AVERAGING DISTANCES IN CERTAIN BANACH SPACES

REINHARD WOLF

Let *E* be a Banach space. The averaging interval AI(E) is defined as the set of positive real numbers α , with the following property: For each $n \in \mathbb{N}$ and for all (not necessarily distinct) $x_1, x_2, \ldots, x_n \in E$ with $||x_1|| = ||x_2|| = \ldots = ||x_n|| = 1$, there is an $x \in E$, ||x|| = 1, such that

$$\frac{1}{n}\sum_{i=1}^n ||\boldsymbol{x}_i - \boldsymbol{x}|| = \alpha.$$

It follows immediately, that AI(E) is a (perhaps empty) interval included in the closed interval [1,2]. For example in this paper it is shown that $AI(E) = \{\alpha\}$ for some $1 < \alpha < 2$, if E has finite dimension. Furthermore a complete discussion of AI(C(X)) is given, where C(X) denotes the Banach space of real valued continuous functions on a compact Hausdorff space X. Also a Banach space E is found, such that AI(E) = [1,2].

1. INTRODUCTION

Let *E* be a Banach space. We ask for positive real numbers α , with the following property: For each $n \in \mathbb{N}$ and for all (not necessarily distinct) $x_1, x_2, \ldots, x_n \in E$ with $||x_1|| = ||x_2|| = \ldots = ||x_n|| = 1$, there is an $x \in E$, ||x|| = 1, such that

$$\frac{1}{n}\sum_{i=1}^n \|x_i - x\| = \alpha$$

Since the unit sphere $S = \{x \in E, ||x|| = 1\}$ of E is connected, and for each choice x_1, \ldots, x_n in S (not necessarily distinct) the function $F(x_1, \ldots, x_n)$ on S defined by $F(x_1, \ldots, x_n)(x) := 1/n \sum_{i=1}^n ||x_i - x||$ for all $x \in S$, is continuous, we get:

 $F(x_1,\ldots,x_n)(S) \subseteq \mathbb{R}^+$ is a nonempty interval (closed, open, half closed - half open). So $\alpha \in \mathbb{R}^+$ has the desired property if and only if

$$\alpha \in \bigcap_{\substack{n \in \mathbb{N} \\ x_1, \dots, x_n \in S}} F(x_1, \dots, x_n)(S).$$

Received 5th March, 1996.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/97 \$A2.00+0.00.

We define

$$AI(E) := igcap_{\substack{n \in \mathbb{N} \\ x_1, \dots, x_n \in S}} F(x_1, \dots, x_n)(S)$$

as the averaging distance interval of E.

Since $||x - y|| \leq 2$, $(||x - y|| + ||x + y||)/2 \geq 1$, for all $x, y \in S$, it follows that AI(E) is an interval (closed, open, half closed - half open, or consisting of exactly one number, or the empty set) included in the closed interval [1,2].

In this paper we discuss AI(E) for certain real Banach spaces E.

2. BASIC DEFINITIONS AND NOTATION

All Banach spaces E in this paper are considered real and of dimension at least two. By $S = \{x \in E, ||x|| = 1\}$ we denote the unit sphere of E. For $n \in \mathbb{N}$, $1 \leq p \leq \infty$, let $l^p(n)$ denote \mathbb{R}^n with the usual *p*-norm. Recall that a sequence of elements x_1, x_2, \ldots in E is called a basic sequence if for each x in the closed linear span $\overline{[(x_n)_{n\geq 1}]}$ generated by x_1, x_2, \ldots there exist a unique sequence of real numbers $\alpha_1, \alpha_2, \ldots$ such that

$$x = \lim_{n \to \infty} \sum_{i=1}^n \alpha_i x_i.$$

Further recall that a topological space X is completely regular if X is a Hausdorff space with the following property: For each closed subset A of X and for each $x \notin A$, there exists a continuous function f on X such that $0 \leq f(y) \leq 1$ for all y in X, f(x) = 1 and f(a) = 0 for all a in A.

A subset B of X is called a G_{δ} -set if B is the countable intersection of open subsets of X.

A completely regular space X is called a P-space if every G_{δ} -set in X is open. (See [1, p.63].)

3. The results

When E is of finite dimension the following Theorem of Gross describes the averaging interval AI(E):

THEOREM. [3] Let (X,d) be a compact connected metric space. There is a unique positive real number r(X,d), $D(X)/2 \leq r(X,d) < D(X)$, with the following property: For each positive integer n and for all (not necessarily distinct) x_1, x_2, \ldots, x_n in X, there exists an x in X such that

$$\frac{1}{n}\sum_{i=1}^n d(x_i,x) = r(X,d).$$

r(X,d) is called the rendezvous number of X and D(X) denotes the diameter of X.

For a proof see [3].

From this we obtain:

PROPOSITION 1. Let E be a finite dimensional Banach space. Then we have $AI(E) = \{\alpha\}$, for some $1 < \alpha < 2$.

For example, in [5] Morris and Nickolas proved that this unique α is $\left(2^{n-1}\left[\Gamma(n/2)\right]^2\right)/(\sqrt{\pi}\Gamma((2n-1)/2))$, for all $n \ge 2$ in the case $E = l^2(n)$, where Γ denotes the Gamma function.

In [6] it is shown that $\alpha = 3/2$ for $E = l^{\infty}(n)$, $\alpha = 2 - 1/n$ for $E = l^{1}(n)$ and in [7] we give a proof that $\alpha \leq 2 - 1/n$, if E is an n-dimensional real Banach space with a 1-unconditional basis and equality holds if and only if E is isometrically isomorphic to $l^{1}(n)$. (In both papers the unique positive real number α is denoted by r(E).)

