Bull, Austral. Math. Soc.

AVERAGING DISTANCES IN CERTAIN BANACH SPACES

Reinhard Wolf

Let E be a Banach space. The averaging interval $A I(E)$ is defined as the set of positive real numbers α, with the following property: For each $n \in \mathbb{N}$ and for all (not necessarily distinct) $x_{1}, x_{2}, \ldots, x_{n} \in E$ with $\left\|x_{1}\right\|=\left\|x_{2}\right\|=\ldots=\left\|x_{n}\right\|=1$, there is an $x \in E,\|x\|=1$, such that

$$
\frac{1}{n} \sum_{i=1}^{n}\left\|x_{i}-x\right\|=\alpha
$$

It follows immediately, that $A I(E)$ is a (perhaps empty) interval included in the closed interval $[1,2]$. For example in this paper it is shown that $A I(E)=\{\alpha\}$ for some $1<\alpha<2$, if E has finite dimension. Furthermore a complete discussion of $A I(C(X))$ is given, where $C(X)$ denotes the Banach space of real valued continuous functions on a compact Hausdorff space X. Also a Banach space E is found, such that $A I(E)=[1,2]$.

1. Introduction

Let E be a Banach space. We ask for positive real numbers α, with the following property: For each $n \in \mathbb{N}$ and for all (not necessarily distinct) $x_{1}, x_{2}, \ldots, x_{n} \in E$ with $\left\|x_{1}\right\|=\left\|x_{2}\right\|=\ldots=\left\|x_{n}\right\|=1$, there is an $x \in E,\|x\|=1$, such that

$$
\frac{1}{n} \sum_{i=1}^{n}\left\|x_{i}-x\right\|=\alpha
$$

Since the unit sphere $S=\{x \in E,\|x\|=1\}$ of E is connected, and for each choice x_{1}, \ldots, x_{n} in S (not necessarily distinct) the function $F\left(x_{1}, \ldots, x_{n}\right)$ on S defined by $F\left(x_{1}, \ldots, x_{n}\right)(x):=1 / n \sum_{i=1}^{n}\left\|x_{i}-x\right\|$ for all $x \in S$, is continuous, we get:
$F\left(x_{1}, \ldots, x_{n}\right)(S) \subseteq \mathbb{R}^{+}$is a nonempty interval (closed, open, half closed - half open). So $\alpha \in \mathbb{R}^{+}$has the desired property if and only if

$$
\alpha \in \bigcap_{\substack{n \in N \\ x_{1}, \ldots, x_{n} \in S}} F\left(x_{1}, \ldots, x_{n}\right)(S)
$$

Received 5th March, 1996.
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/97 \$A2.00+0.00.

We define

$$
A I(E):=\bigcap_{\substack{n \in \mathbb{N} \\ x_{1}, \ldots, x_{n} \in S}} F\left(x_{1}, \ldots, x_{n}\right)(S)
$$

as the averaging distance interval of E.
Since $\|x-y\| \leqslant 2,(\|x-y\|+\|x+y\|) / 2 \geqslant 1$, for all $x, y \in S$, it follows that $A I(E)$ is an interval (closed, open, half closed - half open, or consisting of exactly one number, or the empty set) included in the closed interval [1,2].

In this paper we discuss $A I(E)$ for certain real Banach spaces E.

2. Basic definitions and notation

All Banach spaces E in this paper are considered real and of dimension at least two. By $S=\{x \in E,\|x\|=1\}$ we denote the unit sphere of E. For $n \in \mathbb{N}$, $1 \leqslant p \leqslant \infty$, let $l^{p}(n)$ denote \mathbb{R}^{n} with the usual p-norm. Recall that a sequence of elements x_{1}, x_{2}, \ldots in E is called a basic sequence if for each x in the closed linear span $\overline{\left[\left(x_{n}\right)_{n} \geqslant 1\right]}$ generated by x_{1}, x_{2}, \ldots there exist a unique sequence of real numbers $\alpha_{1}, \alpha_{2}, \ldots$ such that

$$
x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \alpha_{i} x_{i}
$$

Further recall that a topological space X is completely regular if X is a Hausdorff space with the following property: For each closed subset A of X and for each $x \notin A$, there exists a continuous function f on X such that $0 \leqslant f(y) \leqslant 1$ for all y in X, $f(x)=1$ and $f(a)=0$ for all a in A.

A subset B of X is called a G_{δ}-set if B is the countable intersection of open subsets of X.

A completely regular space X is called a P-space if every G_{δ}-set in X is open. (See [1, p.63].)

3. The results

When E is of finite dimension the following Theorem of Gross describes the averaging interval $A I(E)$:

Thenrem. [3] Let (X, d) be a compact connected metric space. There is a unique positive real number $r(X, d), D(X) / 2 \leqslant r(X, d)<D(X)$, with the following property: For each positive integer n and for all (not necessarily distinct) $x_{1}, x_{2}, \ldots, x_{n}$ in X, there exists an x in X such that

$$
\frac{1}{n} \sum_{i=1}^{n} d\left(x_{i}, x\right)=r(X, d)
$$

$r(X, d)$ is called the rendezvous number of X and $D(X)$ denotes the diameter of X.

For a proof see [3].
From this we obtain:
Proposition 1. Let E be a finite dimensional Banach space. Then we have $A I(E)=\{\alpha\}$, for some $1<\alpha<2$.

For example, in [5] Morris and Nickolas proved that this unique α is $\left(2^{n-1}[\Gamma(n / 2)]^{2}\right) /(\sqrt{\pi} \Gamma((2 n-1) / 2))$, for all $n \geqslant 2$ in the case $E=l^{2}(n)$, where Γ denotes the Gamma function.

In [6] it is shown that $\alpha=3 / 2$ for $E=l^{\infty}(n), \alpha=2-1 / n$ for $E=l^{1}(n)$ and in [7] we give a proof that $\alpha \leqslant 2-1 / n$, if E is an n-dimensional real Banach space with a 1 -unconditional basis and equality holds if and only if E is isometrically isomorphic to $l^{1}(n)$. (In both papers the unique positive real number α is denoted by $r(E)$.)

