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Ricci Solitons and Geometry of
Four-dimensional Non-reductive
Homogeneous Spaces

Giovanni Calvaruso and Anna Fino

Abstract. We study the geometry of non-reductive four-dimensional homogeneous spaces. In partic-

ular, after describing their Levi-Civita connection and curvature properties, we classify homogeneous

Ricci solitons on these spaces, proving the existence of shrinking, expanding, and steady examples. For

all the non-trivial examples we find, the Ricci operator is diagonalizable.

1 Introduction

A (connected) pseudo-Riemannian manifold (M, g) is homogeneous provided there

exists a group G of isometries acting transitively on it. Such manifold (M, g) can be

then identified with (G/H, g), where H is the isotropy group at a fixed point o of M

and g is an invariant pseudo-Riemannian metric.

A homogeneous pseudo-Riemannian manifold (M, g) is said to be reductive if

M = G/H and the Lie algebra g can be decomposed into a direct sum g = h ⊕ m,

where m is an Ad(H)-invariant subspace of g. It is well known that when H is

connected, this condition is equivalent to the algebraic condition [h,m] ⊆ m. In

the study of homogeneous pseudo-Riemannian manifolds, a fundamental difference

arises between the Riemannian case and the non Riemannian one. In fact, while any

homogeneous Riemannian manifold is reductive, there exist homogeneous pseudo-

Riemannian manifolds that do not admit any reductive decomposition.

Although some differences naturally occur for curvature properties (see for ex-

ample [6, 7] for the three-dimensional case), the study of reductive homogeneous

pseudo-Riemannian manifolds parallels the Riemannian case in several ways, for in-

stance, with regard to homogeneous structures [17] and algebraic characterizations

of homogeneous geodesics [13]. On the other hand, to our knowledge, non-reductive

examples have not been fully investigated, although it is likely that the most interest-

ing differences between Riemannian and pseudo-Riemannian settings occur in such

cases.

Two- and three-dimensional homogeneous pseudo-Riemannian manifolds are re-

ductive [5, 14]. In the basic paper [14], the classification of four-dimensional, non-

reductive, homogeneous, pseudo-Riemannian manifolds was obtained, showing the
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existence of both Lorentzian and neutral signature examples. Apart from the classifi-

cation of Einstein metrics [14], we do not know of any further results concerning the

geometric properties of these spaces. The aim of this paper is to provide a system-

atic study of the geometry of four-dimensional non-reductive homogeneous pseudo-

Riemannian manifolds, with particular regard to the existence of homogeneous Ricci

solitons.

A Ricci soliton is a pseudo-Riemannian manifold (M, g) admitting a smooth vector

field V such that

(1.1) LV g + ̺ = λg,

where LV and ̺ respectively denote the Lie derivative in the direction of V and the

Ricci tensor, and λ is a real number. A Ricci soliton is said to be shrinking, steady, or

expanding according to whether λ > 0, λ = 0, or λ < 0, respectively. Ricci solitons

play an important role in understanding the singularities of the Ricci flow, of which

they are the self-similar solutions. A survey and further references on the geometry

of Ricci solitons may be found in [10].

First introduced and studied in the Riemannian case, Ricci solitons have been

investigated in pseudo-Riemannian settings, with special attention to the Lorentzian

case [3, 8, 11, 25]. The Ricci soliton equation also appears to be related to String

Theory. Some physical aspects of the Ricci flow have been emphasized in [1, 15, 19].

Moreover, the interest of the Ricci soliton equation also relies on the fact that it is a

special case of Einstein field equations.

If M = G/H is a homogeneous space, a homogeneous Ricci soliton on M is a

G-invariant metric g for which equation (1.1) holds. In particular, by an invariant

Ricci soliton we mean a homogeneous one such that equation (1.1) is satisfied by an

invariant vector field.

It is a natural question to determine which homogeneous manifolds G/H admit a

G-invariant Ricci soliton [21]. Also with regard to this question, pseudo-Riemannian

geometry allows more interesting behaviours with respect to Riemannian settings.

For example, there exist three-dimensional, Riemannian, homogeneous Ricci soli-

tons (see, for example, [2, 21]), but there are no three-dimensional left-invariant

Riemannian metrics, together with a left-invariant vector field V , such that equa-

tion (1.1) holds for a three-dimensional Lie group [12] (see also [18, 24]). On the

other hand, there exist several non-trivial interesting examples of such left-invariant

Lorentzian Ricci solitons in dimension three [3].

In this paper, we obtain the full classification of homogeneous Ricci solitons on

four-dimensional non-reductive homogeneous pseudo-Riemannian manifolds M =

G/H, for solutions of (1.1) determined by vector fields V ∈ m. Non-trivial examples

appear both in the Lorentzian case and for metrics of neutral signature (2, 2).

We shall also investigate some curvature properties, which in the Riemannian case

are related to natural reductivity and symmetry, proving that in pseudo-Riemannian

settings these conditions can also be satisfied by non-reductive spaces. Finally, we

classify invariant symplectic, complex, and Kähler structures on four-dimensional,

non-reductive, homogeneous, pseudo-Riemannian manifolds.

The paper is organized as follows. The classification of four-dimensional non-

reductive homogeneous pseudo-Riemannian manifolds is reported in Section 2, with
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some needed corrections and integrated by the explicit list of the corresponding in-

variant pseudo-Riemannian metrics. In Section 3 we describe their Levi-Civita con-

nection and curvature. The classification of Einstein-like examples and homoge-

neous Ricci solitons of these spaces will be given in Sections 4 and 5. Section 6 will be

devoted to invariant symplectic and complex structures on four-dimensional, non-

reductive, homogeneous, pseudo-Riemannian manifolds.

2 The Classification of four-dimensional Non-reductive
Homogeneous Spaces

Let M = G/H denote a homogeneous manifold, with H connected, g and h the Lie

algebra of G and the isotropy subalgebra respectively, and m = g/h the factor space,

which identifies with a subspace of g complementary to h. The pair (g, h) uniquely

defines the isotropy representation

ρ : g → gl(m), ρ(x)(y) = [x, y]m for all x ∈ g, y ∈ m.

Consider a basis {h1, . . . , hr, u1, . . . , un} of g, where {h j} and {ui} are bases of h

and m, respectively. Then any bilinear form on m is determined by the matrix g of its

components with respect to the basis {ui} and is invariant if and only if tρ(x)◦g + g ◦
ρ(x) = 0 for all x ∈ g. Invariant pseudo-Riemannian metrics on the homogeneous

space M = G/H are in a one-to-one correspondence with nondegenerate invariant

symmetric bilinear forms g on m [20]. Non-reductive homogeneous manifolds of

dimension 4 were classified in [14] in terms of the corresponding non-reductive Lie

algebras. We now report this classification and explicitly describe the corresponding

pseudo-Riemannian metrics.

2.1 Lorentzian Case

(A1) g = a1 is the decomposable 5-dimensional Lie algebra sl(2,R) ⊕ s(2), where

s(2) is the 2-dimensional solvable algebra. There exists a basis {e1, . . . , e5} of a1 such

that the non-zero products are

[e1, e2] = 2e2, [e1, e3] = −2e3, [e2, e3] = e1, [e4, e5] = e4,

and the isotropy subalgebra is h = Span{h1 = e3 + e4}. So, we can take

m = Span{u1 = e1, u2 = e2, u3 = e5, u4 = e3 − e4}

and have the following isotropy representation for h1:

H1 =









0 −1 0 0

0 0 0 0

0 0 0 0

1 0 − 1
2

0









.
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Consequently, with respect to {ui}, invariant metrics g are of the form

(2.1) g =









a 0 − a
2

0

0 b c a

− a
2

c d 0

0 a 0 0









and are nondegenerate whenever a(a−4d) 6= 0. Both Lorentzian and signature (2, 2)

invariant metrics exist.

