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Ricci Solitons and Geometry of
Four-dimensional Non-reductive
Homogeneous Spaces

Giovanni Calvaruso and Anna Fino

Abstract. 'We study the geometry of non-reductive four-dimensional homogeneous spaces. In partic-
ular, after describing their Levi-Civita connection and curvature properties, we classify homogeneous
Ricci solitons on these spaces, proving the existence of shrinking, expanding, and steady examples. For
all the non-trivial examples we find, the Ricci operator is diagonalizable.

1 Introduction

A (connected) pseudo-Riemannian manifold (M, g) is homogeneous provided there
exists a group G of isometries acting transitively on it. Such manifold (M, g) can be
then identified with (G/H, g), where H is the isotropy group at a fixed point 0 of M
and g is an invariant pseudo-Riemannian metric.

A homogeneous pseudo-Riemannian manifold (M, g) is said to be reductive if
M = G/H and the Lie algebra g can be decomposed into a direct sum g = h & m,
where m is an Ad(H)-invariant subspace of g. It is well known that when H is
connected, this condition is equivalent to the algebraic condition [h,m] C m. In
the study of homogeneous pseudo-Riemannian manifolds, a fundamental difference
arises between the Riemannian case and the non Riemannian one. In fact, while any
homogeneous Riemannian manifold is reductive, there exist homogeneous pseudo-
Riemannian manifolds that do not admit any reductive decomposition.

Although some differences naturally occur for curvature properties (see for ex-
ample [6,7] for the three-dimensional case), the study of reductive homogeneous
pseudo-Riemannian manifolds parallels the Riemannian case in several ways, for in-
stance, with regard to homogeneous structures [17] and algebraic characterizations
of homogeneous geodesics [13]. On the other hand, to our knowledge, non-reductive
examples have not been fully investigated, although it is likely that the most interest-
ing differences between Riemannian and pseudo-Riemannian settings occur in such
cases.

Two- and three-dimensional homogeneous pseudo-Riemannian manifolds are re-
ductive [5,[14]]. In the basic paper [14]], the classification of four-dimensional, non-
reductive, homogeneous, pseudo-Riemannian manifolds was obtained, showing the
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existence of both Lorentzian and neutral signature examples. Apart from the classifi-
cation of Einstein metrics [[14], we do not know of any further results concerning the
geometric properties of these spaces. The aim of this paper is to provide a system-
atic study of the geometry of four-dimensional non-reductive homogeneous pseudo-
Riemannian manifolds, with particular regard to the existence of homogeneous Ricci

solitons.

A Ricci soliton is a pseudo-Riemannian manifold (M, ¢) admitting a smooth vector
field V' such that
(1.1) Lvg+o=2Xg,

where £y and g respectively denote the Lie derivative in the direction of V and the
Ricci tensor, and A is a real number. A Ricci soliton is said to be shrinking, steady, or
expanding according to whether A > 0, A = 0, or A < 0, respectively. Ricci solitons
play an important role in understanding the singularities of the Ricci flow, of which
they are the self-similar solutions. A survey and further references on the geometry
of Ricci solitons may be found in [10]].

First introduced and studied in the Riemannian case, Ricci solitons have been
investigated in pseudo-Riemannian settings, with special attention to the Lorentzian
case [3,[8)[11,25]. The Ricci soliton equation also appears to be related to String
Theory. Some physical aspects of the Ricci flow have been emphasized in [T}I5519].
Moreover, the interest of the Ricci soliton equation also relies on the fact that it is a
special case of Einstein field equations.

If M = G/H is a homogeneous space, a homogeneous Ricci soliton on M is a
G-invariant metric g for which equation (L) holds. In particular, by an invariant
Ricci soliton we mean a homogeneous one such that equation (L) is satisfied by an
invariant vector field.

It is a natural question to determine which homogeneous manifolds G/H admit a
G-invariant Ricci soliton [21]. Also with regard to this question, pseudo-Riemannian
geometry allows more interesting behaviours with respect to Riemannian settings.

For example, there exist three-dimensional, Riemannian, homogeneous Ricci soli-
tons (see, for example, [2,21]]), but there are no three-dimensional left-invariant
Riemannian metrics, together with a left-invariant vector field V, such that equa-
tion (LI)) holds for a three-dimensional Lie group [12] (see also [18,24]). On the
other hand, there exist several non-trivial interesting examples of such left-invariant
Lorentzian Ricci solitons in dimension three [3]].