In the case E is of infinite dimension it is shown in [6] that $AI(l^2) = \{\sqrt{2}\}$, $AI(l^{\infty}) = \{3/2\}$ and $AI(l^1) = \emptyset$, where l^p $(1 \le p \le \infty)$ denotes the real sequence space with the usual p-norm. Recently Pei-Kee Lin (private communication, see [4]) showed that $AI(l^p) \subseteq \{2^{1/p}\}$ if $1 \le p < \infty$, $AI(l^p) = \emptyset$ if $1 \le p < 2$ and $\lim_{n \to \infty} r(l^p(n)) = 2^{1/p}$ for all $1 \le p < \infty$ $(AI(l^p(n)) = \{r(l^p(n))\})$. By looking at the proofs of Proposition 1, 4, 5 in [6] and since $1 \notin AI(c_0)$ (notice that there is no x in c_0 , ||x|| = 1 such that $||x_1 - x|| + ||x_1 + x|| + ||x_2 - x|| + ||x_2 + x|| = 4$, where $x_1 = (1, 0, 0, ...)$ and $x_2 = (1, 1/2, 1/3, ...)$) it follows that $AI(c_0) = (1, 3/2]$, where c_0 denotes the subspace of l^{∞} consisting of all zero tending sequences.

Notice that Proposition 1 implies that the numbers 1 and 2 are forbidden values for α , if E is finite dimensional.

If E has infinite dimension the fact 1, respectively 2, are elements of AI(E) implies that c_0 (under an added condition), respectively l^1 , are in E:

PROPOSITION 2. Let E be a Banach space of infinite dimension. Then we get

- 1 ∈ AI(E) and E having a two dimensional subspace isometrically isomorphic to l[∞](2) implies that E contains a closed subspace isometrically isomorphic to c₀.
- 2. $2 \in AI(E)$ implies that E contains a closed subspace isometrically isomorphic to l^1 .

Since a Banach space is reflexive if and only if all its closed subspaces are reflexive, we obtain

COROLLARY. Let E be a reflexive Banach space. Then $2 \notin AI(E)$. In addition, if E does not contain a two dimensional subspace isometrically isomorphic to $l^{\infty}(2)$,

then $1 \notin AI(E)$ also.

For a compact Hausdorff space X let C(X) denote the Banach space of all real valued continuous functions on X with the supremum norm. The following result gives a complete discussion of AI(C(X)):

PROPOSITION 3. Let X be a compact Hausdorff space with at least two points. Then

- 1. $AI(C(X)) = \{3/2\}$ if X has at least one isolated point.
- 2. AI(C(X)) = [3/2,2) if X has no isolated points and has at least one point with a countable neighbourhood basis.
- 3. AI(C(X)) = [3/2, 2] if no point in X has a countable neighbourhood basis.

Therefore, for example, we get AI(C[0,1]) = [3/2,2).

Quite recently Pei-Kee Lin (private communication, see [4]) generalised Proposition 3, part 1 to $C_b(X)$, the space of all bounded real valued continuous functions on a normal space X, and moreover he showed that $AI(C_b(X)) \supseteq (3/2, 2)$, if X is a normal space without isolated points.

The next result gives an answer to the question: What is the maximal size of AI(E)?

PROPOSITION 4. Let X be a P-space without isolated points and let E be the Banach space of all bounded continuous real valued functions on X vanishing at one point x_0 in X, with the supremum norm. Then we have

$$AI(E) = [1, 2].$$

REMARK. Of course each discrete space is a *P*-space. An example of a *P*-space with exactly one non isolated point is the following: Let *S* be an uncountable space in which all points are isolated except for a distinguished point s_0 , a neighbourhood of s_0 being any set containing s_0 whose complement is countable. (See [1, 4 N.1, p.64].)

The existence of a P-space without isolated points is not trivial. A construction of such a space is given in [1, Chapter 13], in particular see 13 P. 1, page 193.

Summing up, we notice that if a Banach space E is finite dimensional with dimension at least two then $AI(E) = \{\alpha\}$ for some unique positive real number α . If E has infinite dimension then all extreme cases for AI(E) are possible: For example $AI(l^1) = \emptyset$, $AI(l^2) = \{\sqrt{2}\}$, and AI(E) = [1,2] for E the Banach space given in Proposition 4.

4. The proofs

PROOF OF PROPOSITION 1: By assumption the unit sphere S of E equipped with the norm induced metric is a compact connected metric space. Applying Gross's Averaging distances

Theorem and since the diameter of S is two, we get $AI(E) = \{\alpha\}$, for some $\alpha \in [1,2)$. It remains to show that $\alpha > 1$. Assume $\alpha = 1$.

Let $n \in \mathbb{N}$. By compactness of S find a 1/n-net x_1, \ldots, x_N of S, N = N(n). Since $AI(E) = \{1\}$ we find some y_n in S such that

$$\frac{1}{2N}\sum_{i=1}^{N} \|x_i - y_n\| + \|x_i + y_n\| = 1.$$

It follows that $||x_i - y_n|| + ||x_i + y_n|| = 2$ for all $1 \le i \le N$. So for each x in S we obtain

$$2 \leqslant ||\boldsymbol{x} - \boldsymbol{y}_n|| + ||\boldsymbol{x} + \boldsymbol{y}_n|| \leqslant 2 + \frac{2}{n}.$$

Compactness of S again implies that a subsequence of $(y_n)_{n\geq 1}$ converges to some y in S. Therefore we have

(*)
$$||x - y|| + ||x + y|| = 2$$
 for all x in S.

Now choose some y_0 in S with $||y - y_0|| = 1$. By formula (*) we get $||y + y_0|| = 1$.