In the case E is of infinite dimension it is shown in [6] that $A I\left(l^{2}\right)=\{\sqrt{2}\}$, $A I\left(l^{\infty}\right)=\{3 / 2\}$ and $A I\left(l^{1}\right)=\emptyset$, where $l^{p}(1 \leqslant p \leqslant \infty)$ denotes the real sequence space with the usual p-norm. Recently Pei-Kee Lin (private communication, see [4]) showed that $A I\left(l^{p}\right) \subseteq\left\{2^{1 / p}\right\}$ if $1 \leqslant p<\infty, A I\left(l^{p}\right)=\emptyset$ if $1 \leqslant p<2$ and $\lim _{n \rightarrow \infty} r\left(l^{p}(n)\right)=2^{1 / p}$ for all $1 \leqslant p<\infty\left(A I\left(l^{p}(n)\right)=\left\{r\left(l^{p}(n)\right)\right\}\right)$. By looking at the proofs of Proposition $1,4,5$ in $[6]$ and since $1 \notin A I\left(c_{0}\right)$ (notice that there is no x in $c_{0},\|x\|=1$ such tha.t $\left\|x_{1}-x\right\|+\left\|x_{1}+x\right\|+\left\|x_{2}-x\right\|+\left\|x_{2}+x\right\|=4$, where $x_{1}=(1,0,0, \ldots)$ and $\left.x_{2}=(1,1 / 2,1 / 3, \ldots)\right)$ it follows that $A I\left(c_{0}\right)=(1,3 / 2]$, where c_{0} denotes the subspace of l^{∞} consisting of all zero tending sequences.

Notice that Proposition 1 implies that the numbers 1 and 2 are forbidden values for α, if E is finite dimensional.

If E has infinite dimension the fact 1 , respectively 2 , are elements of $A I(E)$ implies that c_{0} (under an added condition), respectively l^{1}, are in E :

Proposition 2. Let E be a Banach space of infinite dimension. Then we get

1. $\quad 1 \in A I(E)$ and E having a two dimensional subspace isometrically isomorphic to $l^{\infty}(2)$ implies that E contains a closed subspace isometrically isomorphic to c_{0}.
2. $2 \in A I(E)$ implies that E contains a closed subspace isometrically isomorphic to l^{1}.

Since a Banach space is reflexive if and only if all its closed subspaces are reflexive, we obtain

Corollary. Let E be a reflexive Banach space. Then $2 \notin A I(E)$. In addition, if E does not contain a two dimensional subspace isometrically isomorphic to $l^{\infty}(2)$,
then $1 \notin A I(E)$ also.
For a compact Hausdorff space X let $C(X)$ denote the Banach space of all real valued continuous functions on X with the supremum norm. The following result gives a complete discussion of $A I(C(X))$:

Proposition 3. Let X be a compact Hausdorff space with at least two points. Then

1. $\quad A I(C(X))=\{3 / 2\}$ if X has at least one isolated point.
2. $A I(C(X))=[3 / 2,2)$ if X has no isolated points and has at least one point with a countable neighbourhood basis.
3. $A I(C(X))=[3 / 2,2]$ if no point in X has a countable neighbourhood basis.

Therefore, for example, we get $A I(C[0,1])=[3 / 2,2)$.
Quite recently Pei-Kee Lin (private communication, see [4]) generalised Proposition 3, part 1 to $C_{b}(X)$, the space of all bounded real valued continuous functions on a normal space X, and moreover he showed that $A I\left(C_{b}(X)\right) \supseteq(3 / 2,2)$, if X is a normal space without isolated points.

The next result gives an answer to the question: What is the maximal size of $A I(E)$?

Proposition 4. Let X be a P-space without isolated points and let E be the Banach space of all bounded continuous real valued functions on X vanishing at one point x_{0} in X, with the supremum norm. Then we have

$$
A I(E)=[1,2] .
$$

Remark. Of course each discrete space is a P-space. An example of a P-space with exactly one non isolated point is the following: Let S be an uncountable space in which all points are isolated except for a distinguished point s_{0}, a neighbourhood of s_{0} being any set containing s_{0} whose complement is countable. (See [1, 4 N.1, p.64].)

The existence of a P-space without isolated points is not trivial. A construction of such a space is given in [1, Chapter 13], in particular see 13 P. 1, page 193.

Summing up, we notice that if a Banach space E is finite dimensional with dimension at least two then $A I(E)=\{\alpha\}$ for some unique positive real number α. If E has infinite dimension then all extreme cases for $A I(E)$ are possible: For example $A I\left(l^{1}\right)=\emptyset, A I\left(l^{2}\right)=\{\sqrt{2}\}$, and $A I(E)=[1,2]$ for E the Banach space given in Proposition 4.

4. The proofs

Proof of Proposition 1: By assumption the unit sphere S of E equipped with the norm induced metric is a compact connected metric space. Applying Gross's

Theorem and since the diameter of S is two, we get $A I(E)=\{\alpha\}$, for some $\alpha \in[1,2)$. It remains to show that $\alpha>1$. Assume $\alpha=1$.

Let $n \in \mathbb{N}$. By compactness of S find a $1 / n$-net x_{1}, \ldots, x_{N} of $S, N=N(n)$. Since $A I(E)=\{1\}$ we find some y_{n} in S such that

$$
\frac{1}{2 N} \sum_{i=1}^{N}\left\|x_{i}-y_{n}\right\|+\left\|x_{i}+y_{n}\right\|=1
$$

It follows that $\left\|x_{i}-y_{n}\right\|+\left\|x_{i}+y_{n}\right\|=2$ for all $1 \leqslant i \leqslant N$. So for each x in S we obtain

$$
2 \leqslant\left\|x-y_{n}\right\|+\left\|x+y_{n}\right\| \leqslant 2+\frac{2}{n}
$$

Compactness of S again implies that a subsequence of $\left(y_{n}\right)_{n \geqslant 1}$ converges to some y in S. Therefore we have

$$
\|x-y\|+\|x+y\|=2 \text { for all } x \text { in } S .
$$

Now choose some y_{0} in S with $\left\|y-y_{0}\right\|=1$. By formula (\star) we get $\left\|y+y_{0}\right\|=1$.
Therefore $y+y_{0}$ and $y-y_{0}$ are elements of S. Applying formula (\star) to $y+y_{0}$ and $y-y_{0}$ we get $\left\|2 y-y_{0}\right\|=\left\|2 y+y_{0}\right\|=1$. But $4=\|4 y\| \leqslant\left\|2 y-y_{0}\right\|+\left\|2 y+y_{0}\right\|=2$ leads to a contradiction.

