are related to the length of the wakes and the evolution of the collective
dynamics of the flow that takes place. In order to simulate these flows, we use the approach
proposed by Le Roy De Bonneville et al. (2021). This approach abandons the precise
description of the flow around the bubbles as well as the capillary effects while keeping
a realistic dynamic of the downstream part of each wake and enables a straightforward
analysis of the structure of the liquid velocity field and the dynamics of the bubble
swarm. This modelling, based on the Euler—Lagrange approach, allows us to simulate
flows with a large number of bubbles and to focus on the interactions between wakes.
As we briefly recall below, the main difficulty of this type of calculation comes from
the self-interaction of a bubble with its own wake. Le Roy De Bonneville e al. (2021)
proposed a method enabling taking into account this effect and to accurately calculate
the trajectory of each bubble. This method allowed us to obtain numerical simulations
of the turbulence induced by a swarm of bubbles as illustrated in figure 1. We show
later, in § 3, that the flow structure predicted by this approach is in good agreement with
experiments.
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2.1. Modelling

The use of the Euler—Lagrange approach amounts to considering a filtering of the flow
field near the bubbles. In this approach, the action of the dispersed phase on the flow is
introduced as a volume source of momentum localized around the bubbles. The liquid
velocity is given by the Navier—Stokes equations:

Diuy = —inf+vAuf+£; Veu =0, 2.1
pf Pf
where uy represents a filtered velocity field around the bubbles, v the kinematic viscosity
of the liquid and py its density. Note that ps is the pressure variation relative to the
hydrostatic pressure P; with —1/0¢VP;, = (f), which ensures that the computation
is carried out in the frame where the average fluid velocity is zero. These equations
are supplemented by tri-periodic boundary conditions and their numerical solutions are
obtained by a spectral method as detailed in Le Roy De Bonneville er al. (2021) and
Zamansky (2022).
The volume forcing of the liquid phase in (2.1) is given by

Np

f, ) ==Y Fr.p0)Go(x — xp(1)), (22)

b=1

where Fr_,;, is the momentum exchange rate between the fluid and the bubble b, and N,
is the number of bubbles. Term G, is the Gaussian kernel of the projection and o is its
characteristic size which is of the order of the diameter of the bubble. The latter is thus
much larger than the mesh size: 0 &~ d > Ax. Indeed, although the details close to the
bubbles are filtered, the flow presents a priori scales much smaller than the bubble size.
These small-scale fluctuations result from the evolution of the turbulent wakes and their
interactions.

The trajectory of the bubbles is obtained by solving Newton’s equation for each bubble.
It involves the hydrodynamic force which depends on the velocity of the liquid (and its
derivatives). Le Roy De Bonneville er al. (2021) considered that the bubble is subject to
the drag force, the added-mass force, the inertia force of the fluid as well as the buoyancy.
We have not retained the history force because it has a priori a negligible effect for large
Reynolds numbers. On the other hand, when the velocity gradient is large at the scale
of the bubble, the lift forces can certainly play a role. Similarly, the anisotropic effects
of drag and added mass related to a non-spherical bubble are also important. We aim to
reproduce the experiments of Riboux et al. (2010) for millimetric air bubbles in water.
Given the Reynolds number of the bubbles and the Morton number, the bubbles clearly
adopt a non-spherical shape (Maxworthy et al. 1996). However, to simplify the modelling
of the problem, we consider that the bubbles are spherical, assuming that in the case of
the homogeneous swarm, the anisotropic aspects are not essential. Consistently, we have
as well not retained the lift force. Note that the value of the lift coefficient, and even its
sign, being very dependent on the shape of the object, it would be delicate to choose its
value anyway. Finally, considering that the density of the gas is very low, we obtain for the
dynamics of the bubble:

dvy, _ 3Cp

"ar T ad

The drag coefficient is chosen, in agreement with the experiment of an isolated bubble,
at Cp = 0.35 and the added-mass coefficient at Cj; = 0.5 in coherence with the spherical
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bubble hypothesis. In this equation, the bubble force is calculated from the corrected liquid
velocity #y j,, as proposed in Le Roy De Bonneville et al. (2021), and briefly explained
below. Note that interactions between bubbles are accounted for through the liquid
disturbances generated by the bubbles, which is well suited for the study of homogeneous
bubbly flows, but should probably be improved by adjusting of the drag and added-mass
coefficients according to the local bubble distribution, in the spirit of the method proposed
by Akiki, Jackson & Balachandar (2017).

Finally, the term F;j, is a repulsive force between bubbles. It is introduced to prevent
the bubbles from overlapping and to ensure that the distance between bubbles remains
greater than the characteristic size o of the momentum source. The force depends on
the distance between each pair of bubbles 7, =[x, — x| and is given by Fj;, =
Doy Lb —Cr((xp —xp)/7Tp.p') exp(—rl%’ b /2r12). In the numerical simulation presented in
the paper, we use the same value as prescribed in Le Roy De Bonneville ef al. (2021). It
has been verified that the modification of the values of these parameters does not modify
significantly the simulations.

