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Abstract. Wave and oscillatory activity of the solar corona is confidently observed with mod-
ern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and
interpreted in terms of magnetohydrodynamic (MHD) wave theory. The review reflects the cur-
rent trends in the observational study of coronal waves and oscillations, theoretical modelling of
interaction of MHD waves with plasma structures, and implementation of the theoretical results
for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma
- MHD coronal seismology – is discussed.
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1. Introduction
Wave and oscillatory phenomena in the corona have been attracting researcher’s at-

tention for several decades. Traditionally, the interest to coronal waves and oscillations
is motivated by the possible role the waves playing in heating of the corona and in ac-
celeration of the solar wind, via the transfer and deposition of energy and mechanical
momentum. Also, as waves and oscillations are associated with various dynamical pro-
cesses in the almost fully ionised and highly magnetised coronal plasma, hence their
study is fundamental for plasma astrophysics in general. Moreover, the progress recently
reached in observational detection and theoretical modelling of coronal waves and os-
cillations provided us with the foundation for coronal seismology – a new and rapidly
developing branch of astrophysics, which combines theoretical and observational findings
in deducing information about physical parameters in the corona.

An important role in the interpretation of coronal wave and oscillatory phenomena
is played by magnetohydrodynamic (MHD) theory. Indeed, the observed characteristic
scales, e.g. wave lengths, are usually much larger than both the ion gyroradius and
the mean free path length and the characteristic times are much greater than the ion
gyroperiod and the reciprocal of the collision frequency. Compressibility and elasticity of
the coronal plasma allow it to support various kinds of MHD waves which are associated
with perturbations of macro parameters of the plasma: its mass density, temperature,
gas pressure, bulk velocity, and the magnetic field. Detection of MHD perturbations in
the coronal plasma as fluctuations of emission intensity of coronal lines, their Doppler
shifts and non-thermal broadening, and radio emission, provides us with the basis for the
observational study of MHD waves in the corona.

More detailed recent reviews of this topic can be found in Aschwanden (2004) and
Nakariakov & Verwichte (2005).

2. MHD modes of a magnetic cylinder
A cornerstone of coronal wave theory is dispersion relations for modes of a magnetic

cylinder. Magnetic cylinders are believed to model well such common coronal structures
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as coronal loops, various filaments, polar plumes, etc. Consider a straight cylindrical
magnetic flux tube of radius a filled with a uniform plasma of density ρ0 and pressure
p0 within which is a magnetic field B0ez; the tube is confined to r < a by an external
magnetic field Beez embedded in a uniform plasma of density ρe and pressure pe (here
we neglect the effects of magnetic field twist and curvature, as well as equilibrium steady
flows).

In the internal and external media, the sound speeds are Cs0 and Cse, the Alfvén
speeds are CA0 and CAe, and the tube speeds are CT0 and CTe, respectively. Relations
between those characteristic speeds determine properties of MHD modes guided by the
tube.

The presence of a characteristic spatial scale, the radius of the tube a, brings wave dis-
persion. The standard derivation of linear dispersion relations is based upon linearisation
of MHD equations around the equilibrium.

Matching external and internal solutions of linearised MHD equations at the cylinder
boundary, one can derive the dispersion relation for magnetoacoustic waves in a magnetic
flux tube (Zaitsev & Stepanov 1975; Roberts et al. 1984; see also Nakariakov & Verwichte
2005 for more detail),
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Here κ0 and κe play a role of transverse wave numbers and are defined as
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with α = 0, e; Im(x) and Km(x) are modified Bessel functions of order m, and the prime
denotes the derivative of a function Im(x) or Km(x) with respect to argument x. For
modes that are confined to the tube (evanescent outside, for r > a), the condition κ2

e > 0
has to be fulfilled. The integer m determines the azimuthal modal structure: waves with
m = 0 are called sausage modes, waves with m = 1 are kink modes, waves with higher m
are sometimes referred to as flute or ballooning modes. The existence and properties of
the modes are determined by the equilibrium physical quantities. In particular, a coronal
loop or a filament can trap MHD waves if the external Alfvén speed is greater than
internal. Figure 1 shows a dispersion plot typical for an active region loop.

Thus, the main modes of solar coronal loops are: (a) a sausage (or radial, or m = 0)
mode, which is periodic widening and contraction of the loop, this mode is essentially
compressible and perturbs the absolute value of the magnetic field in the loop; (b) a kink
(or transverse, or m = 1) mode, which produces periodic displacements of the loop axis;
this mode is weakly compressible; (c) a torsional (or twisting) modes which does not
perturb the boundary of the loop and is incompressible; (d) a longitudinal (or acoustic,
or slow magnetoacoustic) mode, which consists of field-aligned flows and perturbations
of the density; this mode does not produce significant perturbations of the boundary and
is essentially compressible. The modes with higher azimuthal numbers m (ballooning or
flute modes) are compressible and do perturb the loop boundary.