Therefore $y + y_0$ and $y - y_0$ are elements of S. Applying formula (*) to $y + y_0$ and $y - y_0$ we get $||2y - y_0|| = ||2y + y_0|| = 1$. But $4 = ||4y|| \le ||2y - y_0|| + ||2y + y_0|| = 2$ leads to a contradiction.

For proving Proposition 2 we need a well known criterion for basic sequences:

LEMMA 1. Let x_1, x_2, \ldots be a sequence of nonzero elements in a Banach space E. Then in order that x_1, x_2, \ldots be a basic sequence, it is both necessary and sufficient that there be a finite constant K > 0 so that for any choice of scalars $(\alpha_n)_{n \ge 1}$ and any integers m, n with m < n we have

$$\left\|\sum_{i=1}^{m} \alpha_{i} x_{i}\right\| \leq K \cdot \left\|\sum_{i=1}^{n} \alpha_{i} x_{i}\right\|.$$

For a proof see [2, Theorem 1, p.36].

PROOF OF PROPOSITION 2: (1): Since $l^{\infty}(2)$ is isometrically included in E we find x_1, x_2 in S such that $||\alpha_1 x_1 + \alpha_2 x_2|| = \max(|\alpha_1|, |\alpha_2|)$ for all α_1, α_2 in \mathbb{R} .

We inductively construct a sequence x_1, x_2, \ldots of elements in S such that $\|\sigma_1 x_1 + \ldots + \sigma_n x_n\| = 1$ for all $\sigma_1, \ldots, \sigma_n$ in $\{1, -1\}$ and all $n \ge 2$.

Now let $n \ge 3$ and assume that we have found x_1, \ldots, x_{n-1} in S such that $\|\sigma_1 x_1 + \ldots + \sigma_{n-1} x_{n-1}\| = 1$ for all $\sigma_1, \ldots, \sigma_{n-1}$ in $\{-1, 1\}$. Since $1 \in AI(E)$ we get some x_n in S such that

$$\frac{1}{2^{n}} \sum_{\sigma_{1},\ldots,\sigma_{n-1} \in \{1,-1\}} \|\sigma_{1}x_{1} + \ldots + \sigma_{n-1}x_{n-1} + x_{n}\| + \|\sigma_{1}x_{1} + \ldots + \sigma_{n-1}x_{n-1} - x_{n}\| = 1.$$

Therefore we get

(*)
$$\frac{1}{2^n} \sum_{\sigma_1,\ldots,\sigma_n \in \{1,-1\}} \|\sigma_1 x_1 + \ldots + \sigma_n x_n\| = 1.$$

Since $||x + x_i|| + ||x - x_i|| \ge 2 ||x_i|| = 2$ for all $1 \le i \le n$ and all $x \in E$ and applying formula (*) we get

$$\left\|\sum_{\substack{r=1\\r\neq i}}^n \sigma_r x_r + x_i\right\| + \left\|\sum_{\substack{r=1\\r\neq i}}^n \sigma_r x_r - x_i\right\| = 2$$

for all $1 \leq i \leq n$ and for all $\sigma_1, \ldots, \sigma_{i-1}, \sigma_{i+1}, \ldots, \sigma_n$ in $\{1, -1\}$.

For $0 \leq j \leq n$ define

$$A_j = \{\sigma_1 x_1 + \ldots + \sigma_n x_n, \sigma_1, \ldots, \sigma_n \in \{1, -1\} \text{ and}$$

exactly j elements in $\sigma_1, \ldots, \sigma_n$ are $-1\}$.

Now it follows that $||x|| = s_j$ for all x in A_j for some $0 \le s_j \le 2$, $0 \le j \le n$ and $s_0 + s_1 = s_1 + s_2 \ldots = s_{n-1} + s_n = 2$.

Since $||x + \sigma_1 x_1 + \sigma_2 x_2|| + ||x - \sigma_1 x_1 - \sigma_2 x_2|| \ge 2 ||\sigma_1 x_1 + \sigma_2 x_2|| = 2$ for all σ_1, σ_2 in $\{1, -1\}$ and all $x \in E$, by again applying formula (*) we get $s_0 + s_2 = 2$ and therefore $s_0 = s_1 = \ldots = s_n = 1$. So $||\sigma_1 x_1 + \ldots + \sigma_n x_n|| = 1$ for all $\sigma_1, \ldots, \sigma_n$ in $\{1, -1\}$.

Now let $n \ge 3$ and take $\alpha_1, \ldots, \alpha_n$ in \mathbb{R} with $\max_{1 \le i \le n} |\alpha_i| = 1$.

Since the set $A = \{\sigma = (\sigma_1, \ldots, \sigma_n), \sigma_1, \ldots, \sigma_n \in \{1, -1\}\}$ is the set of extreme points of the unit ball in $l^{\infty}(n)$ we get some $0 \leq b_{\sigma} \leq 1$, $\sum_{\sigma \in A} b_{\sigma} = 1$ such that $(\alpha_1, \ldots, \alpha_n) = \sum_{\sigma \in A} b_{\sigma} \cdot \sigma$. So $\alpha_1 x_1 + \ldots + \alpha_n x_n = \sum_{\sigma \in A} b_{\sigma} \cdot (\sigma_1 x_1 + \ldots + \sigma_n x_n)$ and hence $\|\alpha_1 x_1 + \ldots + \alpha_n x_n\| \leq 1$. On the other hand choose $x'_1, \ldots, x'_n \in E'$ with $x'_i(x_i) = 1$, $\|x'_i\| = 1$ for all $1 \leq i \leq n$. Fix some $1 \leq j \leq n$ and take $\sigma_1, \ldots, \sigma_{j-1}, \sigma_{j+1}, \ldots, \sigma_n$ in $\{1, -1\}$. Since $x_j = 1/2 \left(\left(\sum_{\substack{r=1 \\ r \neq j}}^n \sigma_r x_r + x_j \right) + \left(\sum_{\substack{r=1 \\ r \neq j}}^n -\sigma_r x_r + x_j \right) \right)$ and $x'_j(x_j) = 1$ we get

$$\boldsymbol{x}_{j}'\left(\sum_{\substack{r=1\\r\neq j}}^{n}\sigma_{r}\boldsymbol{x}_{r}\right)=0.$$