The momentum exchanged between the bubble and the fluid via the volume force f in
(2.2) is given by the sum of the drag force and the added-mass force, the contributions of
the Tchen and Archimedes forces being already taken into account in the pressure term
in a way consistent with the zero divergence of the flow (Climent & Magnaudet 1999; Le
Roy De Bonneville et al. 2021).

The fluid velocity, corrected for the influence of bubble b, is defined by introducing the
perturbation due to the bubble:

urp(x,t) = up — u}k,b' 2.4)

Because of the nonlinearity of the system, this immediately raises the question of the
definition of the perturbation 7 ,. It is indeed not trivial to isolate the influence of a bubble
among the fluctuations of the flow which include the effect of all the other bubbles. We
propose here to define the perturbed field uﬂ , as the flow generated by an isolated fictitious
bubble, in a liquid at rest, which would have followed the same trajectory and exchanged
as much momentum with the liquid phase as the actual bubble b. Le Roy De Bonneville
et al. (2021) proposed an integral model to calculate u}f’ »» and its derivatives, valid for the
case of bubbles at large Reynolds number.

In this model, the main assumptions to obtain u}k’ , are that in the vicinity of the bubble
(i) given the importance of the Reynolds number, the viscous term is neglected and (ii) the
flow is considered quasi-parallel. The details of the derivation can be found in Le Roy De
Bonneville et al. (2021), but after a few steps we obtain the following integral expression
for u} ,:

'f.b

1 t
u}f’b(x,t) = p—f / Fr, p(9)Go (x—xp(5)+Laav (1.5)) ds, (2.5
F Jo

where €44, (2, ) = f; iy p(x = xp(s"), s') ds’. The velocity perturbation at a given position
and time is obtained by integrating, over all previous instants, the momentum supplied
by the bubble at the material point of the liquid at that specific position. The material
point corresponding to the injection of momentum at an instant s can be advected by the
undisturbed flow, and will be found at a distance £,4, (¢, s) at the instant r > s. This £,4,
term is essential to guarantee the Galilean invariance of the model.

We do not detail here the discretization of (2.5). The details of its numerical
implementation can be found in Le Roy De Bonneville et al. (2021). We just mention
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that we have developed an efficient algorithm to compute the history integral (see also
Zamansky 2022), so the extra cost of computing the correction term is negligible.

It is interesting to note that, although the coupling between the two phases conserves
momentum, it does not conserve energy (Xu & Subramaniam 2007; Subramaniam et al.
2014; Le Roy De Bonneville et al. 2021). Indeed, the power P, of the hydrodynamic force
working at the bubble velocity is greater than the power Py of the diffuse force working at
the fluid velocity:

P, = ZFf_ﬂ) <V > Pr= /dx3f- uy. (2.6)
b

From a physical perspective, it is acceptable that energy is dissipated during the coupling.
We consider a coarse description of the continuous phase, in which the strong velocity
gradients in the close vicinity of the bubbles are not described. The dissipation of kinetic
energy into heat that occurs in the region surrounding the bubble at scales smaller than o
cannot be calculated from the resolved velocity uy. In the case of an isolated bubble, Le
Roy De Bonneville et al. (2021) estimated analytically that

Pr Cp (dy\>
LoD (%) 2.7)
Py 64 \ o

Consequently, an important part of the mechanical energy is dissipated around the bubbles,
in the boundary layer and the near wake.

2.2. Details of the simulations

With this method we simulated the flow of a rising bubble swarm. The parameters
correspond to a 2.5 mm air bubble in water. The Reynolds number based on the terminal
velocity of an isolated bubble is Reg = vod/v = 760. A cubic domain of dimension
L/d =70 with tri-periodic boundary conditions is used. The characteristic size of the
force projection kernel is o/d = 0.28 and the resolution of the mesh is Ax/d = 1/15
which corresponds to 1024 points in each direction. We can notice that the number of
mesh points per bubble can seem important for a method which does not try to solve
precisely the dynamics around the bubbles. However, one must keep in mind that (i) the
resolution with interface-tracking methods for such a Reynolds number of bubbles requires
about 100 meshes per bubble (or even more) to capture the boundary layer which develops
on the bubble (Du Cluzeau 2019; Innocenti et al. 2021) and (ii) the resolution is chosen
here to capture the small scales which develop in the wakes, not too close to the bubbles,
as we will see below.

We have simulated this flow for volume fractions o« = 1%, 2 %, 5 %, 7.5 % and 10 %
corresponding to a number of bubbles ranging from N, = 6500 to 65000. See the
visualization of this flow for « = 2 % and 10 % in figure 1. In this figure, we can see the
wakes generated by the passage of each bubble, and their interactions giving birth to the
agitation induced by the rise of a bubble swarm. Movies for the various volume fractions
are also provided as supplementary movies available at https://doi.org/10.1017/jfm.2024.
230.