In this paper, we obtain the full classification of homogeneous Ricci solitons on
four-dimensional non-reductive homogeneous pseudo-Riemannian manifolds M =
G/H, for solutions of (II) determined by vector fields V' € m. Non-trivial examples
appear both in the Lorentzian case and for metrics of neutral signature (2, 2).

We shall also investigate some curvature properties, which in the Riemannian case
are related to natural reductivity and symmetry, proving that in pseudo-Riemannian
settings these conditions can also be satisfied by non-reductive spaces. Finally, we
classify invariant symplectic, complex, and Kéhler structures on four-dimensional,
non-reductive, homogeneous, pseudo-Riemannian manifolds.

The paper is organized as follows. The classification of four-dimensional non-
reductive homogeneous pseudo-Riemannian manifolds is reported in Section 2, with
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some needed corrections and integrated by the explicit list of the corresponding in-
variant pseudo-Riemannian metrics. In Section 3 we describe their Levi-Civita con-
nection and curvature. The classification of Einstein-like examples and homoge-
neous Ricci solitons of these spaces will be given in Sections 4 and 5. Section 6 will be
devoted to invariant symplectic and complex structures on four-dimensional, non-
reductive, homogeneous, pseudo-Riemannian manifolds.

2 The Classification of four-dimensional Non-reductive
Homogeneous Spaces

Let M = G/H denote a homogeneous manifold, with H connected, g and ) the Lie
algebra of G and the isotropy subalgebra respectively, and m = g/5 the factor space,
which identifies with a subspace of g complementary to . The pair (g, ) uniquely
defines the isotropy representation

p: g — gl(m), p(x)(y) = [x,y]m forall xe€g,y em.

Consider a basis {hy, ..., h.,uy,...,u,} of g, where {h;} and {u;} are bases of b
and m, respectively. Then any bilinear form on m is determined by the matrix g of its
components with respect to the basis {#; } and is invariant if and only if ' p(x) o g+ g o
p(x) = 0 for all x € g. Invariant pseudo-Riemannian metrics on the homogeneous
space M = G/H are in a one-to-one correspondence with nondegenerate invariant
symmetric bilinear forms g on m [20]. Non-reductive homogeneous manifolds of
dimension 4 were classified in [[I4] in terms of the corresponding non-reductive Lie
algebras. We now report this classification and explicitly describe the corresponding
pseudo-Riemannian metrics.

2.1 Lorentzian Case

(Al) g = a is the decomposable 5-dimensional Lie algebra sl(2, R) & s(2), where
5(2) is the 2-dimensional solvable algebra. There exists a basis {ey, . .., es} of a; such
that the non-zero products are

ler,e2] = 2ey, [er,e3] = —2e5, [ez,e3] =1, [es,e5] = ey,
and the isotropy subalgebra is h = Span{h; = e; + e4}. So, we can take

m = Span{u; = e, uy = ey, Uz = es, Uy = €3 —e4}

and have the following isotropy representation for h;:

—

H, =

—_ o O O

S O O |
S O O

O O OO

=
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Consequently, with respect to {u;}, invariant metrics g are of the form

[STESY

(2.1) §=

S
[SIEY
Qo T O

o
(=R SWE oY
S o O

and are nondegenerate whenever a(a—4d) # 0. Both Lorentzian and signature (2, 2)
invariant metrics exist.

From the isotropy representation above it also easily follows that a vector field
V € mis invariant if and only if V' € Span{u; + 2us, us}.

(A2) g = a; is the one-parameter family of 5-dimensional Lie algebras As 3, of [23]].

There exists a basis {ej, . . ., es} of a; such that the non-zero products are
le1,e5] = (o + 1)ey, [e2, e4] = ey, [e2, e5] = ey,
[e3, 4] = e, les,es] = (a — 1)es, les, e5] = e4,

for any value of & € R, and the isotropy is h = Span{h; = e;}. Hence, we take
m = Span{u; = e, U, = ey, Us = e€3,Uy = €5}

and find the isotropy representation

0 -1 0 0
o 0 -1 0
H=15 0 o o

0 O 0 O
Therefore, the invariant metrics are of the form

0 0 —a O

0 a 0 O
(22) g - —a 0 b c 9

0 O d

nondegenerate whenever ad # 0. Both Lorentzian and signature (2,2) invariant
metrics occur.