For proving Proposition 2 we need a well known criterion for basic sequences:
Lemma 1. Let x_{1}, x_{2}, \ldots be a sequence of nonzero elements in a Banach space E. Then in order that x_{1}, x_{2}, \ldots be a basic sequence, it is both necessary and sufficient that there be a finite constant $K>0$ so that for any choice of scalars $\left(\alpha_{n}\right)_{n \geqslant 1}$ and any integers m, n with $m<n$ we have

$$
\left\|\sum_{i=1}^{m} \alpha_{i} x_{i}\right\| \leqslant K \cdot\left\|\sum_{i=1}^{n} \alpha_{i} x_{i}\right\|
$$

For a proof see [2, Theorem 1, p.36].
Proof of Proposition 2: (1): Since $l^{\infty}(2)$ is isometrically included in E we find x_{1}, x_{2} in S such that $\left\|\alpha_{1} x_{1}+\alpha_{2} x_{2}\right\|=\max \left(\left|\alpha_{1}\right|,\left|\alpha_{2}\right|\right)$ for all α_{1}, α_{2} in \mathbb{R}.

We inductively construct a sequence x_{1}, x_{2}, \ldots of elements in S such that $\left\|\sigma_{1} x_{1}+\ldots+\sigma_{n} x_{n}\right\|=1$ for all $\sigma_{1}, \ldots, \sigma_{n}$ in $\{1,-1\}$ and all $n \geqslant 2$.

Now let $n \geqslant 3$ and assume that we have found x_{1}, \ldots, x_{n-1} in S such that $\left\|\sigma_{1} x_{1}+\ldots+\sigma_{n-1} x_{n-1}\right\|=1$ for all $\sigma_{1}, \ldots, \sigma_{n-1}$ in $\{-1,1\}$. Since $1 \in A I(E)$ we get some x_{n} in S such that

$$
\begin{aligned}
\frac{1}{2^{n}} \sum_{\sigma_{1}, \ldots, \sigma_{n-1} \in\{1,-1\}} \| \sigma_{1} x_{1}+\ldots+\sigma_{n-1} x_{n-1} & +x_{n} \| \\
& +\left\|\sigma_{1} x_{1}+\ldots+\sigma_{n-1} x_{n-1}-x_{n}\right\|=1
\end{aligned}
$$

Therefore we get

$$
\frac{1}{2^{n}} \sum_{\sigma_{1}, \ldots, \sigma_{n} \in\{1,-1\}}\left\|\sigma_{1} x_{1}+\ldots+\sigma_{n} x_{n}\right\|=1
$$

Since $\left\|x+x_{i}\right\|+\left\|x-x_{i}\right\| \geqslant 2\left\|x_{i}\right\|=2$ for all $1 \leqslant i \leqslant n$ and all $x \in E$ and applying formula (\star) we get

$$
\left\|\sum_{\substack{r=1 \\ r \neq i}}^{n} \sigma_{r} x_{r}+x_{i}\right\|+\left\|\sum_{\substack{r=1 \\ r \neq i}}^{n} \sigma_{r} x_{r}-x_{i}\right\|=2
$$

for all $1 \leqslant i \leqslant n$ and for all $\sigma_{1}, \ldots, \sigma_{i-1}, \sigma_{i+1}, \ldots, \sigma_{n}$ in $\{1,-1\}$.
For $0 \leqslant j \leqslant n$ define

$$
A_{j}=\left\{\sigma_{1} x_{1}+\ldots+\sigma_{n} x_{n}, \sigma_{1}, \ldots, \sigma_{n} \in\{1,-1\}\right. \text { and }
$$ exactly j elements in $\sigma_{1}, \ldots, \sigma_{n}$ are -1$\}$.

Now it follows that $\|x\|=s_{j}$ for all x in A_{j} for some $0 \leqslant s_{j} \leqslant 2,0 \leqslant j \leqslant n$ and $s_{0}+s_{1}=s_{1}+s_{2} \ldots=s_{n-1}+s_{n}=2$.

Since $\left\|x+\sigma_{1} x_{1}+\sigma_{2} x_{2}\right\|+\left\|x-\sigma_{1} x_{1}-\sigma_{2} x_{2}\right\| \geqslant 2\left\|\sigma_{1} x_{1}+\sigma_{2} x_{2}\right\|=2$ for all σ_{1}, σ_{2} in $\{1,-1\}$ and all $x \in E$, by again applying formula (\star) we get $s_{0}+s_{2}=2$ and therefore $s_{0}=s_{1}=\ldots=s_{n}=1$. So $\left\|\sigma_{1} x_{1}+\ldots+\sigma_{n} x_{n}\right\|=1$ for all $\sigma_{1}, \ldots, \sigma_{n}$ in $\{1,-1\}$.

Now let $n \geqslant 3$ and take $\alpha_{1}, \ldots, \alpha_{n}$ in \mathbb{R} with $\max _{1 \leqslant i \leqslant n}\left|\alpha_{i}\right|=1$.
Since the set $A=\left\{\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right), \sigma_{1}, \ldots, \sigma_{n} \in\{1,-1\}\right\}$ is the set of extreme points of the unit ball in $l^{\infty}(n)$ we get some $0 \leqslant b_{\sigma} \leqslant 1, \sum_{\sigma \in A} b_{\sigma}=1$ such that $\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\sum_{\sigma \in A} b_{\sigma} \cdot \sigma$. So $\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}=\sum_{\sigma \in A} b_{\sigma} \cdot\left(\sigma_{1} x_{1}+\ldots+\sigma_{n} x_{n}\right)$ and hence $\left\|\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}\right\| \leqslant 1$. On the other hand choose $x_{1}^{\prime}, \ldots, x_{n}^{\prime} \in E^{\prime}$ with $x_{i}^{\prime}\left(x_{i}\right)=1$, $\left\|x_{i}^{\prime}\right\|=1$ for all $1 \leqslant i \leqslant n$. Fix some $1 \leqslant j \leqslant n$ and take $\sigma_{1}, \ldots, \sigma_{j-1}, \sigma_{j+1}, \ldots, \sigma_{n}$ in $\{1,-1\}$. Since $x_{j}=1 / 2\left(\left(\sum_{\substack{r=1 \\ r \neq j}}^{n} \sigma_{r} x_{r}+x_{j}\right)+\left(\sum_{\substack{r=1 \\ r \neq j}}^{n}-\sigma_{r} x_{r}+x_{j}\right)\right)$ and $x_{j}^{\prime}\left(x_{j}\right)=1$ we get

$$
x_{j}^{\prime}\left(\sum_{\substack{r=1 \\ r \neq j}}^{n} \sigma_{r} x_{r}\right)=0
$$