Before examining the results, it is worth contextualizing the present work within
the state of the art. The main motivation for performing such simulations is to obtain
a description of the fluctuations in the spectral domain, in order to get insights
into the mechanisms controlling the peculiar dynamics of bubble-induced turbulence.
Experimental investigations have shown some important features of the velocity spectrum
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(reviewed in the introduction), but further advances are facing severe limitations related
to experimental constraints imposed by the presence of the bubbles. In this context,
direct numerical simulations (DNS) appear as a promising approach. However, they
face two major problems. The first one is, of course, the limited resolution imposed
by computational capabilities. The second one, less trivial, is the need of a consistent
definition of the spectrum of field quantities in the presence of jumps across interfaces
between phases. Probably for those reasons, very few DNS studies have reported spectra
in bubbly flows.

Two DNS studies dealing with a swarm of high-Reynolds-number rising bubbles are
worth mentioning: Roghair et al. (2011) and Pandey, Ramadugu & Perlekar (2020). The
resolution, the total number of bubbles and the volume fractions were Ax/d = 1/20,
Np =16 and o = 5% for a Reynolds number of the order of 1000 in Roghair et al.
(2011); Ax/d =1/24, N, =40 and o = 1.7 % for Re = 546 in Pandey et al. (2020).
The resolution is only slightly better than ours, at the price of a much smaller number of
bubbles and a limited volume fraction. Still, it is not fine enough to ensure that the smallest
scales close to the bubbles are fully resolved. It can therefore not be concluded that they
provide a better description of the bubble swarm than our present approach in which the
approximation of the interfacial transfers across the interfaces is explicitly modelled.

Regarding the method of computing the spectrum, Roghair et al. (2011) considered
only intervals between bubbles where the velocity signal is continuous in order to mimic
an experimental technique, which allowed them to compare with available experimental
measurements. This approach avoids the problem of crossing interfaces, but suffers from
the same limitations as experiments. In particular, it only gives access to the spectrum of
the velocity. Pandey et al. (2020) considered the entire flow field of the two-phase mixture
and provided the (cumulated) spectrum of the terms of the energy budget. However, they
did not address the problem of computing the spectrum of fields including discontinuities
and Dirac delta functions. Moreover, they use an unusual definition of the terms of the
energy budget involving the Fourier transform of the ratio between a Dirac delta function
and Heaviside function, which has not been proven to be valid (see detail in Ramirez et al.
2023). It is worth mentioning that in the single-fluid approach proposed here, the a priori
filtering of the interfacial transfers by the coarse-grained method ensures that all computed
fields are regular and that the spectral analysis does not suffer from any mathematical
inconsistencies.

Despite their limitations, these two pioneering studies have produced interesting results.
By comparing with previous point-bubble simulations, Roghair ez al. (2011) confirmed that
the presence of wakes behind the bubbles is necessary to obtain a k3 spectral subrange.
Pandey et al. (2020) suggested that the transfer between scales induced by inertia and
interfacial forces plays a role in the k=3 spectral subrange. Nevertheless, due to their
limitations, no quantitative comparisons can be made with the results discussed in the
following section.

3. Comparison with experiments

Figure 2 shows the PDFs of the horizontal and vertical components of the liquid velocity
obtained by simulations for different o and by the experiments of Riboux et al. (2010). It is
found that for both components the PDFs present an exponential decay and that the PDFs
of the vertical component are clearly asymmetric. We further observe that the normalized
PDFs are nearly invariant with « as the central part of the experimental PDFs. This
behaviour is the signature of the turbulence induced by the interactions between wakes.
For large fluctuations, the experimental PDFs show a second region characterized by a
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Figure 2. The PDF liquid velocity for the horizontal velocity component (a) and the vertical velocity
component (b) from simulations at various « and comparison with the experiments of Riboux ez al. (2010)
for o = 0.54 %, 1.1 %, 1.7 %, 3.0 %, 4.4 % and 8.2 %.

less steep exponential decay. This behaviour has been attributed to the large localized
fluctuations very close to the bubbles (Risso 2016). As this region is not described in our
modelling, we indeed find that the second exponential part of the PDFs is not reproduced
by the simulations.

For the same reason, the mean velocity of the bubbles decreases only very slightly
with « according to the simulations, whereas experimentally, it is observed to decrease
as (v) /vy & 0.6~ 9! (Riboux er al. 2010). Also, the kinetic energies of the variances of
the fluctuations of both the liquid and the bubbles are underestimated compared with the
experiments.