Moreover, it is easily seen that a vector field V' € m is invariant if and only if
V € Span{u, uy}.

(A3) g = aj is one of the 5-dimensional Lie algebras As 37 or As 3¢ in [23]. There

exists a basis {ey, . . ., es} of az such that the non-zero products are
ler, e4] = 2e, [e, e3] = ey, [e2, e4] = ey,
[62765] = —¢&es, [63764] = €3, [63765] = €,
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with e = 1 for As37 and € = —1 for As 36, and the isotropy is h = Span{h; = es}.
Thus, we take
m = Span{u; = ej,uy = ey, U3 = ey, Uy = s}

and obtain the isotropy representation

—

H =

S O OO
S O O ‘

o O O O
S O = O

from which we deduce that invariant metrics are given by

(2.3) §=

QA O oo
S O O
a SO o
QUL o O

and are nondegenerate whenever ab # 0. Both Lorentzian and signature (2, 2) in-
variant metrics exist.
A vector field V € m is invariant if and only if V' € Span{u;, us}.

(A4) g = a4 is the 6-dimensional Schroedinger Lie algebra sI(2,IR) x n(3), where
1(3) is the 3-dimensional Heisenberg algebra. There exists a basis {ej, . .., e} of a4,
where the non-zero products are

[e1, e2] = 26, [e1, e3] = —2es, lez,e3] = ey, ler, es] = ey,

le1,es] = —es,  [e2,e5] = ey, les,ea] =es,  [es, e5] = es,
and the isotropy is h = Span{h; = e; + €5, h, = es}. Therefore, we take
m = Span{u; = e, uy = ey, Us = €3 — €, Uy = €4}
and have the following isotropy representation for hy, h,:
1

H, = ) H, =

o = O O
o O O O
oS O O O
S O O O

oS O O
S O O O
OO O

0
0
0 -1

We then find that the invariant metrics are of the form

o

0 0
(2.4) §=

S O O
o x <

a
0
0

N O O

nondegenerate whenever a # 0. The eigenvalues of g are

a, %a, %(b+\/b2+4a2), %(b—\/bz+4az)7
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and so, invariant metrics are necessarily Lorentzian.
Moreover, a vector field V' € m is invariant if and only if V' € Span{us}.

(A5) g = as is the 7-dimensional Lie algebra sl(2, R) x Aj,, with A} 4 as in [23]. It

admits a basis {ej, . . ., e;}, such that the non-zero products are
ler,e2] =2e;,  [er,e3] = —2e3,  [e,e5] = —es,  [er,e6] = e,
[e2, €3] = en, [e2, e5] = €5, [e3, e5] = es, les, 7] = 2e4
e, e6] = ea, [es, e7] = es, les, 7] = e5.

The isotropy is ) = Span{h; = e + e;, hy = e3 — ey, h3 = es}. So, we take
m = Span{u; =e; —e;,uy = ey, U3 = €3 +eq,Us = €5}

and find the isotropy representation

00 0 O 0 —3 00 0 0 0 0
0 2 0 O 0O 0 0 0 0 0 0 O
Hl_oofzo’HZ_zooo’H3_000§
0 0 0 O 0O 0 0 0 0 -1 0 O
Hence, invariant metrics are of the form
a 0 0 O
0 0 2 0
_ 1
(2.5) g 0 % 0 0
000 ¢

and are nondegenerate whenever a # 0. The eigenvalues of g are

and so g is Lorentzian. Besides V' = 0, no vector fields V' € mt are invariant.

2.2 Signature (2,2) Case

Besides cases A1, A2, A3, which also admit invariant metrics of neutral signature
(2, 2), the remaining possibilities are the following.

(B1) g = b, is the 5-dimensional Lie algebra sl(2,R) x IR?, admitting a basis
g g

{e1,...,es}, where the non-zero products are
[e1, 2] = 2es, [e1, €3] = —2es, le2, €3] = ey, le1, ea] = eq,
ler,es] = —es,  [ez,65] = ey, les, e4] = €5,

and the isotropy is h = Span{h; = e;}. Thus, taking

m = Span{u; = ej,uy = ey, U3 = eq, Uy = €5},
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we have the isotropy representation

0 —1 0 O
0O 0 0 O
H=10 0 0o ol

0 0 1 0
and the invariant metrics are of the form

0 0 a O

0 b ¢ a
(2.6) 8= a ¢ d ol

0 a 0 O

nondegenerate whenever a # 0. The eigenvalues of g are the roots of
(b= +d - —2a)x +a*(b+d)x+at =0,

and so g has signature (2, 2), as —(b + d) and a?(b + d) have opposite sign.
Starting from the above isotropy representation, we easily conclude that a vector
field V € mis invariant if and only if V' € Span{u;, u4}.