It is easy to check that

$$
\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}=1 /\left(2^{n}\right) \sum_{\sigma \in A}\left(\sigma_{1} \alpha_{1}+\ldots+\sigma_{n} \alpha_{n}\right)\left(\sigma_{1} x_{1}+\ldots+\sigma_{n} x_{n}\right)
$$

and therefore we get

$$
x_{j}^{\prime}\left(\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}\right)=\alpha_{j}
$$

So

$$
\left\|\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}\right\| \geqslant \max _{1 \leqslant j \leqslant n}\left|\alpha_{j}\right|=1
$$

So it follows that

$$
\left\|\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}\right\|=\max _{1 \leqslant i \leqslant n}\left|\alpha_{i}\right|, \quad \text { for all } \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}
$$

Lemma 1 now guarantees that x_{1}, x_{2}, \ldots is a basic sequence in E (take $K=1$). Let $F=\overline{\left[\left(x_{n}\right)_{n \geqslant 1}\right]}$ be the closed linear span of x_{1}, x_{2}, \ldots and define

$$
T: c_{0} \rightarrow F, \quad T\left(\left(\alpha_{1}, \alpha_{2}, \ldots\right)\right)=\sum_{n=1}^{\infty} \alpha_{n} x_{n}
$$

Then it follows that T is an isometry from c_{0} onto F.
(2): Take some x_{1} in S. Since $2 \in A I(E)$ we get some x_{2} in S such that $1 / 2\left(\left\|x_{1}-x_{2}\right\|+\left\|-x_{1}-x_{2}\right\|\right)=2$. Therefore $\left\|x_{1}-x_{2}\right\|=\left\|x_{1}+x_{2}\right\|=2$. We inductively construct a sequence x_{1}, x_{2}, \ldots of elements of S such that $\left\|\sigma_{1} x_{1}+\ldots+\sigma_{n} x_{n}\right\|=$ n for all $n \geqslant 2$ and all $\sigma_{1}, \ldots, \sigma_{n}$ in $\{1,-1\}$. Now let $n \geqslant 3$ and assume that we have found x_{1}, \ldots, x_{n-1} in S such that

$$
\left\|\sigma_{1} x_{1}+\ldots+\sigma_{n-1} x_{n-1}\right\|=n-1 \text { for all } \sigma_{1}, \ldots, \sigma_{n-1} \text { in }\{1,-1\}
$$

Since $2 \in A I(E)$ we get some x_{n} in S such that

$$
\begin{aligned}
& \frac{1}{2^{n}} \sum_{\sigma_{1}, \ldots, \sigma_{n-1} \in\{1,-1\}}\left\|\frac{1}{n-1}\left(\sigma_{1} x_{1}+\ldots+\sigma_{n-1} x_{n-1}\right)-x_{n}\right\| \\
&+\left\|\frac{1}{n-1}\left(\sigma_{1} x_{1}+\ldots+\sigma_{n-1} x_{n-1}\right)+x_{n}\right\|=2 .
\end{aligned}
$$

This implies

$$
\begin{aligned}
\|\left(\sigma_{1} x_{1}+\ldots+\sigma_{n-1} x_{n-1}\right)- & (n-1) x_{n} \| \\
& =\left\|\left(\sigma_{1} x_{1}+\ldots+\sigma_{n-1} x_{n-1}\right)+(n-1) x_{n}\right\|=2(n-1),
\end{aligned}
$$

for all $\sigma_{1}, \ldots, \sigma_{n-1}$ in $\{1,-1\}$. Hence we get

$$
\begin{aligned}
2(n-1) & =\left\|\sigma_{1} x_{1}+\ldots+\sigma_{n-1} x_{n-1}+\sigma_{n}(n-1) x_{n}\right\| \\
& \leqslant\left\|\sigma_{1} x_{1}+\ldots+\sigma_{n-1} x_{n-1}+\sigma_{n} x_{n}\right\|+(n-2)\left\|x_{n}\right\| \leqslant 2 n-2
\end{aligned}
$$

for all $\sigma_{1}, \ldots, \sigma_{n}$ in $\{1,-1\}$ and therefore

$$
\left\|\sigma_{1} x_{1}+\ldots+\sigma_{n} x_{n}\right\|=n \quad \text { for all } \sigma_{1}, \ldots, \sigma_{n} \text { in }\{1,-1\}
$$

Now let $n \geqslant 2$ and take $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$. Define $\tau_{i}=1$ if $\alpha_{i} \geqslant 0$ and $\tau_{i}=-1$ if $\alpha_{i}<0$ for all $1 \leqslant i \leqslant n$. Since $\left\|\tau_{1} x_{1}+\ldots+\tau_{n} x_{n}\right\|=n$ choose some x^{\prime} in $E^{\prime},\left\|x^{\prime}\right\|=1$ and $x^{\prime}\left(\tau_{1} x_{1}+\ldots \tau_{n} x_{n}\right)=n$. Hence $x^{\prime}\left(x_{i}\right)=\tau_{i}$ for all $1 \leqslant i \leqslant n$ and therefore

$$
\left\|\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}\right\| \geqslant x^{\prime}\left(\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}\right)=\left|\alpha_{1}\right|+\ldots+\left|\alpha_{n}\right|
$$

So we have

$$
\left\|\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}\right\|=\left|\alpha_{1}\right|+\ldots+\left|\alpha_{n}\right| \text { for all } n \geqslant 2 \text { and all } \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}
$$

Lemma 1 again guarantees that the sequence x_{1}, x_{2}, \ldots is a basic sequence in E (take $K=1)$. Let $F=\overline{\left[\left(x_{n}\right)_{n \geqslant 1}\right]}$ be the closed linear span of x_{1}, x_{2}, \ldots and define

$$
T: l^{1} \rightarrow F, \quad T\left(\left(\alpha_{1}, \alpha_{2}, \ldots,\right)\right)=\sum_{n=1}^{\infty} \alpha_{n} x_{n}
$$

Then it follows that T is an isometry from l^{1} onto F and so we are done.
In order to prove Proposition 3 we need the following lemmata:
Lemma 2. Let X be a compact Hausdorff space with at least two points. For each $n \in \mathbb{N}$ and f_{1}, \ldots, f_{n} in $C(X)$ with $\left\|f_{1}\right\|=\ldots=\left\|f_{n}\right\|=1$ there are f_{0} and g_{0} in $C(X)$ with $\left\|f_{0}\right\|=\left\|g_{0}\right\|=1$ such that

$$
\frac{1}{n} \sum_{i=1}^{n}\left\|f_{i}-f_{0}\right\| \leqslant \frac{3}{2} \leqslant \frac{1}{n} \sum_{i=1}^{n}\left\|f_{i}-g_{0}\right\|
$$

Proof: Let $A=\left\{f_{1}, \ldots, f_{n}\right\}$ and choose some x in X. Define

$$
A^{0}=\{f \in A, f(x)=0\}, A^{+}=\{f \in A, f(x)>0\}, A^{-}=\{f \in A, f(x)<0\}
$$

Find an open neighbourhood U of x such that:
For all y in U we get $|f(y)|<1 / 2$ for all f in $A^{0}, f(y)>0$ for all f in A^{+}, $f(y)<0$ for all f in A^{-}.