From the isotropy representation above it also easily follows that a vector field

V ∈ m is invariant if and only if V ∈ Span{u1 + 2u3, u4}.

(A2) g = a2 is the one-parameter family of 5-dimensional Lie algebras A5,30 of [23].

There exists a basis {e1, . . . , e5} of a2 such that the non-zero products are

[e1, e5] = (α + 1)e1, [e2, e4] = e1, [e2, e5] = αe2,

[e3, e4] = e2, [e3, e5] = (α− 1)e3, [e4, e5] = e4,

for any value of α ∈ R, and the isotropy is h = Span{h1 = e4}. Hence, we take

m = Span{u1 = e1, u2 = e2, u3 = e3, u4 = e5}

and find the isotropy representation

H1 =









0 −1 0 0

0 0 −1 0

0 0 0 0

0 0 0 0









.

Therefore, the invariant metrics are of the form

(2.2) g =









0 0 −a 0

0 a 0 0

−a 0 b c

0 0 c d









,

nondegenerate whenever ad 6= 0. Both Lorentzian and signature (2, 2) invariant

metrics occur.

Moreover, it is easily seen that a vector field V ∈ m is invariant if and only if

V ∈ Span{u1, u4}.

(A3) g = a3 is one of the 5-dimensional Lie algebras A5,37 or A5,36 in [23]. There

exists a basis {e1, . . . , e5} of a3 such that the non-zero products are

[e1, e4] = 2e1, [e2, e3] = e1, [e2, e4] = e2,

[e2, e5] = −εe3, [e3, e4] = e3, [e3, e5] = e2,
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with ε = 1 for A5,37 and ε = −1 for A5,36, and the isotropy is h = Span{h1 = e3}.

Thus, we take

m = Span{u1 = e1, u2 = e2, u3 = e4, u4 = e5}
and obtain the isotropy representation

H1 =









0 −1 0 0

0 0 0 1

0 0 0 0

0 0 0 0









,

from which we deduce that invariant metrics are given by

(2.3) g =









0 0 0 a

0 a 0 0

0 0 b c

a 0 c d









and are nondegenerate whenever ab 6= 0. Both Lorentzian and signature (2, 2) in-

variant metrics exist.

A vector field V ∈ m is invariant if and only if V ∈ Span{u1, u3}.

(A4) g = a4 is the 6-dimensional Schroedinger Lie algebra sl(2,R) ⋉ n(3), where

n(3) is the 3-dimensional Heisenberg algebra. There exists a basis {e1, . . . , e6} of a4,

where the non-zero products are

[e1, e2] = 2e2, [e1, e3] = −2e3, [e2, e3] = e1, [e1, e4] = e4,

[e1, e5] = −e5, [e2, e5] = e4, [e3, e4] = e5, [e4, e5] = e6,

and the isotropy is h = Span{h1 = e3 + e6, h2 = e5}. Therefore, we take

m = Span{u1 = e1, u2 = e2, u3 = e3 − e6, u4 = e4}

and have the following isotropy representation for h1, h2:

H1 =









0 −1 0 0

0 0 0 0

1 0 0 0

0 0 0 0









, H2 =









0 0 0 0

0 0 0 0

0 0 0 1
2

0 −1 0 0









.

We then find that the invariant metrics are of the form

(2.4) g =









a 0 0 0

0 b a 0

0 a 0 0

0 0 0 a
2









,

nondegenerate whenever a 6= 0. The eigenvalues of g are

a, 1
2
a, 1

2
(b +

√
b2 + 4a2), 1

2
(b −

√
b2 + 4a2),
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and so, invariant metrics are necessarily Lorentzian.

Moreover, a vector field V ∈ m is invariant if and only if V ∈ Span{u3}.

(A5) g = a5 is the 7-dimensional Lie algebra sl(2,R) ⋉ A1
4,9, with A1

4,9 as in [23]. It

admits a basis {e1, . . . , e7}, such that the non-zero products are

[e1, e2] = 2e2, [e1, e3] = −2e3, [e1, e5] = −e5, [e1, e6] = e6,

[e2, e3] = e1, [e2, e5] = e6, [e3, e6] = e5, [e4, e7] = 2e4

[e5, e6] = e4, [e5, e7] = e5, [e6, e7] = e6.

The isotropy is h = Span{h1 = e1 + e7, h2 = e3 − e4, h3 = e5}. So, we take

m = Span{u1 = e1 − e7, u2 = e2, u3 = e3 + e4, u4 = e6}

and find the isotropy representation

H1 =









0 0 0 0

0 2 0 0

0 0 −2 0

0 0 0 0









, H2 =









0 − 1
2

0 0

0 0 0 0

2 0 0 0

0 0 0 0









, H3 =









0 0 0 0

0 0 0 0

0 0 0 1
2

0 −1 0 0









.

Hence, invariant metrics are of the form

(2.5) g =









a 0 0 0

0 0 a
4

0

0 a
4

0 0

0 0 0 a
8









and are nondegenerate whenever a 6= 0. The eigenvalues of g are

−1

4
a,

1

8
a,

1

4
a, a,

and so g is Lorentzian. Besides V = 0, no vector fields V ∈ m are invariant.

2.2 Signature (2, 2) Case

Besides cases A1,A2,A3, which also admit invariant metrics of neutral signature

(2, 2), the remaining possibilities are the following.

(B1) g = b1 is the 5-dimensional Lie algebra sl(2,R) ⋉ R
2, admitting a basis

{e1, . . . , e5}, where the non-zero products are

[e1, e2] = 2e2, [e1, e3] = −2e3, [e2, e3] = e1, [e1, e4] = e4,

[e1, e5] = −e5, [e2, e5] = e4, [e3, e4] = e5,

and the isotropy is h = Span{h1 = e3}. Thus, taking

m = Span{u1 = e1, u2 = e2, u3 = e4, u4 = e5},

https://doi.org/10.4153/CJM-2011-091-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-091-1


784 G. Calvaruso and A. Fino

we have the isotropy representation

H1 =









0 −1 0 0

0 0 0 0

0 0 0 0

0 0 1 0









,

and the invariant metrics are of the form

(2.6) g =









0 0 a 0

0 b c a

a c d 0

0 a 0 0









,

nondegenerate whenever a 6= 0. The eigenvalues of g are the roots of

x4 + (−b − d)x3 + (bd − c2 − 2a2)x2 + a2(b + d)x + a4
= 0,

and so g has signature (2, 2), as −(b + d) and a2(b + d) have opposite sign.

Starting from the above isotropy representation, we easily conclude that a vector

field V ∈ m is invariant if and only if V ∈ Span{u1, u4}.