(B2) g = b, is the 6-dimensional Schroedinger Lie algebra sI(2, R) x 11(3), but with
isotropy b = Span{h, = e; — e, h, = es}. Then taking

m = Span{u; = e, uy = ey, U3 =3+ €6, Us = €4},

we have the isotropy representation

0 —1 0 O o 0 0 o0
0O 0 0 O o 0 0 o0
B=11 0 00| ™= |0 0o o -1
0O 0 0 O 0o —-1 0 O
and the invariant metrics are of the form

a 0 0 O

0 b a O

000 —¢

nondegenerate whenever a # 0. As the eigenvalues of G are
1 1 1
a, —5a, 5(b+vb2+4a2), E(b—\/b2+4a2),

the metric has signature (2, 2).
A vector field V € mis invariant if and only if V' € Span{us}.
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(B3) g = Db; is the 6-dimensional Lie algebra (s[(2, R) x R?) x R. It admits a basis
{u1,...,us,hy = us,hy = ug} such that h = Span{h;, hy}, m = Span{u;,...,us}
and the non-zero products are

(hy, u2] = uy, (h,us] = —ug,  [hy, 2] = —2hy,
(o, u3] = —uy,  [ha, u4] = uy, [uy, uz] = —uy,
[ur, u3] = uy, (uz, u3] = —2u3, [uy, ug] = —uy.
Thus, the isotropy representation is given by
01 0 O 0 0 0 1
00 0 O 0 0 —-1 0
H=10 90 0 ol =100 0 o
0 0 -1 0 0 0 0 O

Consequently, the invariant metrics are of the form

(28) g=

o OO0
QO oo
S Tt O
S o O

nondegenerate whenever a # 0. The eigenvalues of g are
1 1
a, —a, E(b+vb2+4a2), E(bfvb2+4a2),

and so g has signature (2, 2).
Moreover, a vector field V' € m is invariant if and only if V' € Span{u; }.

Remark 2.1 Lie algebra b; corresponds to [20, case 2.5!.2], as explained in [14}
p- 302]). Here we reported this Lie algebra as it appears in [20], since the case listed
in [14, Theorem 2.4] does not correspond to it. Some corrections were also needed
and have been made for the Lie brackets of Lie algebra b;.

3 Levi-Civita Connection and Curvature

In order to compute the Levi-Civita connection and the curvature of a non-reductive
homogeneous space, consider again a basis {hy,..., hq,u1,...,u,} of g, with {e;}
and {u;} bases of h and m respectively. Following [20], an invariant nondegener-
ate symmetric bilinear form g on m uniquely defines its invariant linear Levi-Civita
connection, described in terms of the corresponding homomorphism of h-modules
A: g — gl(m) such that A(x)(ym) = [x, y]m forallx € h, y € g. Explicitly, one has

1
A(x)(ym) = 5[96, YIn +v(x,y), foralx,yc g,
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where v: g X g — ntis the h-invariant symmetric mapping uniquely determined by

Zg(V(x, )’)72111) = g(xm; [%}’]m) +g(}’m> [Z7x]m) , forallx,y,zeg.

The curvature tensor is then determined by the mapping R: m x m — gl(m) such
that R(x, y) = [A(x), A(y)] — A([x, y]) forall x, y € m.

Finally, the Ricci tensor g of g, described in terms of its components with respect
to {u;}, is given by

4
Q(”ivuj):ZRri(urauj), 1,]:1,,4

r=1

The Ricci operator Q is then defined by condition g(Q(X),Y) = o(X,Y). As g is sym-
metric, Q is self-adjoint. Contrary to the Riemannian case, this does not necessarily
imply that Q is diagonalizable in pseudo-Riemannian settings. Indeed, Q may take
any of four different canonical forms [22]] .