Since X is completely regular we get f_{0} in $C(X)$ with $0 \leqslant f_{0}(y) \leqslant 1$ for all y in $X, f_{0}(x)=1$ and $f_{0}(y)=0$ for all y in $X \backslash U$.

Now it follows that

$$
\begin{array}{ll}
\left\|f-f_{0}\right\| \leqslant \frac{3}{2}, \quad\left\|f+f_{0}\right\| \leqslant \frac{3}{2} & \text { for all } f \text { in } A^{0} \\
\left\|f-f_{0}\right\| \leqslant 1, & \left\|f+f_{0}\right\| \leqslant 2 \\
\left\|f-f_{0}\right\| \leqslant 2, \quad\left\|f+f_{0}\right\| \leqslant 1 & \text { for all } f \text { in } A^{+} \\
\|
\end{array}
$$

Therefore if $\left|A^{+}\right| \geqslant\left|A^{-}\right|$we get

$$
\frac{1}{n} \sum_{i=1}^{n}\left\|f_{i}-f_{0}\right\| \leqslant \frac{3}{2}
$$

and

$$
\frac{1}{n} \sum_{i=1}^{n}\left\|f_{i}+f_{0}\right\| \leqslant \frac{3}{2}
$$

if $\left|A^{+}\right| \leqslant\left|A^{-}\right|$.
For the remaining inequality in Lemma 2, find a finite subset Y of X with at least two elements, such that for each $1 \leqslant i \leqslant n$, there is some y in Y with $\left|f_{i}(y)\right|=1$.

Let k in \mathbb{N} be the order of Y. Define

$$
y_{i}=\left(f_{i}(y)\right)_{y \in Y} \quad \text { for each } 1 \leqslant i \leqslant n
$$

By definition of Y it follows that $y_{1}, y_{2}, \ldots, y_{n}$ are elements of the unit sphere of $l^{\infty}(k)$. Since $A I\left(l^{\infty}(k)\right)=\{3 / 2\}$ (see [6]) we find some z in the unit sphere of $l^{\infty}(k)$ such that

$$
\frac{1}{n} \sum_{i=1}^{n}\left\|y_{i}-z\right\|_{\infty}=\frac{3}{2}
$$

Let $z=\left(\lambda_{y}\right)_{y \in Y}$. Since X is normal the Tietze Extension Theorem applies giving some g_{0} in $C(X)$ such that $g_{0}(y)=\lambda_{y}$ for all y in Y and $\left\|g_{0}\right\|=\|z\|_{\infty}=1$. Hence we get

$$
\frac{1}{n} \sum_{i=1}^{n}\left\|f_{i}-g_{0}\right\| \geqslant \frac{1}{n} \sum_{i=1}^{n} \max _{y \in Y}\left|f_{i}(y)-g_{0}(y)\right|=\frac{1}{n} \sum_{i=1}^{n}\left\|y_{i}-z\right\|_{\infty}=\frac{3}{2}
$$

Lemma 3. Let X be an infinite compact Hausdorff space and let $\varepsilon>0$. Then there is a finite subset A of norm one elements in $C(X)$ such that

$$
\frac{1}{|A|} \sum_{f \in A}\|f-h\|>\frac{3}{2}-\varepsilon \quad \text { for all } h \text { in } C(X) \text { with }\|h\|=1
$$

Proof: Let $n \in \mathbb{N}$ and choose a finite subset Y of X order n. Furthermore find open neighbourhoods U_{y} for all y in Y such that $U_{y} \cap U_{y^{\prime}}=\emptyset$ for all $y \neq y^{\prime}$ in Y. By the complete regularity of X, find for each y in Y some f_{y} in $C(X)$ such that $-1 \leqslant f_{y}(x) \leqslant 1$ for all x in $X, f_{y}(y)=1$ and $f_{y}(x)=-1$ for all x in $X \backslash U_{y}$. Now take h in $C(X),\|h\|=1$. Choose some x_{0} in X with $\left|h\left(x_{0}\right)\right|=1$.

Case 1. $h\left(x_{0}\right)=1$. If $x_{0} \in U_{y_{0}}$ for some y_{0} in Y we get

$$
\left\|f_{y}-h\right\| \geqslant\left|f_{y}\left(x_{0}\right)-h\left(x_{0}\right)\right|=|-1-1|=2
$$

for all $y \neq y_{0}$ in Y.

$$
\begin{aligned}
\left\|f_{y}+h\right\|+\left\|f_{y^{\prime}}+h\right\| & \geqslant\left|f_{y}(y)+h(y)\right|+\left|f_{y^{\prime}}(y)+h(y)\right| \\
& =|1+h(y)|+|-1+h(y)|=2
\end{aligned}
$$

for all $y \neq y^{\prime}$ in Y. Hence we get

$$
\frac{1}{2 n} \sum_{y \in Y}\left(\left\|f_{y}-h\right\|+\left\|f_{y}+h\right\|\right) \geqslant \frac{1}{2 n}\left(2(n-1)+2 \cdot \frac{n-1}{2}\right)=\frac{3}{2}-\frac{3}{2 n}
$$

If $x_{0} \notin \bigcup_{y \in Y} U_{y}$ we get

$$
\left\|f_{y}-h\right\| \geqslant\left|f_{y}\left(x_{0}\right)-h\left(x_{0}\right)\right|=|-1-1|=2
$$

for all $y \in Y$. Hence we get

$$
\frac{1}{2 n} \sum_{y \in Y}\left(\left\|f_{y}-h\right\|+\left\|f_{y}+h\right\|\right) \geqslant \frac{1}{2 n}\left(2 n+2 \cdot \frac{n-1}{2}\right)=\frac{3}{2}-\frac{1}{2 n}
$$

Summing up, we get

$$
\frac{1}{2 n} \sum_{y \in Y}\left(\left\|f_{y}-h\right\|+\left\|f_{y}+h\right\|\right) \geqslant \frac{3}{2}-\frac{3}{2 n}
$$

Case 2. $h\left(x_{0}\right)=-1$. Take $-h$ for h and look at Case 1. Now take $A=\left\{f_{y},-f_{y}\right.$; $y \in Y\}$ and choose n big enough.