(B2) g = b2 is the 6-dimensional Schroedinger Lie algebra sl(2,R) ⋉ n(3), but with

isotropy h = Span{h1 = e3 − e6, h2 = e5}. Then taking

m = Span{u1 = e1, u2 = e2, u3 = e3 + e6, u4 = e4},

we have the isotropy representation

H1 =









0 −1 0 0

0 0 0 0

1 0 0 0

0 0 0 0









, H2 =









0 0 0 0

0 0 0 0

0 0 0 − 1
2

0 −1 0 0









,

and the invariant metrics are of the form

(2.7) g =









a 0 0 0

0 b a 0

0 a 0 0

0 0 0 − a
2









,

nondegenerate whenever a 6= 0. As the eigenvalues of G are

a, −1

2
a,

1

2
(b +

√
b2 + 4a2),

1

2
(b −

√
b2 + 4a2),

the metric has signature (2, 2).

A vector field V ∈ m is invariant if and only if V ∈ Span{u3}.
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(B3) g = b3 is the 6-dimensional Lie algebra (sl(2,R) ⋉ R
2) × R. It admits a basis

{u1, . . . , u4, h1 = u5, h2 = u6} such that h = Span{h1, h2}, m = Span{u1, . . . , u4}
and the non-zero products are

[h1, u2] = u1, [h1, u3] = −u4, [h2, u2] = −2h2,

[h2, u3] = −u2, [h2, u4] = u1, [u1, u2] = −u1,

[u1, u3] = u4, [u2, u3] = −2u3, [u2, u4] = −u4.

Thus, the isotropy representation is given by

H1 =









0 1 0 0

0 0 0 0

0 0 0 0

0 0 −1 0









, H2 =









0 0 0 1

0 0 −1 0

0 0 0 0

0 0 0 0









.

Consequently, the invariant metrics are of the form

(2.8) g =









0 0 a 0

0 0 0 a

a 0 b 0

0 a 0 0









,

nondegenerate whenever a 6= 0. The eigenvalues of g are

a, −a,
1

2
(b +

√
b2 + 4a2),

1

2
(b −

√
b2 + 4a2),

and so g has signature (2, 2).

Moreover, a vector field V ∈ m is invariant if and only if V ∈ Span{u1}.

Remark 2.1 Lie algebra b3 corresponds to [20, case 2.51.2], as explained in [14,

p. 302]). Here we reported this Lie algebra as it appears in [20], since the case listed

in [14, Theorem 2.4] does not correspond to it. Some corrections were also needed

and have been made for the Lie brackets of Lie algebra b1.

3 Levi-Civita Connection and Curvature

In order to compute the Levi-Civita connection and the curvature of a non-reductive

homogeneous space, consider again a basis {h1, . . . , hr, u1, . . . , un} of g, with {e j}
and {ui} bases of h and m respectively. Following [20], an invariant nondegener-

ate symmetric bilinear form g on m uniquely defines its invariant linear Levi-Civita

connection, described in terms of the corresponding homomorphism of h-modules

Λ : g → gl(m) such that Λ(x)(ym) = [x, y]m for all x ∈ h, y ∈ g. Explicitly, one has

Λ(x)(ym) =
1

2
[x, y]m + v(x, y), for all x, y ∈ g,
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where v : g × g → m is the h-invariant symmetric mapping uniquely determined by

2g
(

v(x, y), zm

)

= g
(

xm, [z, y]m

)

+ g
(

ym, [z, x]m

)

, for all x, y, z ∈ g.

The curvature tensor is then determined by the mapping R : m × m → gl(m) such

that R(x, y) = [Λ(x),Λ(y)] − Λ([x, y]) for all x, y ∈ m.

Finally, the Ricci tensor ̺ of g, described in terms of its components with respect

to {ui}, is given by

̺(ui , u j) =

4
∑

r=1

Rri(ur, u j), i, j = 1, . . . , 4.

The Ricci operator Q is then defined by condition g(Q(X),Y ) = ̺(X,Y ). As ̺ is sym-

metric, Q is self-adjoint. Contrary to the Riemannian case, this does not necessarily

imply that Q is diagonalizable in pseudo-Riemannian settings. Indeed, Q may take

any of four different canonical forms [22] .

(A1) We refer to the basis E = {h1, u1, . . . , u4} of the Lie algebra a1 described in the

previous section. Let g be an arbitrary invariant pseudo-Riemannian metric on m,

determined by real coefficients a, b, c, d, with a(a − 4d) 6= 0. Putting Λ[i] := Λ(ui)

for all indices i = 1, . . . , 4, we find

(3.1)

Λ[1] =









0 0 0 0

0 1 0 0

0 0 0 0

0 − b
a

− c
a

−1









, Λ[2] =











0 − 8bd
a(a−4d)

c
a

1

−1 0 1
2

0

0 − 4bc
a(a−4d)

0 0

− b
a

4bc
a(a−4d)

− b
2a

0











,

Λ[3] =









0 c
a

0 0

0 1
2

0 0

0 0 0 0

− c
a

− b
2a

0 − 1
2









, Λ[4] =









0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0









.

Consequently, the curvature tensor is completely determined by

R12 =











0 b(a+20d)
α (a−4d)

− c
a

−1

1 0 − 1
2

0

0 12b
a−4d

0 0

4b
a

− 12bc
a(a−4d)

b
a

0











, R13 =









0 − c
a

0 0

0 0 0 0

0 0 0 0
c
a

0 − c
2a

0









,

R23 =













0 − b(a+4d
2a(a−4d)

− c
2a

− 1
2

1
2

− c
a

− 1
4

0

0 − 2b
a−4d

0 0

− b
a

− bc(3a−4d)
a2(a−4d)

c2

a2
c
a













, R24 =









0 0 0 0

0 −1 0 0

0 0 0 0

0 b
a

c
a

1









,

R14 = R34 = 0.
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Therefore, with respect to {ui}, the Ricci tensor ̺ and the Ricci operator Q are given

by

(3.2)

̺ =













−1 0 1
2

0

0 2b(a+12d)
a(a−4d)

− 2c
a

−2

1
2

− 2c
a

− 1
4

0

0 −2 0 0













, Q =











−a−1 0 0 0

0 −2 a−1 0 4b(a+4d)
a2(a−4d)

1
2
a−1 0 0 − 2c

a2

0 0 0 −2 a−1











,

respectively. In particular, it is easily seen that the Ricci eigenvalues are then given by

−2

a
, −2

a
, −1

a
, 0

and that Q is diagonalizable if and only if either b = 0 or a + 4d = 0.

(A2) Let E = {h1, u1, . . . , u4} be the basis of the Lie algebra a2 used in the previous

section and let g be an arbitrary invariant pseudo-Riemannian metric on m, deter-

mined by real coefficients a, b, c, d, with ad 6= 0. A direct calculation gives

(3.3)

Λ[1] =









0 0 αc
d

α
0 0 0 0

0 0 0 0

0 0 α a
d

0









, Λ[2] =









0 −αc
d

0 0

0 0 0 α
0 0 0 0

0 −α a
d

0 0









,

Λ[3] =









α c
d

0 − (α−1)bc
ad

−α c2
−bd

ad

0 0 0 0

0 0 0 α
α a
d

0 − (α−1)b
d

−α c
d









, Λ[4] =









−1 0 −α c2
−bd

ad
− (α−1)c

a

0 0 0 0

0 0 1 0

0 0 −α c
d

0









.