Figure 3(a) compares the longitudinal spectra (that is to say E,(ky) = f 1/2¢c (K8 (K -
ex — k)d’k and E (k) = [1/2¢,.(K)3(K - e, — k;)d°k' with ¢;(k) = > (i (K)iit
(K"))8(k — (K')) and @ the coefficients of the Fourier series of the velocity field up(x) =
Yok e®X5(k)) of the vertical and horizontal velocities E.(k;) and E\(k,) obtained
experimentally and by simulations. Note that, with this simulation approach, the spectra
of the velocity field are very easy to obtain because the uy field is smooth, whereas
with a DNS-type approach, as well as in experiments, the velocity of the liquid is not
defined everywhere, which poses a number of problems for spectral analysis. Here the
approximations are made prior to the simulation, at the modelling phase, and there is
no particular precaution to take for the calculation of the spectra. We can see that the
spectra of the vertical and horizontal components are in fairly good agreement with the
experiment. In particular, the simulations seem to reproduce a k> evolution of the spectra
as experimentally observed on small scales (large wavenumbers) and a k~! decay at large
scales.

However, we note, on the one hand, that the simulations underestimate the kinetic
energy at small scales. We attribute this to the lack of near-bubble resolution, which
leads to an underestimation of the power injected at the bubble scale (as discussed in the
previous section). On the other hand, we also notice that the larger scales of the horizontal
component are also underestimated, due to the absence of bubble trajectory oscillations,
which are expected to enhance the redistribution of the fluctuating energy between the
vertical and horizontal components.

It has also been reported that experimentally the spectra are invariant with the volume
fraction and the bubble diameter. When the spectra of the numerical simulations are
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Figure 3. (a) Longitudinal velocity spectra of the vertical component in the vertical direction (E.(k;))
(continuous lines) and of the horizontal component in the horizontal direction (dashed lines) from the
simulations at various & (Ey(ky)). Comparison with the experiments of Riboux et al. (2010) for @ = 2.5 % and
d = 2.5 mm in blue, and with the power law k~! (grey dot-dashed line), k> (grey dashed line) and k=>/3 (grey
dotted line). (b) Frequency spectra of the liquid velocity at the bubble position from the numerical simulation
and comparison with the experimental spectra of the liquid velocity of the flow past a random array of fixed
spheres (Amoura ef al. 2017) in blue and with the ™! and w3 power laws.

normalized by the injected power and by the viscosity, we observe the same invariance
of the spectra of the numerical simulation with «.

In figure 3(b), we present the frequency spectra of the vertical liquid velocity measured
at the position of the bubbles (the true velocity, not the corrected one). These spectra
are compared with the frequency spectrum of the velocity of the flow passing through an
array of spheres held at a fixed position obtained experimentally by Amoura et al. (2017)
for a Reynolds number, based on the sphere diameter, of 600. Although the two flows are
different, in both cases these spectra can be considered as characterizing the fluctuations
of the liquid in the frame of reference moving with the bubbles. It can be seen that the
simulations and the experiment show again a remarkable agreement. For frequencies lower
than d/vg the spectrum shows an w~! behaviour, while at high frequencies, the cut-off is
much stronger with a slope close to w™>. It is interesting to note that this behaviour seems
invariant with « in the simulations, while experiments have reported that it is invariant
with the Reynolds number, provided that Re > 200 (Amoura et al. 2017).

To summarize, while the bubble rising velocity and the total energy production
are underestimated because of the filtering of the energy transferred from the bubble
to the fluid, the interactions between wakes are well reproduced. Since this essential
physical mechanism is correctly accounted for, the normalized spectra of the velocity are
representative of real flows.

4. Characteristic scales

The spherically averaged spectra of the velocity (i.e. E(k) = [ 1/2¢;;(K))3(|k'| — KA’k
are shown in figure 4. Contrary to the longitudinal spectra presented in figure 3(a), the
three-dimensional spectra show a more complicated evolution with k as well as a rather
clear dependence on « at large scales. Several regions can be distinguished. The local
maximum, located around kn = 2 in the figure, coincides, as we will see, with the scale
of the bubbles which gives the cut-off scale of the energy injection. We see that for larger
wavenumbers, a region in k> clearly develops as « increases. The local minimum, located
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1072 107! 100

ke
Figure 4. Spherically averaged spectra of the velocity field £ from the numerical simulation at various «. The
k=3 power law is shown by a grey dashed line. (The grey dotted line corresponding to a k*/3 power law is just
here as a guide for the eyes).

at large scales, corresponds to the wake scale. Between these two scales, the energy
spectrum depends on o and corresponds to the scales directly influenced by the wakes.
The fact that the spherically averaged spectra E show such a qualitative difference at large
scales with the spectra averaged over planes obviously indicates that the flow has a strong
anisotropy at these scales. We will come back to the characterization of the anisotropy
below.

The flow being presumably dominated by the wakes of the bubbles and their
interactions, an essential scale of the flow is the characteristic length of the wakes. To
determine the latter, we consider the mean field conditioned on the position of a bubble
(equivalent to a spatial phase average):

(uf)p(x) = f dt—Zuf(x xp(0), 1). (4.1)

This mean field is illustrated in figure 5 for the case @ = 5 %. This figure also shows the
evolution of the mean vertical velocity along the vertical axis passing through the bubble
for the different volume fractions, as well as for an isolated bubble. The first observation
is that the wakes are much shorter in the case of the bubble swarm than in the case of
an isolated bubble. By plotting the logarithmic derivative of the wakes, also shown in
figure 5, we see that the wakes present a self-similar evolution for all @ and that the mean
velocity decreases exponentially with z. This remarkable feature is in agreement with the
experimental results presented by Risso et al. (2008). This exponential decay of the wakes
is likely due to the cancelling of the vorticity between neighbouring wakes, as proposed
by Hunt & Eames (2002).