Lemma 4. Let X be a compact Hausdorff space without isolated points and let $\varepsilon>0$. For each $n \in \mathbb{N}$ and f_{1}, \ldots, f_{n} in $C(X)$ with $\left\|f_{1}\right\|=\cdots=\left\|f_{n}\right\|=1$ there is some f_{0} in $C(X)$ with $\left\|f_{0}\right\|=1$ such that

$$
\frac{1}{n} \sum_{i=1}^{n}\left\|f_{i}-f_{0}\right\|>2-\varepsilon
$$

Proof: Let $A=\left\{f_{1}, \ldots, f_{n}\right\}$. Choose some finite subset Y of X such that for each f in A there is some y in Y with $|f(y)|=1$. Furthermore take open neighbourhoods U_{y} for each y in Y such that $U_{y} \cap U_{y^{\prime}}=\emptyset$ for $y \neq y^{\prime}$ in Y. Let

$$
B_{y}=\{f \in A, f(y)=1\}, \quad C_{y}=\{f \in A, f(y)=-1\}
$$

for y in Y. For each y in Y take open neighbourhoods V_{y} of y such that $f(x)>1-\varepsilon$ for all x in V_{y} and all f in B_{y}. Let

$$
W_{y}=U_{y} \cap V_{y}, \quad y \text { in } Y
$$

Since X has no isolated points, take some z_{y} in $W_{y}, z_{y} \neq y$. The Tietze extension theorem provides f_{0} in $C(X)$ such that $-1 \leqslant f_{0}(x) \leqslant 1$ for all x in $X, f_{0}(y)=1$, $f_{0}\left(z_{y}\right)=-1$, for all y in Y.

Let y in Y. If f is in B_{y} we get $\left\|f-f_{0}\right\| \geqslant\left|f\left(z_{y}\right)-f_{0}\left(z_{y}\right)\right|>2-\varepsilon$. If f is in C_{y} we get $\left\|f-f_{0}\right\| \geqslant\left|f(y)-f_{0}(y)\right|=2$. Hence

$$
\frac{1}{n} \sum_{i=1}^{n}\left\|f_{i}-f_{0}\right\|>2-\varepsilon
$$

Lemma 5. Let X be a compact Hausdorff space and let x_{0} be a point in X without a countable neighbourhood basis and let A be a closed neighbourhood of x_{0}. Furthermore let $n \in \mathbb{N}$ and take f_{1}, \ldots, f_{n} in $C(X)$ with $f_{i}(x) \geqslant 0$ for all x in A, $f_{i}\left(x_{0}\right)=0$, for all $1 \leqslant i \leqslant n$.

Then there are y_{1}, \ldots, y_{n} in A such that $y_{i} \neq x_{0}, y_{i} \neq y_{j}$ and $f_{i}\left(y_{i}\right)=0$ for all $1 \leqslant i \neq j \leqslant n$.

Proof: By induction on n. Let $n=1$. Assume $f_{1}(x)>0$ for all x in A, $x \neq x_{0}$. Take an open neighbourhood U of $x_{0}, U \subseteq A$ and take $k \in \mathbb{N}$. Let $U_{k}=f_{1}^{-1}[0,1 / k) \cap U$. We claim that $\left(U_{k}\right)_{k \geqslant 1}$ is a neighbourhood basis of x_{0}, consisting of open neighbourhoods U_{k} of x. Let V be an open neighbourhood of x_{0}. If $A \backslash V=\emptyset$ we get $A \subseteq V$ and therefore $U_{k} \subseteq V$ for all $k \in \mathbb{N}$. Now let $A \backslash V \neq \emptyset$. Since $A \backslash V$ is compact we get some $s \in A \backslash V$ such that $f_{1}(y) \geqslant f_{1}(s)$ for all y in $A \backslash V$. Since $s \in A$, $s \notin V$, we get $f_{1}(s)>0$. Choose some $k_{0} \in \mathbb{N}$ with $f_{1}(s)>1 / k_{0}$. Assume there is some y in $U_{k_{0}} \backslash V$. Then we get $f_{1}(y)<1 / k_{0}$ and by $U_{k_{0}} \subseteq U \subseteq A, f_{1}(y)>1 / k_{0}$. Therefore $U_{k_{0}} \subseteq V$.

So $\left(U_{k}\right)_{k \geqslant 1}$ build a countable neighbourhood basis of x_{0} which leads to a contradiction. Therefore we get some y_{1} in $A, y_{1} \neq x_{0}$ and $f_{1}\left(y_{1}\right)=0$. Now let f_{1}, \ldots, f_{n+1} be in $C(X)$ with $f_{i}(x) \geqslant 0$ for all x in $X, f_{i}\left(x_{0}\right)=0$, for all $1 \leqslant i \leqslant n+1$. Assume that we have found y_{1}, \ldots, y_{n} in A such that $y_{i} \neq x_{0}, y_{i} \neq y_{j}$ and $f_{i}\left(y_{i}\right)=0$ for all $1 \leqslant i \neq j \leqslant n$.

Now choose some closed neighbourhood A_{n} of x_{0} such that $y_{1}, \ldots, y_{n} \notin A_{n}$. The case $n=1$ leads to some $y_{n+1} \in A_{n} \cap A$ such that $y_{n+1} \neq x_{0}$ and $f_{n+1}\left(y_{n+1}\right)=0$. \square

Now we verify Proposition 3:
Proof of Proposition 3: (1): If X is finite we get $C(X) \cong l^{\infty}(n)$ for some $n \geqslant 2$. Since $A I\left(l^{\infty}(n)\right)=\{3 / 2\}$ (see [6]) we are done. So assume that X is infinite.