In the following, we consider the observational manifestation of these modes in the
corona of the Sun.

3. Transverse (kink) oscillations of coronal loops
Since its discovery with the imaging telescope on board the Transition Region and

Coronal Explorer (TRACE) (Aschwanden et al. 1999, Nakariakov et al. 1999), transverse
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Figure 1. Dispersion diagram showing the phase speed solutions of dispersion relation (2.1)
for MHD waves in a magnetic cylinder as a function of the dimensionless parameter kza. The
typical speeds in the internal and external media are shown relative to the internal sound speed:
CA0 = 2 Cs0, CAe = 5 Cs0 and Cse = 0.5 Cs0. The solid, dotted, dashed and dot-dashed curves
correspond to solutions with the azimuthal wave number m equal to 0,1,2 and 3 respectively. The
torsional Alfvén wave mode solution is shown as a solid line at ω/kz = CA0. (From Nakariakov
& Verwichte 2005)

oscillations of coronal loops are subject to an extensive observational and theoretical
study. The oscillations are observed in both 171Å and 195Å lines as spatially resolved
decaying periodic displacements of coronal loops, both on the solar disc and off-limb.
The typical values of the periods are in the range from a few to several minutes and are
different for different loops. The oscillations are observed to decay very quickly, just in
a few wave periods. The displacement amplitude reaches several Mm, which exceeds the
diameter of the oscillating loop. When the LOS has a significant component parallel to
the plane of the oscillations, the kink mode can be detected with spectral instruments
through the periodically modulated Doppler shift. Possibly, kink modes were found by
Koutchmy et al. (1983) in the Doppler shift of the green coronal line. Best-fitting the
displacement of a segment of the oscillating loop along a chosen slit perpendicular to the
loop with a decaying harmonic function of the form

x(t) = A0 exp(t/td) cos(2πt/P + φ0) (3.1)
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allows us to determine the oscillation period P and decay time td, along with the ampli-
tude A and the initial phase φ0 of the oscillation. Ofman & Aschwanden (2002) analysed
eleven oscillating loops and determined a scaling law which connects the decay time and
the period of transverse oscillations, td ∝ (a2P 2)0.33±0.08. However, oscillations in a post-
flaring arcade, studied by Verwichte et al. (2004) were found to be inconsistent with this
law. Results of the study of non-exponential decay laws, e.g., in the form of the func-
tion exp(tN/tNd ), where N is a constant (Verwichte et al. 2004, Nakariakov & Verwichte
2005), are not conclusive. It is still unclear which physical mechanism is responsible for
the decay of kink oscillations.

In the majority of the observed events, only the global (or fundamental, or principle)
mode of the oscillating loop was observed, with the wavelength equal to double the loop
length. However, there can be higher spatial harmonics observed (Schrijver et al. 2002).
In particular, the second harmonics was discovered by Verwichte et al. (2004) in an
oscillating off-limb arcade.

The oscillation period of a global kink mode, with the wavelength much larger than
the minor radius of the loop, is determined by the expression

PGKM ≈ 2L

CK
, (3.2)
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is a so-called kink speed, which corresponds to the density weighed average Alfvén speed,
and L is the loop length. Using expression (3.3), Nakariakov & Ofman (2001) developed
a method for the estimation of the absolute value of the magnetic field in an oscillating
loop. For an analysed loop, this value was estimated as 13± 9 G. Verwichte et al. (2004)
applied this method for the estimation of the magnetic field in an off-limb arcade. In
these estimations, the main source of the error is the uncertainty in the measurement
of the density, which is expected to be improved with the new generation of solar space
missions.

4. Sausage oscillations
Sausage modes of coronal loops (as well as the kink modes) can be considered as

modified fast magnetoacoustic waves, guided by the non-uniformity of the fast speed
CF =

√
C2

A + C2
s . In the long wavelength limit, the phase speed of the sausage mode

grows until it reaches the value of the Alfvén speed in the external medium. The cut-off
wave number is
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where j0 ≈ 2.40 is the first zero of the Bessel function J0(x). For longer wavelengths the
mode is leaky and radiates its energy to the external medium. The period of a global
sausage mode of a solar coronal loop is determined by the loop length,

PGSM ≈ 2L

Cph
, (4.2)

where Cph is approximately equal to the Alfvén speed in the external medium, CAe,
(Nakariakov et al. 2003). Trapped global sausage modes can exist only in relatively short
loops, with the length smaller than π/kzc to satisfy the condition of the kz > kzc. As
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CA0 < CAe, the period of the global sausage mode is always shorter than the period of
the global kink mode in the same loop.