We choose the relaxation length of the exponential as the characteristic scale of the
wakes L,,. The evolution of the ratio L,,/d as a function of « is presented in figure 6. We
can see that the length of the wakes shows evolution in L,, ~ da~'/3. One can interpret
this evolution as a simple geometrical relation, considering that the wakes tend to screen
each other. It should be noted, however, that this is quite a notable difference compared
with the experiments of Risso er al. (2008) where the characteristic length of the wakes
was observed to be independent of «. This certainly reflects that there is an additional
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Figure 5. (a) Cross-section of the vertical velocity conditionally averaged to the bubble position
(equation (4.1)): (ur ;) for @ = 5 %. (b) Evolution of (uyr ), along the vertical axis passing through the origin
for the various « and for an isolated bubble (in grey dashed line). Comparison with the exponential decay with
arate L,,(«) (in grey dotted line). For ease of reading, we take advantage of the periodicity of the domain,
and move the increasing part of (us ;),(z) upstream of the bubble. (c) Inverse of the logarithmic derivative,
(1/(uz)p)(d{u;)p/dz), of the former quantity, normalized by the characteristic wake length L,,. For this panel

the vertical position is shifted by zg corresponding to the vertical position of the maximum of (uy ;).

dependence of L,, on Cp, since in the experiments the average speed of the bubbles
decreases with «.

From this characteristic wake length, we define an inverse time scale f = vo/L,,. This
frequency f can be considered as imposing a shear-rate scale to small scales k = 1/d. This
assumption allows us to estimate the average dissipation rate in the simulations as

(g) = vf. 4.2)

Equivalently, we can interpret L,, as a Taylor length scale based on the velocity vy, 4 =
vv% (g). This is confirmed in figure 6 which shows that the evolution of 1/d varies as

L,/dina~1/3.
The volume-averaged power injected in the system corresponds to (Py,) = np(Pp) with
np the average number of bubbles per unit of volume and P, = Fy_,j - v; the power
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Figure 6. Evolution of the characteristic scales L,,, A, n and L;,; in the simulations of the bubble swarm with

. Comparison with the power law o~/ in dashed lines, ~'/¢ in dotted lines and =2/ in dot-dashed lines.

supplied by bubble b. In the steady regime, this quantity is approximately given by
(Pror) = aegug and as we have discussed above, it is larger than the power effectively
received by the fluid in our simulations: (Pyy) > (Pr) = (¢). We will thus interpret (P)
as the mechanical energy effectively injected in the wakes. Combining the previous
relations, we find (Py;)/(¢) ~ aReoCp (L, /d)*> with Cp = 4gd/ 31)3. Therefore at Cp and
Req constant, the proportion of energy injected in the wakes decreases as o~ 1/3.

From the estimate (4.2) of the mean dissipation rate, we compute the dissipative scale
n=v34e)" V4 = SJf ~ dReal/za_l/é. It is this scale that is used to normalize the
spectra presented in figures 3 and 4.

For o > 5 % we observed (not shown here, for brevity) that the kinetic energy of the
liquid is invariant with & and is commensurate with v%. Consequently we estimate the
integral scale L;,;; = (K)3/? /{(€) to vary as Lj,; ~ dRepa—%/3. This behaviour is observed
for > 5 % in figure 6. Note that, in the experiments of Riboux et al. (2010), the liquid
kinetic energy was observed to vary roughly as av(z). The discrepancy of the numerical
simulations with the experiments is once again attributed to the absence of the fluctuations
localized in the vicinity of the bubbles, which scale with «.

5. Spectral analysis of bubble-induced turbulence

In order to identify the different regions of the spectra and to explain the observed scaling
laws, we are interested in the spectral decomposition of the energy balance:

d%E(k) =T (k) — D(k) + P(k). (5.1)

The terms of the right-hand side correspond, respectively, to the inter-scale energy transfer
from a scale k (T), the kinetic energy dissipation at a scale k (D) and the rate of energy
injected by the bubbles (P). The expressions of these different terms are obtained from the
Navier—Stokes equation (2.1). The transfer term 7 is the contribution of the nonlinear

terms: T(k) = [ Zk/[—ikj’.(@it;‘)]é(k’ — k)8(|k| — k)d*k + c.c., where +c.c. denotes
the complex conjugate terms, D(k) = 2vk>E(k), P(k) is the integral over the wavenumbers
|k| = k of the real part of flﬁf and the ‘hat’ denotes the Fourier transform. At steady state,
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Figure 7. Evolution of P in continuous line and of —D in dashed lines for the various «. Comparison with
aguo/2/m (ko )? exp(—k*a?) in dotted line. (a) The power density and wavenumber are normalized by «gvod
and o, respectively. (b) The power density and wavenumber are normalized by the dissipative scales en and 7,
respectively.