(A1) We refer to the basis E = {hy, uy, ..., us} of the Lie algebra a; described in the
previous section. Let g be an arbitrary invariant pseudo-Riemannian metric on nt,
determined by real coefficients a, b, ¢, d, with a(a — 4d) # 0. Putting A[i] := A(w;)
for all indicesi = 1, ...,4, we find

0 _ 8bd < 1
0 0 0 0 ala—4d) ’f
01 0 o0 -1 0 3 0
AMU=19 o o o AH=lo 2 0 of
b e _ b 4b b
(31) 0 a a 1 T a u(afc4d) T 2a 0
o < 0 0 0 0 0 0
0 L9 o0 0 0 0O
= 2 =
e B Ol B I
_c _b o _1 000 0
a 2a 2
Consequently, the curvature tensor is completely determined by
b(a+20d)
uzla74d) _§ 1 0 —i 0 0
Ry = ! gb —2 0 Rz = 0 0 0 0
o 2 0 o[ 00 0 0]
4b 12b b c 0 —< 9
a _a(a—Zd) a 0 a 2a
0 __b(at+4d < 1
2a(a—4d) 2a 2 0 0 0 0
1 1
| 2 —a -3 0 R |0 -1 00
23 0 _ 2b O 0 ) 24 0 0 O 0 I
a—4d b c
b be(Ga—dd) & c o - -1
a a?(a—4d) a? a
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Therefore, with respect to {u;}, the Ricci tensor p and the Ricci operator Q are given

by
(3.2)
-1 0 10 —a~! o 0 o
S e N KRR
3 e 1 0 24 o o0 -3
0 -2 0 0 0 0 0 —2a!

and that Q is diagonalizable if and only if either b = 0 or a + 4d = 0.

(A2) Let E = {h;,uy,...,us} be the basis of the Lie algebra a, used in the previous
section and let ¢ be an arbitrary invariant pseudo-Riemannian metric on m, deter-
mined by real coefficients a, b, ¢, d, with ad # 0. A direct calculation gives

(3.3)
005 a 0 —2% 00
00 0 O 0 0 0 a
Afl] = 00 o0 ol Al2] = o o0 ool
005 0 0 —% 00
A3l = Al4] =
(3] 00 0 o ;. Al4] o 0 1 0
(a—1)b e
% 0 — ad —% 0 0 ndc 0
We then calculate the curvature matrices R;;, and we find
— e 00 0 0
R12: 0 0 d 0 ) R13_ ola )
00 0 0 0 0 -2 o
o 0 0 0 00 0 0
Y ((v—
00 o o | 0 £ K
00 -5 0 0 0 0 0
0 0 0 0 0 0 _2(aa—dl)hc _2((1;1);,
2
0 0 —<¢ —¢o? 0 0 0 0
Ru=1g o o o | Ru= 0 0 o —o?
<a (1—20)a (a?—2a+2)b 2
0 = 0 0 ;‘a“ 0 %

https://doi.org/10.4153/CJM-2011-091-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2011-091-1

788 G. Calvaruso and A. Fino

Then the Ricci tensor ¢ and the Ricci operator Q with respect to {u;} are described
by

0 0 docs 0
0 e 0 0
(34) 0= 3ata 0 _b(3a2—3a+2) _30‘72[ 5
d d d
3a? 2
0 0 o< 3
— o 0 0
0 _x 0
Q= _ d ;
3a?
0 0 0o X

The Ricci eigenvalues are all equal to — % and Q is diagonalizable if and only if either
b=0ora=2/3.

(A3) All the remaining cases will be treated in the same way. For this reason, unless
it is particularly relevant (see Proposition below), we shall omit to report the
curvature matrices R;j. Let E = {hj,uy,...,us} be the basis of the Lie algebra a;
we introduced in the previous section and let g be an invariant pseudo-Riemannian
metric on m, determined by real coefficients a, b, c, d, satisfying ab # 0. We find

00 1 ¢ 0 £ 00
000 O 0 0 1 0
AU=1o 0 0 2> A=y 2 o of:
0 00 O 0 0 0 0
(3.5) ,
—bd 2 bd
0 0o b oo b oo
Bl=1 g oo —c | A=1% ¢ % Ol
0 0 0 1 0 0 1 0
and for the Ricci tensor and the Ricci operator
3
00 ¥
0o - 0
3.6 - ’
(3.6) 0 0 0 -3 -
3 3 2d
-3 0 -7 -3
—3b7! 0 0 0
0 —3b7! 0 0
Q= 0 0 -3b7! 0
£ 0 0 -3b7!