It is easy to check that

$$\alpha_1 x_1 + \ldots + \alpha_n x_n = 1/(2^n) \sum_{\sigma \in A} (\sigma_1 \alpha_1 + \ldots + \sigma_n \alpha_n) (\sigma_1 x_1 + \ldots + \sigma_n x_n)$$

and therefore we get

$$x_j'(\alpha_1x_1+\ldots+\alpha_nx_n)=\alpha_j.$$

So

$$\|\alpha_1 x_1 + \ldots + \alpha_n x_n\| \ge \max_{1 \le j \le n} |\alpha_j| = 1.$$

So it follows that

$$\|\alpha_1 x_1 + \ldots + \alpha_n x_n\| = \max_{1 \leq i \leq n} |\alpha_i|, \text{ for all } \alpha_1, \ldots, \alpha_n \in \mathbb{R}.$$

Lemma 1 now guarantees that x_1, x_2, \ldots is a basic sequence in E (take K = 1). Let $F = \overline{[(x_n)_{n\geq 1}]}$ be the closed linear span of x_1, x_2, \ldots and define

$$T: c_0 \rightarrow F, \quad T((\alpha_1, \alpha_2, \dots)) = \sum_{n=1}^{\infty} \alpha_n x_n.$$

Then it follows that T is an isometry from c_0 onto F.

(2): Take some x_1 in S. Since $2 \in AI(E)$ we get some x_2 in S such that $1/2(||x_1 - x_2|| + ||-x_1 - x_2||) = 2$. Therefore $||x_1 - x_2|| = ||x_1 + x_2|| = 2$. We inductively construct a sequence x_1, x_2, \ldots of elements of S such that $||\sigma_1 x_1 + \ldots + \sigma_n x_n|| = n$ for all $n \ge 2$ and all $\sigma_1, \ldots, \sigma_n$ in $\{1, -1\}$. Now let $n \ge 3$ and assume that we have found x_1, \ldots, x_{n-1} in S such that

$$\|\sigma_1 x_1 + \ldots + \sigma_{n-1} x_{n-1}\| = n-1$$
 for all $\sigma_1, \ldots, \sigma_{n-1}$ in $\{1, -1\}$.

Since $2 \in AI(E)$ we get some x_n in S such that

$$\frac{1}{2^{n}} \sum_{\sigma_{1}, \dots, \sigma_{n-1} \in \{1, -1\}} \left\| \frac{1}{n-1} (\sigma_{1} x_{1} + \dots + \sigma_{n-1} x_{n-1}) - x_{n} \right\| \\ + \left\| \frac{1}{n-1} (\sigma_{1} x_{1} + \dots + \sigma_{n-1} x_{n-1}) + x_{n} \right\| = 2.$$

This implies

$$\|(\sigma_1 x_1 + \ldots + \sigma_{n-1} x_{n-1}) - (n-1) x_n\| = \|(\sigma_1 x_1 + \ldots + \sigma_{n-1} x_{n-1}) + (n-1) x_n\| = 2(n-1),$$

for all $\sigma_1, \ldots, \sigma_{n-1}$ in $\{1, -1\}$. Hence we get

$$2(n-1) = \|\sigma_1 x_1 + \ldots + \sigma_{n-1} x_{n-1} + \sigma_n (n-1) x_n\|$$

$$\leq \|\sigma_1 x_1 + \ldots + \sigma_{n-1} x_{n-1} + \sigma_n x_n\| + (n-2) \|x_n\| \leq 2n-2,$$

for all $\sigma_1, \ldots, \sigma_n$ in $\{1, -1\}$ and therefore

$$\|\sigma_1 x_1 + \ldots + \sigma_n x_n\| = n$$
 for all $\sigma_1, \ldots, \sigma_n$ in $\{1, -1\}$.

Now let $n \ge 2$ and take $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$. Define $\tau_i = 1$ if $\alpha_i \ge 0$ and $\tau_i = -1$ if $\alpha_i < 0$ for all $1 \le i \le n$. Since $\|\tau_1 x_1 + \ldots + \tau_n x_n\| = n$ choose some x' in E', $\|x'\| = 1$ and $x'(\tau_1 x_1 + \ldots + \tau_n x_n) = n$. Hence $x'(x_i) = \tau_i$ for all $1 \le i \le n$ and therefore

$$\|\alpha_1x_1+\ldots+\alpha_nx_n\| \ge x'(\alpha_1x_1+\ldots+\alpha_nx_n) = |\alpha_1|+\ldots+|\alpha_n|.$$

So we have

$$\|\alpha_1 x_1 + \ldots + \alpha_n x_n\| = |\alpha_1| + \ldots + |\alpha_n|$$
 for all $n \ge 2$ and all $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$.

Lemma 1 again guarantees that the sequence x_1, x_2, \ldots is a basic sequence in E (take K = 1). Let $F = \overline{[(x_n)_{n \ge 1}]}$ be the closed linear span of x_1, x_2, \ldots and define

$$T: l^1 \to F, \quad T((\alpha_1, \alpha_2, \dots,)) = \sum_{n=1}^{\infty} \alpha_n x_n$$

Then it follows that T is an isometry from l^1 onto F and so we are done.