We then calculate the curvature matrices Ri j , and we find

R12 =









0 −α2a
d

0 0

0 0 −α2a
d

0

0 0 0 0

0 0 0 0









, R13 =









α2a
d

0 −α2b
d

−α2c
d

0 0 0 0

0 0 −α2a
d

0

0 0 0 0









,

R14 =









0 0 −α2 c
d

−α2

0 0 0 0

0 0 0 0

0 0 −α2 a
d

0









, R23 =









0 αb
d

0 0
α2a

d
0 −α (α−1)b

d
−α2c

d

0 α2a
d

0 0

0 0 0 0









,

R24 =









0 0 0 0

0 0 −α2c
d

−α2

0 0 0 0

0 α2a
d

0 0









, R34 =











0 0 − 2(α−1)bc
ad

− 2(α−1) b
a

0 0 0 0

0 0 −α2c
d

−α2

(1−2α)α a
d

0 (α2
−2α+2)b

d
α2 c

d











.
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Then the Ricci tensor ̺ and the Ricci operator Q with respect to {ui} are described

by

̺ =













0 0 3α2a
d

0

0 − 3α2a
d

0 0
3α2a

d
0 − b(3 α2

−3 α+2)
d

− 3α2c
d

0 0 − 3α2c
d

−3α2













,

Q =











− 3α2

d
0 0 0

0 − 3α2

d
0 0

− b(3 α−2)
ad

0 − 3α2

d
0

0 0 0 − 3α2

d











,

(3.4)

The Ricci eigenvalues are all equal to − 3α2

d
and Q is diagonalizable if and only if either

b = 0 or α = 2/3.

(A3) All the remaining cases will be treated in the same way. For this reason, unless

it is particularly relevant (see Proposition 4.3 below), we shall omit to report the

curvature matrices Ri j . Let E = {h1, u1, . . . , u4} be the basis of the Lie algebra a3

we introduced in the previous section and let g be an invariant pseudo-Riemannian

metric on m, determined by real coefficients a, b, c, d, satisfying ab 6= 0. We find

(3.5)

Λ[1] =









0 0 1 c
b

0 0 0 0

0 0 0 − a
b

0 0 0 0









, Λ[2] =









0 c
b

0 0

0 0 1 0

0 − a
b

0 0

0 0 0 0









,

Λ[3] =









−1 0 0 c2
−bd
ab

0 0 0 0

0 0 0 − c
ab

0 0 0 1









, Λ[4] =









c
b

0 c2
−bd
ab

0

0 0 0 0

− a
b

0 − c
b

0

0 0 1 0









,

and for the Ricci tensor and the Ricci operator

̺ =











0 0 0 − 3a
b

0 − 3a
b

0 0

0 0 −3 − 3c
b

− 3a
b

0 − 3c
b

− 2d
b











,

Q =









−3 b−1 0 0 0

0 −3 b−1 0 0

0 0 −3 b−1 0
d
ab

0 0 −3 b−1









.

(3.6)

The Ricci eigenvalues are all equal to −3 b−1, and Q is diagonalizable if and only if

d = 0.
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(A4) Consider the basis E = {h1, h2, u1, . . . , u4} of the Lie algebra a4 as in the previ-

ous section and an invariant pseudo-Riemannian metric g on m, determined by real

coefficients a, b with a 6= 0. We get

(3.7)

Λ[1] =









0 0 0 0

0 1 0 0

0 − b
a

−1 0

0 0 0 0









, Λ[2] =









0 2b
a

1 0

−1 0 0 0

− b
a

0 0 0

0 0 0 0









,

Λ[3] =









0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0









, Λ[4] =









0 0 0 1
2

0 0 0 0

0 0 0 0

−1 0 0 0









.

Thus, the Ricci curvature is described as follows:

̺ =









−2 0 0 0

0 − 8b
a

−3 0

0 −3 0 0

0 0 0 −1









,

Q =









−2 a−1 0 0 0

0 −3 a−1 − 5b
a2 0

0 0 −3 a−1 0

0 0 0 −2 a−1









.

(3.8)

The Ricci eigenvalues are

−2

a
, −2

a
, −3

a
, −3

a
,

and Q is diagonalizable if and only if b = 0.

(A5) Let E = {h1, h2, h3, u1, . . . , u4} be the basis of the Lie algebra a5 that we intro-

duced in the previous section and let g be an invariant pseudo-Riemannian metric

on m, determined by a real coefficient a 6= 0. For the Levi-Civita connection and

curvature, we find

(3.9)

Λ[1] =









0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0









, Λ[2] =









0 0 1
2

0

−2 0 0 0

0 0 0 0

0 0 0 0









,

Λ[3] =









0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0









, Λ[4] =









0 0 0 1
4

0 0 0 0

0 0 0 0

−2 0 0 0








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and

(3.10)

̺ =









−8 0 0 0

0 0 −2 0

0 −2 0 0

0 0 0 −1









, Q =









−8 a−1 0 0 0

0 −8 a−1 0 0

0 0 −8 a−1 0

0 0 0 −8 a−1









.

(B1) We now consider the cases with metrics having signature (2, 2). Let E =

{h1, u1, . . . , u4} be the basis of the Lie algebra b1 we used in the previous section

and let g be an invariant pseudo-Riemannian metric on m, determined by real coef-

ficients a, b, c, d, with a 6= 0. Then we obtain

(3.11)

Λ[1] =









−1 − c
2a

− d
a

0

0 1 0 0

0 0 1 0

0 − b
a

− 3c
2a

−1









, Λ[2] =













− c
2a

c2
−2bd
a2 − cd

a2 − d
2a

−1 − c
a

− d
2a

0

0 2b
a

3c
2a

1

− b
a

− bc
a2

bd−3 c2

2a2 0













,

Λ[3] =















− d
a

− cd
a2 − d2

a2 0

0 − d
2a

0 0

0 3c
2a

d
a

0

− 3c
2a

bd−3 c2

2a2 − cd
a2

d
2a















, Λ[4] =









0 − d
2a

0 0

0 0 0 0

0 0 0 0

0 0 d
2a

0









.

Then the curvature is described by

R12 =













3c
2a

22 bd−15 c2

4a2
3cd
2a2 0

0 3c
2a

0 0

0 − 3b
a

− 3c
2a

0

3b
a

3bc
2a2

5(3c2
−2 bd)

4a2 − 3c
2a













, R13 =













d
a

5cd
4a2

d2

a2 0

0 d
2a

0 0

0 − 3c
2a

− d
a

0

3c
2a

3 c2
−bd

2a2
3cd
4a2 − d

2a













,

R23 =















− cd
4a2 − d(3c2+5bd)

4a3 0 d2

4a2

d
2a

cd
4a2

d2

4a2 0

0 9c2
−10bd
4a2 − cd

4a2 − d
2a

8bd−9c2

4a2

9c(bd−c2)
4a3

3d(bd−c2)
2a3

cd
4a2















, R14 =









0 d
2a

0 0

0 0 0 0

0 0 0 0

0 0 − d
2a

0









,

R24 =













d
2a

3cd
4a2

d2

2a2 0

0 d
a

0 0

0 − 3c
2a

− d
2a

0

3c
2a

3 c2
−2bd

2a2 − d
a













, R34 =









0 d2

4a2 0 0

0 0 0 0

0 0 0 0

0 0 − d2

4a2 0








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and so the Ricci curvature is described as follows:

(3.12) ̺ =













0 0 3d
2a

0

0 3(6bd−5c2)
2a2

3cd
2a2

3d
2a

3d
2a

3cd
2a2

3d2

2a2 0

0 3d
2a

0 0













, Q =









3d
2a2 0 0 0

0 3d
2a2 0 15(bd−c2)

2a3

0 0 3d
2a2 0

0 0 0 3d
2a2









.

Hence, the Ricci eigenvalues are all equal to 3d
2a2 , and Q is diagonalizable if and only if

bd − c2
= 0.