the left-hand term of (5.1) is zero, so T = D — P. We present in figure 7 the terms P(k)
and D(k) for the various o. We can see that the production term presents a cut-off for
k > 1/o (we recall that o/d = 0.28), and that on large scales it grows as k> for the largest
o, while it is roughly constant for small «. Concerning the dissipation term, we notice
that it also presents a peak around k ~ 1/0. At large scales, the production dominates
compared with the dissipation, which implies that P(k) ~ —T'(k). On the other hand, the
dissipation dominates on small scales which means that D(k) =~ T (k). The absence of scale
separation between production and dissipation peaks means that this flow does not present
an inertial zone. These budgets also show that there is no range of scales in which there
is an equilibrium between P and D. This contradicts the hypothesis made by Lance &
Bataille (1991) to explain the presence of a k> zone in the velocity spectra. Furthermore,
we notice that the k~! region of D, which corresponds to the k= region of the velocity
spectra, is observed in the crossover between the production-dominated scales and the
dissipation-dominated scales.

To interpret the behaviour of the production term P, we study the spectrum of the force

applied to the flow, Ef(k), corresponding to the spherical integration of ffl* From the
expression of the coupling force between the phases (2.2), we can obtain the following
analytical expression for Ef:

E(k)jaog? = L @)oY ko)t et (5.2)
127

This expression is obtained by assuming that (i) the positions of the bubbles are
independent from each other and that (ii) the fluctuations of the rate of momentum
exchanged between the bubble and the liquid are small: (F)%_)b) ~ (Ff_)b)2 =

(pgmd’ /6)%. The spectra of the force are presented in figure 8. We note that, at all volume
fractions, the agreement with the proposed expression is relatively good. We distinguish
two regions: a region that grows as k> which reflects the equipartition of the fluctuations of
the forces at large scales (k < 1/0) and an exponential decrease imposed by the Gaussian
projection kernel G, for k > 1/0. Note that the oscillations observed at the end of the
spectra are due to the sharp cut-off of the kernel G, (x — xp) for |x — xp| > 30. We
notice that for high volume fractions, the positions of the bubbles are no longer really
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Figure 8. Spectra Ey of the force at the various o and comparisons with (5.2) in dotted line and with the
power law &2 in dashed line.

independent, because they cannot overlap, which explains that the prefactor of the k’
increase at small k is reduced compared with (5.2).

It is more difficult to propose an analytical estimate of the spectrum P of the work of
Fy_, ;. However, the spectrum E of u is much less steep than the spectrum Ef of Fy_, . At
large scales, E is rather flat compared with the k* evolution of Er and, at small scales, E
shows a power-law decay compared with the exponential cut-off Ey. It is thus reasonable
to expect P to behave similarly to Ef. Considering that P is dominated by buoyancy, we
obtain the following estimate:

PJagvgo ~ (ko)? e ko), (5.3)

Indeed, P presents an exponential damping for k > 1/0, that overlaps for all « when
normalized by «gvpo as can be seen in figure 7(a). For k < 1/0 and o« > 2 %, P increases
roughly as k* in agreement with the previous relation. The underestimation of P at large
scales is attributed to the the large fluctuations of the injected power (PJ%) > (Pf)z. For
small «, P no longer follows the proposed relation on large scales due to the presence
of large structures in the flow leading to a significant correlation of the liquid velocity
between distant bubbles.

For completeness, we present in figure 7(b) the production and dissipation terms
normalized by the dissipative scales (¢) and n for the various «. Consistently with the
velocity spectra shown previously in figure 4, with this normalization, we observed that the
values of D of all « overlap at high wavenumbers (typically kK > 1/2n). From the estimates
of the characteristic scales of the simulations presented in the previous section, we have
d/n = Re(l)/ zal/ 6 indicating that the gap between the production-dominated scales and
the dissipation-dominated scales increases, slowly, with «. It seems that the k~! subrange
of D is observed in this gap of scales, provided that « is large enough.

In conclusion, we consider that for k < 1/d the flow structure is driven by the
interactions between wakes, while in the range 1/d < k < 1/n the strong damping of the
wakes imposes a shear scale.

This assumption of constant shear rate f across scales allows us to explain the presence
of a power law in k3 for the flow, because of a matching argument similar to that proposed
by Kolmogorov in 1941. It is assumed that at scales that are small compared with the length
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of the wakes (k > 1/L,,) the structure of the flow depends only on the diameter of the
bubbles d, the viscosity and the shear rate f :

E=Ek: d, v.f). (5.4)

It is assumed that at scales larger than n = 4/v/f, one can neglect the effect of viscosity.
Therefore, in this limit we can write

E = Ej(k;d,f) = d’f*®;(kd), (5.5)

where @; is a dimensionless function. Conversely, at scales much smaller than the bubble
size, we will suppose that the diameter no longer plays a role, and we will make the
hypothesis that

E = Es(k; v, f) = v¥/2 12 dg(kn), (5.6)

where &g is another dimensionless function. Finally, if we assume that for a range of
intermediate scales (1/d < k < 1/n) the two previous relations remain valid, we have
Es(k) = Ej(k). Since kd and kn can vary independently, the previous equality can hold
only if the following expressions are constant:

(kd)* @ (kd) = (kn) Ds(kn) = c. (5.7)
This gives us for the velocity spectra:
E(k) = cf*k—3, (5.8)

in a range of scales where the shear rate can be considered constant.