In order to prove Proposition 3 we need the following lemmata:

LEMMA 2. Let X be a compact Hausdorff space with at least two points. For each $n \in \mathbb{N}$ and f_1, \ldots, f_n in C(X) with $||f_1|| = \ldots = ||f_n|| = 1$ there are f_0 and g_0 in C(X) with $||f_0|| = ||g_0|| = 1$ such that

$$\frac{1}{n}\sum_{i=1}^{n}\|f_{i}-f_{0}\| \leqslant \frac{3}{2} \leqslant \frac{1}{n}\sum_{i=1}^{n}\|f_{i}-g_{0}\|.$$

PROOF: Let $A = \{f_1, \ldots, f_n\}$ and choose some x in X. Define

$$A^{0} = \{f \in A, f(x) = 0\}, A^{+} = \{f \in A, f(x) > 0\}, A^{-} = \{f \in A, f(x) < 0\}.$$

Find an open neighbourhood U of x such that:

For all y in U we get |f(y)| < 1/2 for all f in A^0 , f(y) > 0 for all f in A^+ , f(y) < 0 for all f in A^- .

Since X is completely regular we get f_0 in C(X) with $0 \le f_0(y) \le 1$ for all y in X, $f_0(x) = 1$ and $f_0(y) = 0$ for all y in $X \setminus U$.

Π

Now it follows that

$$\begin{split} \|f - f_0\| \leqslant \frac{3}{2}, & \|f + f_0\| \leqslant \frac{3}{2} \quad \text{for all } f \text{ in } A^0, \\ \|f - f_0\| \leqslant 1, & \|f + f_0\| \leqslant 2 \quad \text{for all } f \text{ in } A^+, \\ \|f - f_0\| \leqslant 2, & \|f + f_0\| \leqslant 1 \quad \text{for all } f \text{ in } A^-. \end{split}$$

Therefore if $|A^+| \ge |A^-|$ we get

$$\frac{1}{n}\sum_{i=1}^n \|f_i - f_0\| \leqslant \frac{3}{2};$$

and

$$\frac{1}{n}\sum_{i=1}^n \|f_i + f_0\| \leqslant \frac{3}{2}$$

if $|A^+| \leq |A^-|$.

For the remaining inequality in Lemma 2, find a finite subset Y of X with at least two elements, such that for each $1 \leq i \leq n$, there is some y in Y with $|f_i(y)| = 1$.

Let k in \mathbb{N} be the order of Y. Define

$$y_i = (f_i(y))_{y \in Y}$$
 for each $1 \leq i \leq n$.

By definition of Y it follows that y_1, y_2, \ldots, y_n are elements of the unit sphere of $l^{\infty}(k)$. Since $AI(l^{\infty}(k)) = \{3/2\}$ (see [6]) we find some z in the unit sphere of $l^{\infty}(k)$ such that

$$\frac{1}{n}\sum_{i=1}^{n}\left\|y_{i}-z\right\|_{\infty}=\frac{3}{2}$$

Let $z = (\lambda_y)_{y \in Y}$. Since X is normal the Tietze Extension Theorem applies giving some g_0 in C(X) such that $g_0(y) = \lambda_y$ for all y in Y and $||g_0|| = ||z||_{\infty} = 1$. Hence we get

$$\frac{1}{n}\sum_{i=1}^{n}\|f_{i}-g_{0}\| \geq \frac{1}{n}\sum_{i=1}^{n}\max_{y\in Y}|f_{i}(y)-g_{0}(y)| = \frac{1}{n}\sum_{i=1}^{n}\|y_{i}-z\|_{\infty} = \frac{3}{2}.$$

LEMMA 3. Let X be an infinite compact Hausdorff space and let $\varepsilon > 0$. Then there is a finite subset A of norm one elements in C(X) such that

$$\frac{1}{|A|}\sum_{f\in A}\|f-h\|>\frac{3}{2}-\varepsilon\quad\text{for all }h\text{ in }C(X) \text{ with }\|h\|=1.$$

PROOF: Let $n \in \mathbb{N}$ and choose a finite subset Y of X order n. Furthermore find open neighbourhoods U_y for all y in Y such that $U_y \cap U_{y'} = \emptyset$ for all $y \neq y'$ in Y. By the complete regularity of X, find for each y in Y some f_y in C(X) such that $-1 \leq f_y(x) \leq 1$ for all x in X, $f_y(y) = 1$ and $f_y(x) = -1$ for all x in $X \setminus U_y$. Now take h in C(X), ||h|| = 1. Choose some x_0 in X with $|h(x_0)| = 1$. CASE 1. $h(x_0) = 1$. If $x_0 \in U_{y_0}$ for some y_0 in Y we get

$$||f_y - h|| \ge |f_y(x_0) - h(x_0)| = |-1 - 1| = 2,$$

for all $y \neq y_0$ in Y.

$$\|f_y + h\| + \|f_{y'} + h\| \ge |f_y(y) + h(y)| + |f_{y'}(y) + h(y)|$$

= $|1 + h(y)| + |-1 + h(y)| = 2,$

for all $y \neq y'$ in Y. Hence we get

$$\frac{1}{2n}\sum_{y\in Y}\left(\|f_y-h\|+\|f_y+h\|\right) \geqslant \frac{1}{2n}\left(2(n-1)+2\cdot\frac{n-1}{2}\right) = \frac{3}{2}-\frac{3}{2n}$$

If $x_0 \notin \bigcup_{y \in Y} U_y$ we get

$$||f_y - h|| \ge |f_y(x_0) - h(x_0)| = |-1 - 1| = 2,$$

for all $y \in Y$. Hence we get

$$\frac{1}{2n}\sum_{y\in Y} \left(\|f_y - h\| + \|f_y + h\|\right) \ge \frac{1}{2n} \left(2n + 2 \cdot \frac{n-1}{2}\right) = \frac{3}{2} - \frac{1}{2n}.$$

Summing up, we get

$$\frac{1}{2n} \sum_{y \in Y} (\|f_y - h\| + \|f_y + h\|) \ge \frac{3}{2} - \frac{3}{2n}.$$

CASE 2. $h(x_0) = -1$. Take -h for h and look at Case 1. Now take $A = \{f_y, -f_y; y \in Y\}$ and choose n big enough.