(B2) For the case of the Lie algebra b2, given an invariant pseudo-Riemannian metric

g on m (determined by real coefficients a 6= 0, b), we find, with respect to the basis

E = {h1, h2, u1, . . . , u4} introduced in the previous section,

(3.13)

Λ[1] =









0 0 0 0

0 1 0 0

0 − b
a

−1 0

0 0 0 0









, Λ[2] =









0 2b
a

1 0

−1 0 0 0

− b
a

0 0 0

0 0 0 0









,

Λ[3] =









0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0









, Λ[4] =









0 0 0 − 1
2

0 0 0 0

0 0 0 0

−1 0 0 0









and for the Ricci curvature

(3.14)

̺ =









−2 0 0 0

0 − 8b
a

−3 0

0 −3 0 0

0 0 0 1









, Q =









−2 a−1 0 0 0

0 −3 a−1 − 5b
a2 0

0 0 −3 a−1 0

0 0 0 −2 a−1









.

The Ricci eigenvalues are

−2

a
, −2

a
, −3

a
, −3

a
,

and Q is diagonalizable if and only if b = 0.

(B3) For the Lie algebra b3, let E = {h1, h2, u1, . . . , u4} be the basis as in the previ-

ous section and g an invariant pseudo-Riemannian metric on m, determined by real

coefficients a 6= 0, b. Then we get

(3.15)

Λ[1] =









0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0









, Λ[2] =









1 0 b
a

0

0 1 0 0

0 0 −1 0

0 0 0 −1









,

Λ[3] =









0 b
a

0 0

0 0 0 0

0 1 0 0

−1 0 − 2b
a

0









, Λ[4] =









0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0









,
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and the curvature is described by

R12 = R13 = R14 = R24 = R34 = 0, R23 =















0 3b
a

0 0

0 0 0 0

0 0 0 0

0 0 − 3b
a

0















.

The Ricci tensor and operator are then given by

̺ =









0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0









, Q =









0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0









.

4 Einstein-like Metrics

Einstein-like metrics were introduced and first studied in [16] by A. Gray. A pseudo-

Riemannian manifold (M, g):

• belongs to class A if and only if its Ricci tensor ̺ is cyclic-parallel, that is,

(4.1) (∇X̺)(Y,Z) + (∇Y̺)(Z,X) + (∇Z̺)(X,Y ) = 0,

for all vector fields X,Y,Z tangent to M. Condition (4.1) is equivalent to requiring

that ̺ is a Killing tensor, that is,

(4.2) (∇X̺)(X,X) = 0.

• belongs to class B if and only if its Ricci tensor is a Codazzi tensor, that is,

(4.3) (∇X̺)(Y,Z) = (∇Y̺)(X,Z).

Any manifold belonging to either class A or B has constant scalar curvature. More-

over, denoting respectively by P and E the class of Ricci-parallel manifolds and the

one of Einstein spaces, one has A ∩ B = P ⊃ E. However, P 6= E. In partic-

ular, in pseudo-Riemannian settings, there exist some manifolds with parallel Ricci

tensor but neither Einstein nor locally decomposable. Some interesting Lorentzian

examples can be found in [6].

In Riemannian settings, Einstein-like metrics of low-dimensional manifolds are

related to natural reductivity and symmetry [4]. Consequently, to find some non-

reductive homogeneous pseudo-Riemannian manifolds with Einstein-like metrics

would point out a deep difference between these geometries. We will show that this

is the case, classifying Einstein-like metrics on four-dimensional, non-reductive, ho-

mogeneous, pseudo-Riemannian manifolds.
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4.1 Einstein Examples

In the previous sections, we explicitly described the metric tensor g and the Ricci

tensor ̺ of each four-dimensional, non-reductive, homogeneous, pseudo-Rieman-

nian manifold, in terms of a suitable global basis of vector fields. Checking when

these homogeneous spaces satisfy the Einstein equation ̺ − λg = 0, we obtain the

following classification result.

Theorem 4.1 Let g be an invariant pseudo-Riemannian metric on a four-dimensional

non-reductive homogeneous pseudo-Riemannian manifold M = G/H. Then g is Ein-

stein and not of constant curvature if and only if one of the following cases occurs:

(i) g = a2, g is given by (2.2) and either α =
2
3

or b = 0 6= α. In both cases, λ =
3α2

d
.

(ii) g = a3, g is given by (2.3) and d = 0. In this case, λ = − 3
b

and so g is never

Ricci-flat.

(iii) g = a5 and g is given by (2.5). In this case, λ = − 8
a

and so g is never Ricci-flat.

(iv) g = b1, g is given by (2.6) and c2 − bd = 0 but (b, c, d) 6= (0, 0, 0). In this case,

λ =
3d
2a2 and so, g is Ricci-flat if and only if (c =)d = 0.

(v) g = b3 and g is given by (2.8) with b 6= 0. In this case, λ = 0, that is, g is

Ricci-flat.

Remark 4.2 (a) The classification of Einstein examples given in [14, Theorem 2.6]

for the simply connected case (which excludes examples corresponding to Lie algebra

a5) only reported cases (ii), with α =
2
3
, and (v). Theorem 4.1 shows that other cases

occur.

(b) In the statement of Theorem 4.1, following [14, Theorem 2.6], we excluded the

cases of constant sectional curvature. To be more precise, starting from the explicit

description of the curvature of these spaces we made in the previous section, standard

calculations lead to the following result.

Proposition 4.3 Let g be an invariant pseudo-Riemannian metric on a four-

dimensional, non-reductive, homogeneous, pseudo-Riemannian manifold M = G/H.

Then the following conditions are equivalent:

(i) (M, g) is flat;

(ii) (M, g) has constant sectional curvature;

(iii) (M, g) is conformally flat;

(iv) one of the following cases occurs:

(a) g = a2 and g is given by (2.2) with α = b = 0;

(b) g = b1 and g is given by (2.6) with b = c = d = 0;

(c) g = b3 and g is given by (2.8) with b = 0.

In particular, conformally flat, four-dimensional, non-reductive, homogeneous, pseudo-

Riemannian manifolds are necessarily flat.

4.2 Ricci-parallel, Class A and B Examples

We now classify Einstein-like metrics of four-dimensional, non-reductive, homoge-

neous, pseudo-Riemannian manifolds, starting from the classification of the corre-
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sponding Lie algebras ai , b j and the description of the Levi-Civita connection and

Ricci tensor of their invariant metrics.

Because of their tensorial character, conditions ∇̺ = 0 (characterizing Ricci-

parallel examples), (4.2) and (4.3) can be checked with respect to a chosen basis

of vector fields. With respect to the global bases {ui} described in Section 2, in

Section 3 we described the Levi-Civita connection and the Ricci tensor of four-

dimensional non-reductive homogeneous pseudo-Riemannian manifolds, calculat-

ing Λ[i] := Λ(ui) and ̺i j := ̺(ui , u j). Thus, we can now calculate the components

of the covariant derivative of the Ricci tensor given by

∇i̺ jk =

4
∑

r=1

(

−Λ[k]ri̺r j − Λ[k]r j̺ri

)

.