First identification of a spatially resolved global sausage mode was made in the mi-
crowave band, with the Nobeyama Radioheliograph (Nakariakov et al. 2003, see also
Melnikov et al. 2005 for a detailed study of this event observed with high spatial reso-
lution in cm, mm and HXR bands). As the flaring loop observed was well resolved with
NoRH, it made possible to study the properties of the microwave pulsations at different
parts of the loop. Well pronounced quasi-periodic pulsations of the emission intensity
with the period about 14–17 s were present at the top and in both legs of the loop and
were found to be synchronous. In the loop of the observed length, L = 25 Mm, the global
sausage mode with the period of 16 s should have the phase speed about 3,130 km/s.
This value is consistent with the possible value for the Alfvén speed outside the loop, and
hence the observed period is in a good agreement with the estimation given by Eq. (4.2).

5. Longitudinal (slow magnetoacoustic) oscillations
In the low-β coronal plasma, slow magnetoacoustic modes which propagate almost

along the magnetic field are similar to usual acoustic waves. In the straight magnetic
cylinder approximation, these waves are practically dispersionless and their phase speed
is about the sound speed Cs0 for all wave numbers. There can be a global longitudinal
mode in a coronal loop, similar to the global kink and global sausage modes discussed
above, with the period

Plong = 2L/Cs0. (5.1)
The practical formula for the determination of the period is

Plong/s ≈ 13 × (L/Mm)/
√

(T/MK). (5.2)

The perturbations of the field-aligned plasma velocity and density in the global longitu-
dinal mode are
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where A is wave amplitude, L is loop length, and s is a distance along the loop with the
zero at the loop top. Numerical simulations of the response of the plasma in a coronal
loop to an impulsive energy deposition (Nakariakov et al. 2004) showed that a second
longitudinal harmonics of these mode is excited more efficiently.

Recently, Doppler shift and intensity oscillations were discovered in coronal loops ob-
served in the far UV Fexix and Fexxi emission lines with SOHO/SUMER (Wang et al.
2002, 2003). This spectral line is associated with temperatures of about 6 MK, corre-
sponding to the sound speed of about 370 km/s. The observed periods are in the range
7-31 min, with decay times 5.7–36.8 min, and show an initial large Doppler shift pulse
with peak velocities up to 200 km/s. The intensity fluctuation, if observed, lags the
Doppler shifts by 1/4 period. Ofman & Wang (2002) identified this mode as the longitu-
dinal (or acoustic) mode. Unfortunately, the field-of-view of SUMER is a one-dimensional
slit, making it impossible to determine whether the spatial structure of the observed os-
cillation along the loop is consistent with Eq. (5.3). However, the observed π/4 shift
between velocity and density perturbations is also consistent with the theory. If the ob-
servational slit is positioned near the loop apex where the density perturbation has a
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node (according to Eq. (5.3)), the observed Doppler shift is not accompanied by the line
intensity variation, as is observed in the majority of cases. Concerning the decay of the
oscillations, it was found that because of the high temperature of the loops, the large
thermal conduction which depends on temperature as T 2.5, leads to rapid damping of
the slow waves on a timescale comparable to observations.

This phenomenon can be quite wide-spread in flaring loop dynamics. Perturbations of
the plasma density in this mode can produce the modulation of the intensity of thermal
(e.g. soft X-ray, see the observational findings of McKenzie & Mullan, 1997) emission.
Also, the density perturbations were recently found to be able to modulate efficiently
gyrosynchrotron emission generated by non-thermal electrons in solar and stellar coronal
flares (Nakariakov & Melnikov 2006). The modulation mechanism is based upon pertur-
bation of the efficiency in Razin suppression of optically thin gyrosynchrotron emission.
Modulation of the emission is in anti-phase with the density perturbation in the longitu-
dinal wave. The observed emission modulation depth can be up to an order of magnitude
higher than the slow wave amplitude. This effect is more pronounced in the lower part
of the microwave spectrum.

As the period of longitudinal modes is determined by the sound speed which in its
turn depends upon the temperature, the period should evolve with the loop temperature.
Detection of such evolution would be a final proof of the existence of longitudinal standing
modes in coronal loops.

There also are shorter wavelength propagating longitudinal waves observed in coronal
loops and also in polar plumes.

6. Torsional modes
Torsional modes are incompressible and hence cannot be observed with coronal im-

agers. However, these modes can be detected through the variation of the non-thermal
broadening with spectral instruments. Zaqarashvili (2003) suggested that the global tor-
sional oscillations may be observed as a periodical variation of the spectral line width
along the loop. The amplitude of the broadening is maximum at the velocity antinodes
and minimum at the nodes of the torsional oscillation. Also, in the case of flaring loops,
this mode can modulate microwave emission by the change of the angle between the LOS
and the local magnetic field. The resonant period of an n-th standing torsional mode is

PTM = 2L/nCA0. (6.1)

Observational evidence of the global torsional modes of coronal loops was found by
Zaqarashvili (2003) and, possibly, by Grechnev et al. (2003).