LEMMA 4. Let X be a compact Hausdorff space without isolated points and let $\varepsilon > 0$. For each $n \in \mathbb{N}$ and f_1, \ldots, f_n in C(X) with $||f_1|| = \cdots = ||f_n|| = 1$ there is some f_0 in C(X) with $||f_0|| = 1$ such that

$$\frac{1}{n}\sum_{i=1}^n \|f_i-f_0\|>2-\varepsilon.$$

PROOF: Let $A = \{f_1, \ldots, f_n\}$. Choose some finite subset Y of X such that for each f in A there is some y in Y with |f(y)| = 1. Furthermore take open neighbourhoods U_y for each y in Y such that $U_y \cap U_{y'} = \emptyset$ for $y \neq y'$ in Y. Let

$$B_y = \{f \in A, f(y) = 1\}, \quad C_y = \{f \in A, f(y) = -1\},$$

Averaging distances

for y in Y. For each y in Y take open neighbourhoods V_y of y such that $f(x) > 1 - \varepsilon$ for all x in V_y and all f in B_y . Let

$$W_y = U_y \cap V_y, \quad y \text{ in } Y.$$

Since X has no isolated points, take some z_y in W_y , $z_y \neq y$. The Tietze extension theorem provides f_0 in C(X) such that $-1 \leq f_0(x) \leq 1$ for all x in X, $f_0(y) = 1$, $f_0(z_y) = -1$, for all y in Y.

Let y in Y. If f is in B_y we get $||f - f_0|| \ge |f(z_y) - f_0(z_y)| > 2 - \varepsilon$. If f is in C_y we get $||f - f_0|| \ge |f(y) - f_0(y)| = 2$. Hence

$$\frac{1}{n}\sum_{i=1}^{n}\|f_i-f_0\|>2-\varepsilon.$$

LEMMA 5. Let X be a compact Hausdorff space and let x_0 be a point in X without a countable neighbourhood basis and let A be a closed neighbourhood of x_0 . Furthermore let $n \in \mathbb{N}$ and take f_1, \ldots, f_n in C(X) with $f_i(x) \ge 0$ for all x in A, $f_i(x_0) = 0$, for all $1 \le i \le n$.

Then there are y_1, \ldots, y_n in A such that $y_i \neq x_0$, $y_i \neq y_j$ and $f_i(y_i) = 0$ for all $1 \leq i \neq j \leq n$.

PROOF: By induction on n. Let n = 1. Assume $f_1(x) > 0$ for all x in A, $x \neq x_0$. Take an open neighbourhood U of x_0 , $U \subseteq A$ and take $k \in \mathbb{N}$. Let $U_k = f_1^{-1}[0, 1/k) \cap U$. We claim that $(U_k)_{k \ge 1}$ is a neighbourhood basis of x_0 , consisting of open neighbourhoods U_k of x. Let V be an open neighbourhood of x_0 . If $A \setminus V = \emptyset$ we get $A \subseteq V$ and therefore $U_k \subseteq V$ for all $k \in \mathbb{N}$. Now let $A \setminus V \neq \emptyset$. Since $A \setminus V$ is compact we get some $s \in A \setminus V$ such that $f_1(y) \ge f_1(s)$ for all y in $A \setminus V$. Since $s \in A$, $s \notin V$, we get $f_1(s) > 0$. Choose some $k_0 \in \mathbb{N}$ with $f_1(s) > 1/k_0$. Assume there is some y in $U_{k_0} \setminus V$. Then we get $f_1(y) < 1/k_0$ and by $U_{k_0} \subseteq U \subseteq A$, $f_1(y) > 1/k_0$.

So $(U_k)_{k\geq 1}$ build a countable neighbourhood basis of x_0 which leads to a contradiction. Therefore we get some y_1 in A, $y_1 \neq x_0$ and $f_1(y_1) = 0$. Now let f_1, \ldots, f_{n+1} be in C(X) with $f_i(x) \geq 0$ for all x in X, $f_i(x_0) = 0$, for all $1 \leq i \leq n+1$. Assume that we have found y_1, \ldots, y_n in A such that $y_i \neq x_0$, $y_i \neq y_j$ and $f_i(y_i) = 0$ for all $1 \leq i \neq j \leq n$.

Now choose some closed neighbourhood A_n of x_0 such that $y_1, \ldots, y_n \notin A_n$. The case n = 1 leads to some $y_{n+1} \in A_n \cap A$ such that $y_{n+1} \neq x_0$ and $f_{n+1}(y_{n+1}) = 0$.

Now we verify Proposition 3:

PROOF OF PROPOSITION 3: (1): If X is finite we get $C(X) \cong l^{\infty}(n)$ for some $n \ge 2$. Since $AI(l^{\infty}(n)) = \{3/2\}$ (see [6]) we are done. So assume that X is infinite.