(A1) For a four-dimensional, non-reductive, homogeneous, pseudo-Riemannian

manifold corresponding to Lie algebra a1, from (3.1), (3.2) we easily find that the

only possibly non-vanishing components of ∇̺ with respect to {ui} are

(4.4)

∇1̺22 = − 8b(a+4d)
a(a−4d)

, ∇1̺22 =
2b(a+12d)
a(a−4d)

, ∇1̺13 = − c
a
, ∇1̺14 = −1,

∇2̺23 = − b(3a+4d)
a(a−4d)

, ∇2̺33 =
c
a
, ∇2̺34 =

1
2
, ∇3̺12 =

c
a
,

∇3̺22 = − 4b(a+4d)
a(a−4d)

, ∇3̺22 =
c

2a

and the ones obtained by using the symmetries of ∇̺. Then (4.4) easily yields that

four-dimensional, non-reductive, homogeneous, pseudo-Riemannian manifolds corre-

sponding to Lie algebra a1 do not belong to either class A or B. In particular, they are

not Ricci-parallel.

(A2) Equations (3.3) and (3.4) yield that in this case, ∇̺ is completely determined

by the possibily non-vanishing components

∇3̺34 = −bα (3α− 2)

d
, ∇4̺33 = −2

b (3α− 2)

d
.

Thus, also taking into account Theorem 4.1 and Proposition 4.3, we have the follow-

ing theorem.

Theorem 4.4 A four-dimensional, non-reductive, homogeneous, pseudo-Riemannian

manifold corresponding to Lie algebra a2

(i) is Ricci-parallel if and only if it is Einstein;

(ii) belongs to class A but is not Ricci-parallel if and only if α = −1 and b 6= 0;

(iii) belongs to class B but is not Ricci-parallel if and only if α = 2 and b 6= 0.

(A3) We deduce from equations (3.5) and (3.6) that ∇̺ is now determined by

∇3̺44 = −2d

b
, ∇4̺34 = −d

b
.

Therefore, we have the following theorem.
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Theorem 4.5 For a four-dimensional non-reductive homogeneous pseudo-Rieman-

nian manifold corresponding to Lie algebra a3, the following conditions are equivalent:

(i) the manifold belongs to class A;

(ii) the manifold belongs to class B;

(iii) the manifold is Ricci-parallel;

(iv) the manifold is Einstein;

(v) the pseudo-Riemannian metric g described in (2.3) satisfies d = 0.

(A4) By (3.7) and (3.8), we have that tensor ∇̺ is determined by

∇1̺22 =
10b

a
, ∇2̺12 = −7b

a
, ∇2̺13 = −1.

Hence, we easily deduce that four-dimensional non-reductive homogeneous pseudo-

Riemannian manifolds corresponding to case a4 never belong to either class A or B. In

particular, they are not Ricci-parallel.

(A5) By Theorem 4.1, non-reductive, homogeneous, pseudo-Riemannian, manifolds

corresponding to Lie algebra a5 are Einstein. In particular, they are Ricci-parallel.

The same conclusion can be obtained by direct calculation using equations (3.9) and

(3.10).

(B1) For non-reductive, homogeneous, pseudo-Riemannian, manifolds correspond-

ing to Lie algebra b1, by (3.11) and (3.12) we get that tensor ∇̺ is determined by

∇1̺22 =
15(c2

−bd)
a2 , ∇2̺12 =

15(bd−c2)
2a2 , ∇2̺22 =

15c(bd−c2)
a3 ,

∇2̺23 =
15d(bd−c2)

4a3 , ∇3̺22 =
15d(bd−c2)

2a3 .

Taking into account Theorem 4.1 and Proposition 4.3, we then easily prove the fol-

lowing.

Theorem 4.6 For a four-dimensional, non-reductive, homogeneous, pseudo-Rieman-

nian manifold corresponding to Lie algebra b1, the following conditions are equivalent:

(i) the manifold belongs to class A;

(ii) the manifold belongs to class B;

(iii) the manifold is Ricci-parallel;

(iv) the manifold is Einstein;

(v) the pseudo-Riemannian metric g described in (2.6) satisfies c2 − bd = 0.

(B2) Equations (3.13) and (3.14) yield that ∇̺ is determined by

∇1̺22 =
10 b

a
, ∇2̺12 = −7 b

a
, ∇2̺13 = −1,

from which we easily see that four-dimensional non-reductive homogeneous pseudo-

Riemannian manifolds corresponding to Lie algebra b2 do not belong to either class A or

B. In particular, they are not Ricci-parallel.

(B3) Theorem 4.1 and Proposition 4.3 yield that non-reductive homogeneous

pseudo-Riemannian manifolds corresponding to Lie algebra b3 are Ricci-flat. In par-

ticular, they are Ricci-parallel.

https://doi.org/10.4153/CJM-2011-091-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-091-1


796 G. Calvaruso and A. Fino

5 Invariant Killing Vector Fields and Ricci Solitons

We shall now look for homogeneous solutions of equation (1.1) for four-dimensional

non-reductive, homogeneous, pseudo-Riemannian manifolds corresponding to Lie

algebras ai , b j .

As we already described the Ricci tensor of these manifolds, it suffices to deter-

mine, with respect to the same bases, the Lie derivative LV g of the metric tensor g

in the direction of an arbitrary vector field V ∈ m, pointing out the invariant ex-

amples. This also gives us the opportunity to investigate the existence of invariant

Killing vector fields, which is interesting in itself under several points of view [22].

In the different cases corresponding to Lie algebras ai , b j , we shall always refer to

the global bases {ui} introduced in Section 2. With respect to {ui}, the Lie derivative

LV g of the metric tensor with respect to a vector field V = Viui ∈ m is determined

by the matrix

ai j :=

4
∑

k=1

(

Vk

( 4
∑

r=1

(

Λ[i]rkgr j + Λ[ j]rkgri

)

))

.

(A1) Let (M = G/H, g) be a four-dimensional, non-reductive, homogeneous,

pseudo-Riemannian manifold corresponding to Lie algebra a1 and V = Viui ∈ m.

Then from (2.1) and (3.1) we obtain

LV g =









0 2bV2 2cV2 aV2

2bV2 −4bV1 −2cV1 − aV4 −aV1 + 1
2
aV3

2cV2 −cV1 − aV4 0 1
2
aV2

aV2 −aV1 + 1
2
aV3

1
2
aV2 0









.

Thus, we can easily prove the following theorem.

Theorem 5.1 Consider a four-dimensional, non-reductive, homogeneous, pseudo-

Riemannian manifold corresponding to Lie algebra a1. A vector field V ∈ m is Killing if

and only if b = 0 and V = k(u1 + 2 u2 − 2 c
a

u3), for a real constant k. Except for the

trivial case V = 0, V is not invariant.

(A2) Equations (2.2) and (3.3) imply that in this case,

LV g =

















0 0 −2αaV4 a(α− 1)V3

0 2αaV4 0 −αaV2

−2αaV4 0 2b(α− 1)V4
a(α + 1)V1

−(α− 1)(bV3 − cV4)

a(α− 1)V3 −αaV2
a(α + 1)V1

−(α− 1)(bV3 − cV4)
−2c(α− 1)V3

















.

Then, solving equation LV g = 0, we obtain the following theorem.
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Theorem 5.2 Consider a four-dimensional, non-reductive, homogeneous, pseudo-

Riemannian manifold corresponding to Lie algebra a2. A vector field V ∈ m is Killing if

and only if α = 0 and either b = 0 and

V = k
( c

a
u1 + u4

)

+ µ u2,

or b 6= 0 and V = µ u2, where k, µ are real constants. In particular, if b = 0, then V

is an invariant Killing vector field if and only if µ = 0, while when b 6= 0, there are not

invariant Killing vector fields (besides V = 0).