By Lemma 2 and 3 and the Intermediate Value Theorem we get $3 / 2 \in A I(C(X))$ and $A I(C(X)) \subseteq[3 / 2,2]$. Now take some isolated point x_{0} in X. Define f_{0}, by $f_{0}\left(x_{0}\right)=1$ and $f_{0}(x)=0$ for all $x \neq x_{0}$ in X. Hence we get $f_{0} \in C(X),\left\|f_{0}\right\|=1$. It is easy to check that $\left\|f_{0}-f\right\|+\left\|f_{0}+f\right\| \leqslant 3$ for all $f \in C(X)$ with $\|f\|=1$ and therefore $A I(C(X))=\{3 / 2\}$.
(2): By Lemma 2, 3, 4 and the Intermediate Value Theorem we get $[3 / 2,2) \subseteq$ $A I(C(X))$ and $A I(C(X)) \subseteq[3 / 2,2]$. It remains to show that $2 \notin A I(C(X))$. Take some x_{0} in X with a countable neighbourhood basis $\left(U_{n}\right)_{n \geqslant 1}$. Without loss of generality let U_{n} be open neighbourhoods of x_{0} for all $n \geqslant 1$. Since X is completely regular take some $\left(g_{n}\right)_{n \geqslant 1}$ in $C(X)$ such that $0 \leqslant g_{n}(x) \leqslant 1$ for all x in $X, g_{n}\left(x_{0}\right)=0$ and $g_{n}(x)=1$ for all $x \in X \backslash U_{n}$, for all $n \geqslant 1$.

It is easy to check that f defined by $f=1-\sum_{n \geqslant 1} 1 / 2^{n} g_{n}$ is in $C(X)$ and is such that $0 \leqslant f(x) \leqslant 1$ for all x in $X, f\left(x_{0}\right)=1$ and $f(x)<1$ for all $x \neq x_{0}$ in X. Assume that we have $2 \in A I(C(X))$. Then there must be some $h \in C(X),\|h\|=1$ and $\|f-h\|+\|f+h\|=4$. Hence we get $h\left(x_{0}\right)=1$ and $h\left(x_{0}\right)=-1$, which is a contradiction.
(3): It remains to show that $2 \in A I(C(X))$. Let $n \in \mathbb{N}$ and f_{1}, \ldots, f_{n} in $C(X)$ with $\left\|f_{i}\right\|=1$ for all $1 \leqslant i \leqslant n$. Let $A=\left\{f_{1}, \ldots, f_{n}\right\}$. Choose a finite subset Y of X such that for each f in A there is some y in Y with $|f(y)|=1$. Furthermore let C_{y} be closed neighbourhoods of y such that $C_{y} \cap C_{y^{\prime}}=\emptyset$ for all $y \neq y^{\prime}$ in Y.

Let $A_{y}=\{f \in A, f(y)=1\}$ and $B_{y}=\{f \in A, f(y)=-1\}$ for all y in Y. Now fix some y in Y. By Lemma 5 there are $\left(z_{y, f}\right)_{f \in A_{y}}$ in C_{y} such that $z_{y, f} \neq y$, $z_{y, f} \neq z_{y, f}$ and $(1-f)\left(z_{y, f}\right)=0$ for all $f \neq f^{\prime}$ in A_{y}.

By the Tietze Extension Theorem we get some g in $C(X)$ such that $-1 \leqslant g(x) \leqslant 1$ for all x in $X, g(y)=1$ and $g\left(z_{y}, f\right)=-1$ for all y in Y and all f in A_{y}.

Now let f in A.
CaSE (a). $f \in A_{y_{0}}$ for some y_{0} in Y. It follows that

$$
\|f-g\| \geqslant\left|f\left(z_{y_{0}, f}\right)-g\left(z_{y_{0}, f}\right)\right|=|1-(-1)|=2
$$

Case (b). $f \in B_{y_{0}}$ for some y_{0} in Y. It follows that

$$
\|f-g\| \geqslant\left|f\left(y_{0}\right)-g\left(y_{0}\right)\right|=|-1-1|=2
$$

So $\|f-g\|=2$ for all f in A and therefore

$$
\frac{1}{n} \sum_{i=1}^{n}\left\|f_{i}-g\right\|=2
$$

The next two lemmata lead to Proposition 4.

Lemma 6. Let X be a P-space. Then we have

1. For every continuous function f on X the zero set $N f$ of f, $N f=\{x \in X, f(x)=0\}$ is an open and closed subset of X.
2. Let A be a countable subset of X. It follows that A is closed in X and for each a in A there are open neighbourhoods U_{a} of a such that $U_{a} \cap U_{a^{\prime}}=\emptyset$ for all $a \neq a^{\prime}$ in A.
3. Let A be a countable subset of X and f a function defined on A. (By (2) f is continuous on A.) Then there exists some continuous function \tilde{f} on X such that $\tilde{f}(a)=f(a)$ for all a in A.

Proof: For (1) and (3) see exercise $4 \mathrm{~J} \cdot(3)$ and $4 \mathrm{~K} \cdot(2)$ in [1, p.63].
(2): A is closed by exercise $4 \mathrm{~K} \cdot(1)$ in [1, p. 63].

Let $A=\left\{x_{1}, x_{2}, \ldots\right\}$ and $n \in \mathbb{N}$. Since $A \backslash\left\{x_{n}\right\}$ is countable we get $A \backslash\left\{x_{n}\right\}$ is closed in X. Since X is completely regular there are f_{n} in $C(X)$ such that $f_{n}\left(x_{n}\right)=0$ and $f_{n}\left(x_{m}\right)=1$ for all $n \neq m$ in \mathbb{N}.

Let $N f_{n}=\left\{x \in X, f_{n}(x)=0\right\}$ for $n \in \mathbb{N}$. By (1) each $N f_{n}$ is an open subset of X. For each $n \in \mathbb{N}$ define $U_{n}=N f_{n} \cap\left[X \backslash \bigcup_{k \neq n} N f_{k}\right]$.

Note that $X \backslash \bigcup_{k \neq n} N f_{k}=\bigcap_{k \neq n}\left(X \backslash N f_{k}\right)$ is a G_{δ}-set in X and therefore open since X is a P-space. It is easy to check that $\left(U_{n}\right)_{n \geqslant 1}$ are open neighbourhoods of x_{n} and $U_{n} \cap U_{m}=\emptyset$ for all $n \neq m$ in \mathbb{N}.

Lemma 7. Let X be a P-space without isolated points and let $f_{1}, \ldots, f_{n} \in$ $C_{b}(X)$ with $\left\|f_{1}\right\|=\ldots=\left\|f_{n}\right\|=1$. Then there exist countable subsets A_{1}, \ldots, A_{n} of X such that $\sup _{x \in A_{i}}\left|f_{i}(x)\right|=1$ and $A_{i} \cap A_{j}=\emptyset$ for all $1 \leqslant i \neq j \leqslant n$.