7. Propagating fast wave trains
In a dispersive medium, impulsively generated (e.g., by an explosive energy release,

such as a flare) waves evolve into a quasi-periodic wave train with pronounced period
modulation. This effect is connected with dispersion of the initially broadband signal,
as its different spectral components propagate at different phase and group speeds. In
the coronal context, it was pointed out by Roberts et al. (1983, 1984) that periodicity of
fast magnetoacoustic modes in coronal loops is not necessarily connected either with the
wave source or with some resonances, but can also be created by the dispersive evolution
of an impulsively generated signal. The dispersion is associated with the presence of a
characteristic spatial scale, the minor radius of the loop which guides the fast waves.
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Hence, the dispersion is more pronounced in the wavelengths comparable with the loop
width. An estimation of the generated period is

Pprop =
2πa

j0CA0

√
1 − ρe

ρ0
, (7.1)

where j0 is the first root of the Bessel function. In loops with the large contrast ratio
ρe � ρ0, Eq. (7.1) reduces to Pprop ≈ 2.6a/CA0. We would like to stress that this period
should be much shorter than the resonant periods of global modes, otherwise the wave
train does not have sufficient distance to get developed. Consequently, this mechanism
can operate in sufficiently long and thin loops only.

Numerical simulations of the developed stage of the dispersive evolution of a fast wave
train in a smooth straight slab of a low but finite plasma-β plasma (Nakariakov et al.
2004) confirmed that development of an impulsively generated pulse leads to formation of
a quasi-periodic wave train with the mean wavelength comparable with the slab width. In
agreement with the analytical theory, the wave train has a pronounced period modulation
which is best detected with the wavelet transform technique. In particular, it is found
that the dispersive evolution of fast wave trains leads to the appearance of characteristic
“tadpole” wavelet signatures (or, rather a “crazy tadpole” as it comes tail-first).

Rapidly propagating short-period compressible disturbances have recently been dis-
covered with the SECIS coronal imaging instrument during a full solar eclipse (Williams
et al. 2001, 2002) Propagating disturbances of the “green line” emission were observed
to have a quasi-periodic wave train pattern with a mean period of about 6 s. As the
observed speed was estimated at about 2,100 km/s, the disturbances were interpreted as
fast magnetoacoustic modes. The comparison of the observed evolution of the wave am-
plitude along the loop with the theoretical prediction (Cooper et al. 2003) demonstrated
an encouraging agreement. Katsiyannis et al. (2003) and Nakariakov et al. (2004) showed
that wavelet spectra of the observed fast wave trains had the “crazy tadpole” wavelet
signatures.

The effect of the dispersive formation of the wave train signature opens up interest-
ing perspectives for MHD coronal seismology. The measurable properties of the wavelet
tadpoles are the rates of the frequency and amplitude modulation, determined by the
initial spectrum of the wave train, the distance of the region of observation from the wave
source and by the loop profile. Multi-point observations can be used to exclude the first
two parameters, providing us with the information about the loop profile, its steepness,
possible sub-resolution structuring and filling factors.

Recently, Verwichte et al. (2005) presented for the first time a direct observational evi-
dence of propagating fast waves in an open magnetic structure, a hot supra-arcade above
a post-flare loop, observed with TRACE in 195Å . The supra-arcade is an open magnetic
structure containing plume-like rays. In the particular event analysed, dark, tadpole-like
structures appeared in the lanes between the rays. They were density depletions that
moved sunwards, decelerating from speeds above 500 km/s to less than 100 km/s. The
wave periods lie in the range of 90–220 s. The equivalent wavelengths are of the order of
20–40 Mm. Verwichte et al. interpreted these features as surface modes, which have the
phase speed comparable with the Alfveń speed. If we assume that this speed lies plausibly
in the range of 1,000–1,500 km/s, then there is quite a difference with the observed phase
speeds, especially at lower heights. This discrepancy may be explained by the presence
of fast upflows in the observed dark structures.
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8. Conclusions
For recent several years, the study of wave and oscillatory phenomena has become

one of the key elements of solar coronal physics, in the context of remote diagnostics of
coronal plasmas, as well as in connection with the problems of coronal heating and solar
wind acceleration. Recent observational discoveries in the EUV and microwave bands
provide us with the evidence of several different standing MHD modes of coronal loops,
including global transverse and sausage modes. There is also convincing information
about the existence of standing acoustic and torsional modes of the loops, and direct
imaging observations of propagating longitudinal waves and of fast magnetoacoustic wave
trains. Theoretical modelling, based upon the straight magnetic cylinder approximation
provides us with the solid foundation for the interpretation of these phenomena in terms
of MHD waves and for the development of the coronal plasma diagnostic techniques.
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