(A3) From equations (2.3), (3.5) we obtain

LV g =









0 0 0 2aV3

0 2aV3 −aV2 0

0 −aV2 0 −2aV1

2aV3 0 −2aV1 0









.

As a 6= 0 so that g is nondegenerate, we have at once the following theorem.

Theorem 5.3 Consider a four-dimensional, non-reductive, homogeneous, pseudo-

Riemannian manifold corresponding to Lie algebra a3. A vector field V ∈ m is Killing if

and only if V = k u4, where k is a real constant. Unless k = 0, V is not invariant.

(A4) Equations (2.4), (3.7) yield

LV g =









0 2bV2 aV2
1
2
aV4

2bV2 −4bV1 −aV1 0

aV2 −aV1 0 0
1
2
aV4 0 0 −aV1









.

As a 6= 0 so that g is nondegenerate, we obtain the following theorem.

Theorem 5.4 Consider a four-dimensional, non-reductive, homogeneous, pseudo-

Riemannian manifold corresponding to Lie algebra a4. A vector field V ∈ m is Killing

if and only if V = k u3, where k is a real constant. All these Killing vector fields are

invariant.

(A5) We start from equations (2.5) and (3.9), and we find

LV g =









0 1
2
aV3 0 1

4
aV4

1
2
aV3 0 − 1

2
aV1 0

0 − 1
2
aV1 0 0

1
4
aV4 0 0 − 1

2
aV1









,

and so we have the following theorem.
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Theorem 5.5 Consider a four-dimensional, non-reductive, homogeneous, pseudo-

Riemannian manifold corresponding to Lie algebra a5. Then V ∈ m is Killing if and

only if V = k u2, where k is a real constant. Unless k = 0, V is not invariant.

(B1) Now consider four-dimensional, non-reductive, homogeneous, pseudo-Rie-

mannian manifolds corresponding to Lie algebra b1. Then equations (2.6) and (3.11)

yield

LV g =









2aV3 2bV2 + cV3 −aV1 + 2cV2 + dV3 aV2

2bV2 + cV3 −4bV1 + 2cV4 −3cV1 + dV4 −aV1 − cV2

−aV1 + 2cV2 + dV3 −3cV1 + dV4 −2dV1 −dV2

aV2 −aV1 − cV2 −dV2 0









and solving equation LV g = 0, we prove the following theorem.

Theorem 5.6 Consider a four-dimensional, non-reductive, homogeneous, pseudo-

Riemannian manifold corresponding to Lie algebra b1. A vector field V ∈ m is Killing

if and only if c = d = 0 and V = k u4, for any real constant k. All these Killing vector

fields are invariant.

(B2) From equations (2.7) and (3.13) we get

LV g =









0 2bV2 aV2 − 1
2
aV4

2bV2 −4bV1 −aV1 0

aV2 −aV1 0 0

− 1
2
aV4 0 0 aV1









.

As a 6= 0, we obtain the following theorem.

Theorem 5.7 Consider a four-dimensional, non-reductive, homogeneous, pseudo-

Riemannian manifold corresponding to Lie algebra b2. A vector field V ∈ m is Killing if

and only if V = k u3, for any real constant k. All these Killing vector fields are invariant.

(B3) Equations (2.8) and (3.15) yield

LV g =









0 −aV3 aV2 0

−aV3 −2aV4 −2bV3 aV2

aV2 −2bV3 4bV2 0

0 aV2 0 0









.

Since a 6= 0, we get at once the following theorem.

Theorem 5.8 Consider a four-dimensional, non-reductive, homogeneous, pseudo-

Riemannian manifold corresponding to Lie algebra b3. A vector field V ∈ m is Killing if

and only if V = k u1, for any real constant k. All these Killing vector fields are invariant.
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We can now classify homogeneous Ricci solitons among four-dimensional, non-

reductive, pseudo-Riemannian, homogeneous manifolds. We solve equation (1.1)

using the descriptions of invariant pseudo-Riemannian metrics g, their Ricci tensor

̺, and the Lie derivative LV g obtained above. Then we check whether these solu-

tions correspond to invariant vector fields. Ruling out the trivial solutions of (1.1),

corresponding to the case of Einstein manifolds (as classified in Theorem 4.1 and

Proposition 4.3) with a vector field V ∈ m which is either Killing or conformally

Killing, we obtain the following theorem.

Theorem 5.9 Let (M = G/H, g) be a four-dimensional non-reductive homogeneous

pseudo-Riemannian manifold.

(i) If M corresponds to one of Lie algebras a1, a3, a4, a5, b2, b3, then (M, g) is not a

non-trivial homogeneous Ricci soliton (for which equation (1.1) is satisfied by a

vector field V ∈ m).

(ii) If M corresponds to the Lie algebra a2 (with α 6= 2
3

and b 6= 0, otherwise is

Einstein), then (M, g) is a non-trivial homogeneous Ricci soliton if and only if one

of the following cases occurs:

(a) α 6= 0,±1 and d 6= 0. In this case, (1.1) holds for

V =
3α− 2

2d

(

− c(α− 3)

a(α + 1)
u1 + u4

)

and λ = −2α

d
.

The Ricci soliton is either expanding, steady, or shrinking, depending on the

sign of α and d, and V is invariant.

(b) α = −1 and d 6= 0 = c. In this case, (1.1) holds for

V = k u1 −
5

2d
u4 and λ =

2

d
,

for any k ∈ R. The Ricci soliton is either expanding or shrinking, depending

on the sign of d, and all vector fields V are invariant.

(c) α = 1 and d 6= 0. In this case, (1.1) holds for

V =
1

2d

( c

a
u1 + u4

)

+ k u3 and λ = −2

d
,

for any k ∈ R. The Ricci soliton is either expanding or shrinking, depending

on the sign of d, and V is invariant if and only if k = 0.

(d) α = 0 and d 6= 0. In this case, (1.1) holds for

V = −1

d

( 3c

a
u1 + u4

)

+ k u2 and λ = 0,

for any k ∈ R. The Ricci soliton is steady, and V is invariant if and only if

k = 0.

(iii) If M corresponds to the Lie algebra b1, then (M, g) is a non-trivial homogeneous

Ricci soliton if and only if d = 0 6= c. In this case, (1.1) holds for

V =
15c

4a2
u4 and λ = 0.

Thus, the Ricci soliton is steady and V is invariant.
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Remark 5.10 In all the non-trivial examples of three-dimensional, left-invariant,

homogeneous Lorentzian Ricci solitons [3], the Ricci operator is not diagonalizable

and has three equal eigenvalues. This could suggest that the existence of more in-

variant Ricci solitons in pseudo-Riemannian settings than in the Riemannian case is

related to this special form of the Ricci operator.

As one can see from Section 3, also with regard to four-dimensional, non-

reductive, invariant, pseudo-Riemannian Ricci solitons, in all examples we classified

in Theorem 5.9 (cases a2, b1), the Ricci operator is again not diagonalizable with four

equal eigenvalues. Four-dimensional, reductive, invariant Ricci solitons with differ-

ent types of the Ricci operators (including the diagonalizable one) are presented in

[9].