Proof: By induction on n. The case $n=1$ is trivial. Now let $f_{1}, \ldots, f_{n+1} \in$ $C_{b}(X)$ with $\left\|f_{1}\right\|=\ldots=\left\|f_{n+1}\right\|=1$ and assume that we have found countable subsets A_{1}, \ldots, A_{n} of X such that $\sup _{x \in A_{i}}\left|f_{i}(x)\right|=1$ and $A_{i} \cap A_{j}=\emptyset$ for all $1 \leqslant i \neq j \leqslant n$. Choose some countable subset B_{n+1} of X such that $\sup _{x \in B_{n+1}}\left|f_{n+1}(x)\right|=1$. Let $A=$ $A_{1} \cup \ldots \cup A_{n} \cup B_{n+1}$. By Lemma 6, part (2), find some open neighbourhoods U_{a} for each a in A such that $U_{a} \cap U_{a^{\prime}}=\emptyset$ for all $a \neq a^{\prime}$ in A. If $B_{n+1} \cap\left(A_{1} \cup \ldots \cup A_{n}\right)=\emptyset$, let $A_{n+1}=B_{n+1}$. So assume that $B_{n+1} \cap\left(A_{1} \cup \ldots \cup A_{n}\right) \neq \emptyset$. Take $y \in B_{n+1} \cap$ $\left(A_{1} \cup \ldots \cup A_{n}\right)$. By Lemma 6, part (1), find some open neighbourhood V_{y} of y such that $V_{y} \subseteq U_{y}$ and $\left|f_{n+1}(x)\right|=\left|f_{n+1}(y)\right|$ for all x in V_{y}. Since X has no isolated points take some z_{y} in $V_{y}, z_{y} \neq y$ for all y in $B_{n+1} \cap\left(A_{1} \cup \ldots \cup A_{n}\right)$. Now let $A_{n+1}=\left[B_{n+1} \backslash\left(A_{1} \cup \ldots \cup A_{n}\right)\right] \cup \bigcup_{y \in B_{n+1} \cap\left(A_{1} \cup \ldots \cup A_{n}\right)}\left\{z_{y}\right\}$. By definition of A_{n+1} we get $A_{n+1} \cap A_{1}=\ldots=A_{n+1} \cap A_{n}=\emptyset, A_{n+1}$ countable and $\sup _{x \in A_{n+1}}\left|f_{n+1}(x)\right|=$
$\sup _{x \in B_{n+1}}\left|f_{n+1}(x)\right|=1$.
Proof of Proposition 4: Let $f_{1}, \ldots, f_{n} \in E,\left\|f_{1}\right\|=\ldots=\left\|f_{n}\right\|=1$. Let $N f_{i}=\left\{x \in X, f_{i}(x)=0\right\}$ for all $1 \leqslant i \leqslant n$. Let $U=N f_{1} \cap \ldots \cap N f_{n}$. By Lemma 6, part (1), U is an open neighbourhood of x_{0}. Since X has no isolated points, there is $x_{1} \in U, x_{1} \neq x_{0}$. Take some open neighbourhood V of x_{1} such that $x_{0} \notin V$ and $V \subseteq$ U. Since X is completely regular we can find f in $C_{b}(X)$ such that $0 \leqslant f(x) \leqslant 1$ for all x in $X, f\left(x_{1}\right)=1$ and $f(x)=0$ for all x in $X \backslash V$. Therefore $f \in E$ and $\|f\|=1$. Now it follows that $\left\|f-f_{1}\right\|=\ldots=\left\|f-f_{n}\right\|=1$ and therefore $1 \in A I(E)$. It remains to show that $2 \in A I(E)$. By Lemma 7 there are some countable subsets A_{1}, \ldots, A_{n} of X such that $\sup _{x \in A_{i}}\left|f_{i}(x)\right|=1$ and $A_{i} \cap A_{j}=\emptyset$ for all $1 \leqslant i \neq j \leqslant n$. Without loss of generality let $x_{0} \notin A_{1} \cup \ldots \cup A_{n}$. We define a function g on $A=\left\{x_{0}\right\} \cup A_{1} \cup \ldots \cup A_{n}$. Put $g\left(x_{0}\right)=0, g(x)=-f_{i}(x)$ for all x in A_{i} and all $1 \leqslant i \leqslant n$. It follows that $\sup _{x \in A}|g(x)|=\max _{1 \leqslant i \leqslant n}\left\|f_{i}\right\|=1$. By Lemma 6, part (3), we get some continuous function \tilde{g} on X such that $\tilde{g}(x)=g(x)$ for all x in A. Let $h(x)=\min (\max (-1, \tilde{g}(x)), 1)$ for all x in X. It follows that $h \in E,\|h\|=1$ and $h(x)=g(x)$ for all x in A. Now let $1 \leqslant i \leqslant n$. We get $\left\|f_{i}-h\right\| \geqslant \sup _{x \in A_{i}}\left|f_{i}(x)-h(x)\right|=2 \sup _{x \in A_{i}}\left|f_{i}(x)\right|=2$, hence $2 \in A I(E)$. By the Intermediate Value Theorem it follows that $\operatorname{AI}(E)=[1,2]$.

References

[1] L. Gillman and M. Jerison, Rings of continuous functions (D. Van Nostrand Company, Princeton, N.J., 1960).
[2] J. Diestel, Sequences and series in Banach spaces (Springer-Verlag, Berlin, Heidleberg, New York, 1984).
[3] O. Gross, 'The rendezvous value of a metric space', in Advances in game theory, Annals of Math. Studies 52 (Princeton University Press, Princeton N.J., 1964), pp. 49-53.
[4] Pei-Kee Lin, 'The average distance property of Banach spaces', (preprint).
[5] S.A. Morris and P. Nickolas, 'On the average distance property of compact connected metric spaces', Arch. Math. 40 (1983), 459-463.
[6] R. Wolf, 'On the average distance property of spheres in Banach spaces', Arch. Math. 62 (1994), 378-384.
[7] R. Wolf, 'On the average distance property in finite dimensional real Banach spaces', Bull. Austral. Math. Soc. 51 (1994), 87-101.

[^0]
[^0]: Institut für Mathematik
 Universitat Salzburg
 Hellbrunnerstraße 34
 A-5020 Salzburg
 Austria