The Ricci eigenvalues are all equal to —3b~!, and Q is diagonalizable if and only if
d=0.
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(A4) Consider the basis E = {hy, hy, uy, ..., us} of the Lie algebra a4 as in the previ-
ous section and an invariant pseudo-Riemannian metric g on m, determined by real
coefficients a, b with a # 0. We get

00 0 0 0o 2 10
0 1 0o 0 -1 0 0 O
A= 1o o ool ARI= T g g o]
0 O 0 0 0 0 0 O
(3.7)
0000 0 00 1
0 0 0 O 0O 0 0 O
A3l = 00 0 of” Al4] = 0o 0 0 o0f°
0 0 0 O -1 0 0 O
Thus, the Ricci curvature is described as follows:
—2 0 0 0
0 8 _3 0
— a
(3.8) 0 o -3 o ol
0 0 0 -1
—2q7! 0 0 0
0 Y - 0
Q= “
0 0 —3a7! 0
0 0 0 —2qa7!
The Ricci eigenvalues are
2 2 3 3
a’ a’ a’ a’

and Q is diagonalizable if and only if b = 0.

(A5) Let E = {hy, hy, hs3,u, . .., us} be the basis of the Lie algebra as that we intro-
duced in the previous section and let ¢ be an invariant pseudo-Riemannian metric
on m, determined by a real coefficient a # 0. For the Levi-Civita connection and
curvature, we find

0000 0 0 1 0
0000 -2 0 0 0
AMU=1o 0 0 of AMI=10 0 0 ol
0000 0 0 0 0
(3.9)
0000 0 0 0 ;
0000 0 000
ABI=10 0 0 of =10 00 o
0000 -2 0 0 0
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and
(3.10)

8 0 0 0
o o =2 o0
=10 —2 0o o

0 0 0 -1

(B1) We now consider the cases with metrics having signature (2,2). Let E
., uyq} be the basis of the Lie algebra b; we used in the previous section

{I’l],uh..

G. Calvaruso and A. Fino

—8a~! 0 0 0

0 —8a! 0 0

Q= 0 0 —8a! 0
0 0 0 —8a7!

and let g be an invariant pseudo-Riemannian metric on m, determined by real coef-
ficients a, b, ¢, d, with a # 0. Then we obtain

(3.11)
c & —2bd _ _ 4
-1 =< _d 0 2a a? a? 2a
2
a a 1 c i 0
A1] 0 1 0 0 A[2] = - Ta T 2a
0 0 1 0 |’ B 0 2b 3¢ 1 ’
b 3¢ a 2a
0 - - -1 b b b3E
T a Bz 2a?
d od &
e Te a0 0 -4 0 0
0 d 0 0 o
T 2a 0 0 0 0
A[3] = ‘ , Al4] =
0 3¢ d 0 0 0 0 0
2a a d
0 0 = 0
3¢ bd=3&  _d d 2a
2a 2a? a? 2a
Then the curvature is described by
3¢ 22bd—15¢ 3cd d 5cd 4
2a 4a? 2a? a 4a? a?
3¢ d
R o 0 2a 0 R . 0 2a 0
EE ) _3b _3c o |”"" o 3¢ d ’
a 2a T 2a T a
3b 3be 5(3*—2bd) 3¢ 3¢ 3F—bd 3d _ d
a 2a? 4a? 2a 2a 2a? 4a? 2a
od d(3£2+5bd) 0 &
T i e 4a? 0 4 0 0
d od & 2a
Roe — 2% el iz 0 R — 0 0 0 0
23 0 9 —10bd o 4| 0 0 o0 o0}
4a? 4a? 2a 0 0 d 0
8bd—9¢? 9L‘(bd762) Sd(bdfcz) od " 2a
4a? 4a® 2a’ 4a?
d 3cd &
w i w0 0L 0 0
d a
Ros — 0 2 0 Res — 0 0 0 0
2= _x  _d M lo o0 0 0
2a 2a e
3¢ 3F-2d _ d 0 0 —3= 0
2a 2a? a
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and so the Ricci curvature is described as follows:

0 0 A E A 0

3(6bd—53)  3cd  3d e 15(bd—c)
(3.12) o= 222 207 2 Q=% = ? 2a°
: 3d 3cd o |7 o o X 0
2a 2a 2a 0 0 0 3d
0 2 0 0 2

2a

3d

Hence, the Ricci eigenvalues are all equal to 3o

bd—c*=0.