By Lemma 2 and 3 and the Intermediate Value Theorem we get $3/2 \in AI(C(X))$ and $AI(C(X)) \subseteq [3/2, 2]$. Now take some isolated point x_0 in X. Define f_0 , by $f_0(x_0) = 1$ and $f_0(x) = 0$ for all $x \neq x_0$ in X. Hence we get $f_0 \in C(X)$, $||f_0|| = 1$. It is easy to check that $||f_0 - f|| + ||f_0 + f|| \leq 3$ for all $f \in C(X)$ with ||f|| = 1 and therefore $AI(C(X)) = \{3/2\}$.

(2): By Lemma 2, 3, 4 and the Intermediate Value Theorem we get $[3/2, 2] \subseteq AI(C(X))$ and $AI(C(X)) \subseteq [3/2, 2]$. It remains to show that $2 \notin AI(C(X))$. Take some x_0 in X with a countable neighbourhood basis $(U_n)_{n\geq 1}$. Without loss of generality let U_n be open neighbourhoods of x_0 for all $n \geq 1$. Since X is completely regular take some $(g_n)_{n\geq 1}$ in C(X) such that $0 \leq g_n(x) \leq 1$ for all x in X, $g_n(x_0) = 0$ and $g_n(x) = 1$ for all $x \in X \setminus U_n$, for all $n \geq 1$.

It is easy to check that f defined by $f = 1 - \sum_{n \ge 1} 1/2^n g_n$ is in C(X) and is such that $0 \le f(x) \le 1$ for all x in X, $f(x_0) = 1$ and f(x) < 1 for all $x \ne x_0$ in X. Assume that we have $2 \in AI(C(X))$. Then there must be some $h \in C(X)$, ||h|| = 1 and ||f - h|| + ||f + h|| = 4. Hence we get $h(x_0) = 1$ and $h(x_0) = -1$, which is a contradiction.

(3): It remains to show that $2 \in AI(C(X))$. Let $n \in \mathbb{N}$ and f_1, \ldots, f_n in C(X) with $||f_i|| = 1$ for all $1 \leq i \leq n$. Let $A = \{f_1, \ldots, f_n\}$. Choose a finite subset Y of X such that for each f in A there is some y in Y with ||f(y)| = 1. Furthermore let C_y be closed neighbourhoods of y such that $C_y \cap C_{y'} = \emptyset$ for all $y \neq y'$ in Y.

Let $A_y = \{f \in A, f(y) = 1\}$ and $B_y = \{f \in A, f(y) = -1\}$ for all y in Y. Now fix some y in Y. By Lemma 5 there are $(z_{y,f})_{f \in A_y}$ in C_y such that $z_{y,f} \neq y$, $z_{y,f} \neq z_{y,f'}$ and $(1-f)(z_{y,f}) = 0$ for all $f \neq f'$ in A_y .

By the Tietze Extension Theorem we get some g in C(X) such that $-1 \leq g(x) \leq 1$ for all x in X, g(y) = 1 and $g(z_{y,f}) = -1$ for all y in Y and all f in A_y .

Now let f in A.

CASE (a). $f \in A_{y_0}$ for some y_0 in Y. It follows that

$$\|f-g\| \ge |f(z_{y_0,f})-g(z_{y_0,f})| = |1-(-1)| = 2.$$

CASE (b). $f \in B_{y_0}$ for some y_0 in Y. It follows that

$$||f - g|| \ge |f(y_0) - g(y_0)| = |-1 - 1| = 2.$$

So ||f - g|| = 2 for all f in A and therefore

$$\frac{1}{n}\sum_{i=1}^{n}\|f_{i}-g\|=2.$$

The next two lemmata lead to Proposition 4.

[12]

LEMMA 6. Let X be a P-space. Then we have

- 1. For every continuous function f on X the zero set Nf of f, $Nf = \{x \in X, f(x) = 0\}$ is an open and closed subset of X.
- 2. Let A be a countable subset of X. It follows that A is closed in X and for each a in A there are open neighbourhoods U_a of a such that $U_a \cap U_{a'} = \emptyset$ for all $a \neq a'$ in A.
- Let A be a countable subset of X and f a function defined on A. (By (2) f is continuous on A.) Then there exists some continuous function f on X such that f(a) = f(a) for all a in A.

PROOF: For (1) and (3) see exercise $4J \cdot (3)$ and $4K \cdot (2)$ in [1, p.63].

(2): A is closed by exercise $4K \cdot (1)$ in [1, p.63].

Let $A = \{x_1, x_2, ...\}$ and $n \in \mathbb{N}$. Since $A \setminus \{x_n\}$ is countable we get $A \setminus \{x_n\}$ is closed in X. Since X is completely regular there are f_n in C(X) such that $f_n(x_n) = 0$ and $f_n(x_m) = 1$ for all $n \neq m$ in \mathbb{N} .

Let $Nf_n = \{x \in X, f_n(x) = 0\}$ for $n \in \mathbb{N}$. By (1) each Nf_n is an open subset of X. For each $n \in \mathbb{N}$ define $U_n = Nf_n \cap \left[X \setminus \bigcup_{k \neq n} Nf_k\right]$.

Note that $X \setminus \bigcup_{k \neq n} Nf_k = \bigcap_{k \neq n} (X \setminus Nf_k)$ is a G_{δ} -set in X and therefore open since X is a P-space. It is easy to check that $(U_n)_{n \ge 1}$ are open neighbourhoods of x_n and $U_n \cap U_m = \emptyset$ for all $n \neq m$ in \mathbb{N} .

LEMMA 7. Let X be a P-space without isolated points and let $f_1, \ldots, f_n \in C_b(X)$ with $||f_1|| = \ldots = ||f_n|| = 1$. Then there exist countable subsets A_1, \ldots, A_n of X such that $\sup_{x \in A_i} |f_i(x)| = 1$ and $A_i \cap A_j = \emptyset$ for all $1 \le i \ne j \le n$.