The temporal spectra of the velocity seen by the bubbles (presented in figure 3b) are
influenced by the fact that the bubbles cut the wakes of other bubbles. Thus the high
frequencies of the temporal spectrum are dominated by the Doppler shift due to the
high-speed crossing, of the order of vg, of the dissipative structures of the flow. So using
(5.8) and taking the argument of Tennekes (1975), with @ ~ vpk, we can estimate the
high-frequency behaviour of the frequency spectra:

E() = E(k)g = frudw . (5.9)

3 zone

The temporal spectra from both the experiments and the simulations present an w™
at high frequency.

We have seen that at large scales (k < 1/d), where the flow is dominated by wake
interactions, there is a balance between production and inertia. At these scales we notice
that the one-dimensional spectra of the velocity present a k~! dependence. This means
that each decade contains an equal amount of energy. This behaviour can be explained by
the intermittence of the wake passages, giving rise to an alternation between periods of
activity and calm (Mandelbrot er al. 1999). At these scales, the characteristic velocity no
longer depends on a specific length scale and corresponds to the typical velocity of the
bubbles vg. These periods of activity (the wakes) are characterized by their self-similar
character (Marinari et al. 1983; Bak, Tang & Wiesenfeld 1987) and present a variable
intensity and duration, whereas the calm periods follow a Poissonian distribution reflecting
the quasi-uniform distribution of the bubbles. The absence of a characteristic length leads
directly to the absence of a characteristic time for the fluctuations. Hence the frequency
spectrum of the velocity also shows a decay close to w™! at low frequency. As pointed
out by Mandelbrot (1967), these behaviours in o~ and k~! must also be connected to the
non-Gaussianity of the velocity distributions as well as to a long-range correlation of the
velocity.
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Figure 9. (a) Scheme of spherical coordinates in Fourier space. Directional spectra of () the velocity vector,
(c) the vertical velocity component and (d) a horizontal velocity component for & = 10 %. Note that the
spherical spectra correspond to an integral along a dashed grey line, while the longitudinal spectra in the
vertical direction are obtained by integration along a dashed black line.

6. Characterization of the anisotropy

To extend the discussion on the large scales, we need to take into account the anisotropy
of the flow. For the characterization of the anisotropy, it is necessary to distinguish the fact
that the energy can be carried mainly by one component of the velocity vector (anisotropy
between components) from the fact that the fluctuations in certain directions can carry
more energy (directional anisotropy) (Sagaut & Cambon 2008). To characterize the latter,
we consider a spherical coordinate system of the wave vector space, as schematized
in figure 9. The angle 6 characterizes the orientation of the wave vector with respect
to the vertical direction: sinf = k;/|k| (sinf = 0 corresponds to fluctuations in the
horizontal direction and sinf = %1 to fluctuations in the vertical direction). We then
consider the directional spectra E(k,8) which allows decomposing the energy of the
fluctuations according to the wavelength and the orientation with respect to the vertical
direction. More specifically, E(k, 6) is defined by integration on all ‘longitudes’ for a fixed
‘latitude’ and modulus of the wave vector: E(k, 0) = [ 1/2¢;i(K")8(|k'| — k)S(K./|K'| —
sin 0)d3k’/2n cosf = 02“ 1/2¢ii(k, 0, q&)k2 sinfd¢ /21 cos 6. The normalization factor
21 cos 6 is introduced to correct the geometrical effect due to the fact that a band near
the poles covers a less important surface than a band near the equator.

We show in figure 9 the directional spectra of the velocity for o = 10 %. It can be
seen that at large scales (k < 1/d) the energy is concentrated in the horizontal direction.
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This concentration is characteristic of vertically aligned tubular structures (Cambon &
Jacquin 1989), which can be seen on the flow visualization in figure 1. At smaller scales
(k > 1/d), one can see that the directional spectra become invariant with 6 indicating that
the directional anisotropy tends to vanish.

To characterize the anisotropy between components, we present as well in figure 9 the
directional spectrum for both the vertical and the horizontal components of the velocity.
Note that the axisymmetry of the flow imposes E(k, 8) = E,(k, 0) + 2E,(k, 6). At large
scales, we notice that the spectrum of the vertical velocity is very similar to that of the
total kinetic energy, which indicates that at these scales the vertical component carries
almost all the kinetic energy. This can be explained simply by the fact that the forcing
due to the bubbles is essentially vertical. We can also note that the horizontal component
of the velocity presents a very weak directional anisotropy. Finally, at small scales, we
notice that the flow tends to become much more isotropic and presents a decrease of the
difference both between the components and between the directions. This indicates that at
scales where the energy injection is zero, there is a redistribution between the components,
which ensures a return to isotropy as k increases.