6 Invariant Symplectic, Complex and Kähler Structures

Invariant symplectic structures on a homogeneous space M = G/H are in a one-to-

one correspondence with non-degenerate, invariant, skew-symmetric, bilinear forms

Ω on m such that

dΩ(x, yz) = −Ω
(

[x, y]m, z
)

+ Ω
(

[x, z]m, y
)

− Ω
(

[y, z]m, x
)

= 0,

for all x, y, z ∈ m [20]. Hence, we can determine the matrices (Ωi j) associated with

invariant skew-symmetric bilinear forms Ω on m, with respect to the corresponding

basis {ui}, for every non-reductive four-dimensional homogeneous space. By a direct

calculation, we get









0 Ω12 0 0

−Ω12 0 Ω23 0

0 −Ω23 0 0

0 0 0 0









for (A1),









0 0 0 0

0 0 Ω23 0

0 −Ω23 0 Ω34

0 0 −Ω34 0









for (A2), (B3),









0 0 0 0

0 0 0 Ω24

0 0 0 Ω34

0 −Ω24 −Ω34 0









for (A3),









0 Ω12 0 0

−Ω12 0 0 Ω24

0 0 0 0

0 −Ω24 0 0









for (A4), (B2),









0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0









for (A5),









0 Ω12 Ω13 0

−Ω12 0 Ω23 Ω13

−Ω13 −Ω23 0 Ω3,4

0 −Ω1,3 −Ω34 0









for (B1).

Therefore, there exist invariant non-degenerate 2-forms only on the non-reductive

homogeneous space corresponding to case (B1). Moreover, in such a case we find

that dΩ = 0 if and only if Ω2,3 = 0. Thus, we have the following theorem.
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Theorem 6.1 A four-dimensional, non-reductive, homogeneous, pseudo-Riemannian

manifold M = G/H admits an invariant symplectic form if and only if g = b1. In this

case, with respect to the basis {ui} of m, invariant symplectic forms are given by

Ω =









0 Ω12 Ω13 0

−Ω12 0 0 Ω13

−Ω13 0 0 Ω34

0 −Ω13 −Ω34 0









,

with Ω12Ω34 − Ω
2
13 6= 0.

Next, invariant complex structures on a homogeneous spaces M = G/H are in a

one-to-one correspondence with complex structures J on m that commute with the

isotropy representation. We now prove the following theorem.

Theorem 6.2 A four-dimensional, non-reductive, homogeneous, pseudo-Riemannian

manifold M = G/H admits an invariant almost complex structure if and only if g =

b1. In particular, in this case there exists a two-parameter family of invariant complex

structures Jt,s described, with respect the basis {ui} of m, by

Jt,s =













−s 0 0 t

0 −s −t 0

0 (1+s2)
t

s 0

− (1+s2)
t

0 0 s













,

for arbitrary real constants s and t 6= 0.

Proof We start by determining, for every non-reductive four-dimensional homoge-

neous space G/H, the linear maps J : m → m such that J ◦ ρ(x) = ρ(x) ◦ J, for

every x ∈ m. Then we can check whether these linear maps satisfy J2
= −id and the

integrability conditions

[ Jul, Juk] = [ul, uk] − J[ Jul, uk] − J[ul, Juk],

for every l, k = 1, . . . 4. A direct calculation shows that there are no invariant almost

complex structures unless g = b1. For example, if g = a1, then J ◦ ρ = ρ ◦ J yields

J =









a11 0 0 1
2
a33 − 1

2
a11

0 a11 0 0

0 0 a33 0

0 0 a43 a11









with respect to the basis {ui} of m, and none of these linear maps satisfies J2
= −id.

On the other hand, when g = b1, we find that J ◦ ρ = ρ ◦ J if and only if

J =









a11 a12 a13 a14

0 a11 −a14 0

0 a32 a33 0

−a32 a42 a43 a33









,
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and, imposing J2
= −id, we obtain that in this case, invariant almost complex struc-

tures are of the form















−a33 a43 a13 a14

0 −a33 −a14 0

0
(1+a2

33)

a14
a33 0

− (1+a2
33)

a14
− (a13+a13a2

33−2a43a33a14)

a2
14

a43 a33















.

Finally, it is easy to check that such an almost complex structure is integrable if and

only if a13 = a43 = 0, and this completes the proof.

Results above imply that invariant pseudo-Hermitian (in particular, pseudo-

Kähler) structures may only exist on the non-reductive four-dimensional homoge-

neous space M = G/H corresponding to Lie algebra b1. We shall now classify such

structures on M.

Consider the complex structures Jt,s described in Theorem 6.2 and the pseudo-

Riemannian metrics g given by (2.6). Requiring the compatibility of Jt,s with g, that

is,

g( Jui , Juk) = g(ui , uk),

for every i, k, we get the following system of algebraic equations:

(6.1)











bt2s2 + d(1 + s2)2 − 2c(1 + s2)ts − bt2
= 0,

bt2s − 2c(1 + s2)t + s(1 + s2)d = 0,

bt2 + ds2 − 2cts − d = 0.

As t 6= 0, a straightforward calculation proves that the solutions of system (6.1) are

given by c = sd
t
, b =

(1+s2)d
t2 .

Next, let {ui} denote the basis dual to the basis {ui} of m. By Theorem 6.1, the

generic invariant symplectic form on m is given by

Ω = Ω12u1 ∧ u2 + Ω13(u1 ∧ u3 + u2 ∧ u4) + Ω34u3 ∧ u4.

In order to have a pseudo-Kähler structure, we must require the compatibility of Ω

with Jt,s, that is,

Ω( Jt,sul, Jt,suk) = Ω(ul, uk),

for every l, k = 1, . . . , 4. We get the equations











−2t(1 + s2)Ω13 + t2sΩ12 + s(1 + s2)Ω34 = 0,

t2(s2 − 1)Ω12 − 2ts(1 + s2)Ω13 + (1 + s2)2
Ω34 = 0,

(s2 − 1)Ω34 + t2
Ω12 − 2stΩ13 = 0,

which easily yield Ω12 =
(1+s2)

t2 Ω34, Ω13 =
s
t
Ω34. Note that

Ω(u3, Jt,su3) = Ω(u3,−tu2 + su3) = 0, Ω(u2, Jt,su3) = sΩ23 = 0,
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and for the associated pseudo-Kähler metric g we have

b = c = d = 0, a =
Ω34

t
.

Hence, taking into account Proposition 4.3, we proved the following theorem.

Theorem 6.3 Let M = G/H denote the four-dimensional, non-reductive, homoge-

neous, pseudo-Riemannian manifold corresponding to Lie algebra g = b1 and let g, Jt,s,

and Ω be the invariant pseudo-Riemannian metrics, complex structures, and symplec-

tic forms over M, respectively. Then (M, g, Jt,s) is a homogeneous pseudo-Hermitian

manifold if and only if

c =
sd

t
, b =

(1 + s2)d

t2
.

Hence, any invariant complex structure Jt,s on M determines a two-parameter family of

pseudo-Hermitian structures, depending on two arbitrary real constants a 6= 0 and d.

In particular, each complex structure Jt,s corresponds to a one-parameter family of

pseudo-Kähler structures (ga, Jt,s,Ωa), where ga is the (flat) pseudo-Riemannian metric

determined by conditions b = c = d = 0, and Ω is completely determined by coefficients

Ω12 =
a(1+s2)

t
,Ω34 = at,Ω13 = as.

Moreover, from Theorems 5.9 and 6.3 we get at once the following corollary.

Corollary 6.4 Four-dimensional non-reductive homogeneous pseudo-Riemannian

manifolds do not admit (non-trivial) pseudo-Hermitian homogeneous Ricci solitons.
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