PROOF: By induction on *n*. The case n = 1 is trivial. Now let $f_1, \ldots, f_{n+1} \in C_b(X)$ with $||f_1|| = \ldots = ||f_{n+1}|| = 1$ and assume that we have found countable subsets A_1, \ldots, A_n of X such that $\sup_{x \in A_i} |f_i(x)| = 1$ and $A_i \cap A_j = \emptyset$ for all $1 \leq i \neq j \leq n$. Choose some countable subset B_{n+1} of X such that $\sup_{x \in B_{n+1}} |f_{n+1}(x)| = 1$. Let $A = A_1 \cup \ldots \cup A_n \cup B_{n+1}$. By Lemma 6, part (2), find some open neighbourhoods U_a for each a in A such that $U_a \cap U_{a'} = \emptyset$ for all $a \neq a'$ in A. If $B_{n+1} \cap (A_1 \cup \ldots \cup A_n) = \emptyset$, let $A_{n+1} = B_{n+1}$. So assume that $B_{n+1} \cap (A_1 \cup \ldots \cup A_n) \neq \emptyset$. Take $y \in B_{n+1} \cap (A_1 \cup \ldots \cup A_n)$. By Lemma 6, part (1), find some open neighbourhood V_y of y such that $V_y \subseteq U_y$ and $|f_{n+1}(x)| = |f_{n+1}(y)|$ for all x in V_y . Since X has no isolated points take some z_y in V_y , $z_y \neq y$ for all y in $B_{n+1} \cap (A_1 \cup \ldots \cup A_n)$. Now let $A_{n+1} = [B_{n+1} \setminus (A_1 \cup \ldots \cup A_n)] \cup \bigcup_{y \in B_{n+1} \cap (A_1 \cup \ldots \cup A_n)} [z_y]$. By definition of A_{n+1} we $y \in B_{n+1} \cap (A_1 \cup \ldots \cup A_n)$.

get $A_{n+1} \cap A_1 = \ldots = A_{n+1} \cap A_n = \emptyset$, A_{n+1} countable and $\sup_{x \in A_{n+1}} |f_{n+1}(x)| =$

 $\sup_{x\in B_{n+1}}|f_{n+1}(x)|=1.$

PROOF OF PROPOSITION 4: Let $f_1, \ldots, f_n \in E$, $||f_1|| = \ldots = ||f_n|| = 1$. Let $Nf_i = \{x \in X, f_i(x) = 0\}$ for all $1 \leq i \leq n$. Let $U = Nf_1 \cap \ldots \cap Nf_n$. By Lemma 6, part (1), U is an open neighbourhood of x_0 . Since X has no isolated points, there is $x_1 \in U$, $x_1 \neq x_0$. Take some open neighbourhood V of x_1 such that $x_0 \notin V$ and $V \subseteq$ U. Since X is completely regular we can find f in $C_b(X)$ such that $0 \leq f(x) \leq 1$ for all x in X, $f(x_1) = 1$ and f(x) = 0 for all x in X \V. Therefore $f \in E$ and ||f|| = 1. Now it follows that $||f - f_1|| = \ldots = ||f - f_n|| = 1$ and therefore $1 \in AI(E)$. It remains to show that $2 \in AI(E)$. By Lemma 7 there are some countable subsets A_1, \ldots, A_n of X such that sup $|f_i(x)| = 1$ and $A_i \cap A_j = \emptyset$ for all $1 \leq i \neq j \leq n$. Without loss of z∈Â, generality let $x_0 \notin A_1 \cup \ldots \cup A_n$. We define a function g on $A = \{x_0\} \cup A_1 \cup \ldots \cup A_n$. Put $g(x_0) = 0$, $g(x) = -f_i(x)$ for all x in A_i and all $1 \le i \le n$. It follows that $\sup_{x \in A} |g(x)| = \max_{1 \leq i \leq n} ||f_i|| = 1.$ By Lemma 6, part (3), we get some continuous function z€Â \widetilde{g} on X such that $\widetilde{g}(x) = g(x)$ for all x in A. Let $h(x) = \min(\max(-1, \widetilde{g}(x)), 1)$ for all x in X. It follows that $h \in E$, ||h|| = 1 and h(x) = g(x) for all x in A. Now let $1 \leqslant i \leqslant n$. We get $\|f_i - h\| \geqslant \sup_{x \in A_i} |f_i(x) - h(x)| = 2 \sup_{x \in A_i} |f_i(x)| = 2$, hence Π

 $2 \in AI(E)$. By the Intermediate Value Theorem it follows that AI(E) = [1,2].

References

- [1] L. Gillman and M. Jerison, Rings of continuous functions (D. Van Nostrand Company, Princeton, N.J., 1960).
- J. Diestel, Sequences and series in Banach spaces (Springer-Verlag, Berlin, Heidleberg, [2] New York, 1984).
- O. Gross, 'The rendezvous value of a metric space', in Advances in game theory, Annals [3] of Math. Studies 52 (Princeton University Press, Princeton N.J., 1964), pp. 49-53.
- Pei-Kee Lin, 'The average distance property of Banach spaces', (preprint). [4]
- S.A. Morris and P. Nickolas, 'On the average distance property of compact connected [5] metric spaces', Arch. Math. 40 (1983), 459-463.
- [6] R. Wolf, 'On the average distance property of spheres in Banach spaces', Arch. Math. 62 (1994), 378-384.
- R. Wolf, 'On the average distance property in finite dimensional real Banach spaces', Bull. [7] Austral. Math. Soc. 51 (1994), 87-101.

Institut für Mathematik Universität Salzburg Hellbrunnerstraße 34 A-5020 Salzburg Austria

[14]

0