It should be noted that when considering the spectra with angular dependence for both
the horizontal and vertical components, no k> zone is distinguished. Thus, as noticed by
Bellet et al. (2006) for the decaying turbulence under strong rotation, the k> region for
the spherically averaged spectra results from an average between the different directions
and the different components.

If the structure of the flow becomes locally isotropic at scales much smaller than d,
one should expect the appearance of a k—>/3 inertial range for the velocity spectra, if the
local Reynolds number is large enough, since at these scales there is no more energy
injection. Such inertial range is not present in the numerical simulations reported here,
but seems visible in the spectra obtained from the experiments of Riboux et al. (2010)
(see figure 3a). In the case where the velocity spectra first present evolution as E(k) ~
f2k=3 followed by an inertial range E(k) ~ (¢)2/3k=5/3, the characteristic length of the
crossover between these two regimes would be given by £; = /(¢)/f3. It is interesting to
note that this length scale corresponds to the classical estimates of the scale from which a
turbulent flow subject to mean shear can be considered as locally isotropic (Champagne,
Harris & Corrsin 1970; Pope 2000). Taking the usual Kolmogorov scale n = v3/4(g)3/4,
the extension of the inertial regime is given by £;/n = ({¢)/vf?)3/*. In the simulations, as
mentioned previously, no inertial range is present ({; = n) and we have indeed (¢) = vfz.
It is likely that a larger power injection in the simulations (e.g. increasing Cp) would allow
obtaining a separation between the scales of return to isotropy and the dissipative scales
and thus to obtain a —5/3 range in agreement with the experiments. Nevertheless, even in
the absence of the k—>/> regime, this indicates that the rate of shear imposed by the bubble
wakes controls the relaxation to small-scale isotropy.

7. Conclusion

Using a coarse-grained numerical approach, we have obtained Euler-Lagrange
simulations of the flow agitation induced by a homogeneous swarm of rising bubbles at
large Reynolds number. In this approach the momentum transferred from the bubbles to
the fluid is filtered at a scale of the order of the bubble size and much larger than the mesh
resolution.

Compared to DNS that are currently done with a comparable resolution, this method
has the advantage that the approximation done in the description of the flow close to
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the bubble is explicit, and that the absence of interfacial jumps allows a straightforward
computation of the spectrum of all quantities under interest. The main limitation is that
the hydrodynamic force on the bubble relies on a model and is filtered at a scale close to
the bubble diameter, which makes the technique poorly predictive regarding the bubble
average velocity and the total energy injected by the bubble to the fluid. Comparisons with
experiments indeed confirm this weakness, which impacts the predicted level of fluctuating
energy. However, the crucial mechanism of wake interactions is well reproduced, leading
to the expected exponential decrease of the mean wake with the downstream distance.
As a consequence, when normalized, the spectra of the velocity, in both frequency and
wavenumber, are representative of real flows. In particular, with the present mesh-grid
resolution and coarse-grained filtering, reliable spectra of all the terms of the energy
budget are obtained in the range of wavenumbers extending from the peak of energy
production by the bubbles up to the dissipative range. The examination of the spectral
balance allows us to draw original conclusions which are summarized below.

The specificity of bubble-induced turbulence is the existence, in the spectral domain,
of a subrange which begins when the production P sharply decreases, and stops at the
Kolmogorov dissipative scale. This regime, where the velocity spectrum broadly evolves
as k—3, is characterized by a constant shear rate f proportional to the average shear rate
of the bubble wakes. It constitutes a transition between the production-dominated range,
which scales as f and the bubble diameter d, and the dissipative range, which scales as f
and the viscosity. It turns out that the k> power law can be obtained by asymptotically
matching these two ranges. Unexpectedly, whereas D evolves as k™!, neither P nor the
spectral density transfer T follows a power-law scaling. Consequently, even though the
average production by buoyancy is balanced by the average dissipation €, the spectral
dissipation density D is not in equilibrium with the spectral production density P, which
rules out the mechanism speculated by Lance & Bataille (1991). A return to isotropy is
observed during this transitional regime, which led us to suggest a possible mechanism
where the characteristic shear rate f controls the rate of return to isotropy of the flow at
small scales.

These results shed a new light on the dynamics of bubble-induced turbulence, which
is, however, not yet fully understood. In particular, we still ignore whether increasing
the Reynolds number could lead to a significantly wider k> subrange. This question
has no major practical implications since bubbly flows with significantly larger Reynolds
numbers are not common. However, it is a fundamental issue for the comprehension of
the underlying physical mechanism. The answer is left to future work with much more
powerful computational means or smarter approaches.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jtm.2024.230.
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