(B2) For the case of the Lie algebra b,, given an invariant pseudo-Riemannian metric
g on m (determined by real coefficients a # 0, b), we find, with respect to the basis

and Q is diagonalizable if and only if

E={hy,hy,uy,...,us} introduced in the previous section,
00 0 0 0o % 10
0 1 0 0 -1 0 0 0
All] = A2] =
o o -t -1 0" 2] -2 0 0 0]’
0 0 0 0 0 0 0 0
(3.13)
0000 0 00 —3
00 00 0 00 0
ABI=10 0 0 of" AI=10 00 o
00 0 0 -1 0 0 0
and for the Ricci curvature
(3.14)
-2 0 0 0 —2a7! 0 0 0
0o -% -390 0 32! -2 0
0= , Q= .
0 -3 0 0 0 0 —3a 0
0 0 0 1 0 0 0 —2a7!

The Ricci eigenvalues are

) )

a a

) )

2 2 3 3
a a

and Q is diagonalizable if and only if b = 0.

(B3) For the Lie algebra b3, let E = {hy, hy, uy, ..., us} be the basis as in the previ-
ous section and g an invariant pseudo-Riemannian metric on m, determined by real
coefficients a # 0, b. Then we get

0000 1o & o

0000 01 0 0
AU=1o 0 0 of ARI=1o 0 -1 o |

0000 00 0 -1

(3.15)

o L 0o o 000 0

00 0 0 0000
ABI=19 1 o of AMI=10 0 0 of

-1 0 -2 o0 0000

2
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and the curvature is described by

3b
0% o o
0 0 0 o
Ry =Rz =Ry =Ry =Ry =0, Ry=
0 0 0 o
00 -% o
The Ricci tensor and operator are then given by
0 0 0 O 0 0 0 O
_{ooo0o0] s _foooo0
1o 0 0 0] 710 o0 0 0
0 0 0 O 0 0 0 O

4 Einstein-like Metrics

Einstein-like metrics were introduced and first studied in [16] by A. Gray. A pseudo-
Riemannian manifold (M, g):

* belongs to class A if and only if its Ricci tensor o is cyclic-parallel, that is,
(4.1) (Vxo)(Y,2) + (Vyo)(Z, X) + (Vz0o)(X,Y) =0,

for all vector fields X, Y, Z tangent to M. Condition (4.1 is equivalent to requiring
that g is a Killing tensor, that is,

(4.2) (Vxo)(X,X) =0.
¢ belongs to class B if and only if its Ricci tensor is a Codazzi tensor, that is,
(4.3) (Vxo)(Y,Z) = (Vyo)(X, Z).

Any manifold belonging to either class A or B has constant scalar curvature. More-
over, denoting respectively by P and € the class of Ricci-parallel manifolds and the
one of Einstein spaces, one has AN B = P DO &. However, P # . In partic-
ular, in pseudo-Riemannian settings, there exist some manifolds with parallel Ricci
tensor but neither Einstein nor locally decomposable. Some interesting Lorentzian
examples can be found in [6].

In Riemannian settings, Einstein-like metrics of low-dimensional manifolds are
related to natural reductivity and symmetry [4]. Consequently, to find some non-
reductive homogeneous pseudo-Riemannian manifolds with Einstein-like metrics
would point out a deep difference between these geometries. We will show that this
is the case, classifying Finstein-like metrics on four-dimensional, non-reductive, ho-
mogeneous, pseudo-Riemannian manifolds.
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4.1 Einstein Examples

In the previous sections, we explicitly described the metric tensor g and the Ricci
tensor p of each four-dimensional, non-reductive, homogeneous, pseudo-Rieman-
nian manifold, in terms of a suitable global basis of vector fields. Checking when
these homogeneous spaces satisfy the Einstein equation ¢ — Ag = 0, we obtain the
following classification result.

Theorem 4.1 Let g be an invariant pseudo-Riemannian metric on a four-dimensional
non-reductive homogeneous pseudo-Riemannian manifold M = G/H. Then g is Ein-
stein and not of constant curvature if and only if one of the following cases occurs:

(1) g = ay, gisgiven by and either o = % orb =0 # «. In both cases, A = 3—32.

(ii) g = a3, g is given by 23) and d = 0. In this case, A = —% and so g is never
Ricci-flat.

(i) g = as and g is given by @3). In this case, A = —2 and so g is never Ricci-flat.

(iv) g = by, gis given by @.6) and ¢ — bd = 0 but (b, c,d) # (0,0,0). In this case,
A= % and so, g is Ricci-flat if and only if (c =)d = 0.

(v) g = b3 and g is given by 2.8) with b # 0. In this case, \ = 0, that is, g is
Ricci-flat.

Remark 4.2 (a) The classification of Einstein examples given in [14, Theorem 2.6]
for the simply connected case (which excludes examples corresponding to Lie algebra
as) only reported cases (ii), with @ = %, and (v). Theorem[4.T]shows that other cases
occur.

(b) In the statement of Theorem[4.1] following [14, Theorem 2.6], we excluded the
cases of constant sectional curvature. To be more precise, starting from the explicit
description of the curvature of these spaces we made in the previous section, standard
calculations lead to the following result.

Proposition 4.3 Let g be an invariant pseudo-Riemannian metric on a four-
dimensional, non-reductive, homogeneous, pseudo-Riemannian manifold M = G/H.
Then the following conditions are equivalent:
(i) (WM,g) isflat;
(i1) (M, g) has constant sectional curvature;
(iii) (M, g) is conformally flat;
(iv) one of the following cases occurs:

(a) g = ay and g is given by @2) witha = b = 0;

(b) g =1, and gisgiven by 2.8) withb=c=d = 0;

(¢) g =b; and g is given by 2.8) with b = 0.
In particular, conformally flat, four-dimensional, non-reductive, homogeneous, pseudo-
Riemannian manifolds are necessarily flat.

4.2 Ricci-parallel, Class A and B Examples

We now classify Einstein-like metrics of four-dimensional, non-reductive, homoge-
neous, pseudo-Riemannian manifolds, starting from the classification of the corre-
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sponding Lie algebras a;,b; and the description of the Levi-Civita connection and
Ricci tensor of their invariant metrics.

Because of their tensorial character, conditions Vo = 0 (characterizing Ricci-
parallel examples), (42) and ([@.3) can be checked with respect to a chosen basis
of vector fields. With respect to the global bases {u;} described in Section 2, in
Section 3 we described the Levi-Civita connection and the Ricci tensor of four-
dimensional non-reductive homogeneous pseudo-Riemannian manifolds, calculat-
ing A[i] := A(y;) and g;; := o(u;, u;). Thus, we can now calculate the components
of the covariant derivative of the Ricci tensor given by

4

Viojk = Z(*A[k]npr}' — Alklyjon) -

r=1

(A1) For a four-dimensional, non-reductive, homogeneous, pseudo-Riemannian
manifold corresponding to Lie algebra a;, from (B.), (B.2) we easily find that the
only possibly non-vanishing components of Vo with respect to {; } are

b d b d
Vion = fi(ﬁf_*fd)), Vion = Za((‘fifd))7 Viois = *ﬁv Viow = —1,

b
(44) Va0 =— a((zﬂffj)h Vaoss = £ V2034

4b(a+4d
Vi = —ﬁa Vi = %

c

1 —
29 Vion =4

a’

and the ones obtained by using the symmetries of Vg. Then (4.4) easily yields that
four-dimensional, non-reductive, homogeneous, pseudo-Riemannian manifolds corre-
sponding to Lie algebra a; do not belong to either class A or B. In particular, they are
not Ricci-parallel.

(A2) Equations (3.3)) and (3.4)) yield that in this case, Vo is completely determined
by the possibily non-vanishing components

ba Ba—2) b(3a—2)

V303 = — J , V4033 = =2 J

Thus, also taking into account Theorem[4.TJand Proposition[4.3] we have the follow-
ing theorem.

Theorem 4.4 A four-dimensional, non-reductive, homogeneous, pseudo-Riemannian
manifold corresponding to Lie algebra a,

(1)  is Ricci-parallel if and only if it is Einstein;

(ii)  belongs to class A but is not Ricci-parallel if and only if « = —1 and b # 0;

(iii) belongs to class B but is not Ricci-parallel if and only if « = 2 and b # 0.

(A3) We deduce from equations (3.5]) and (B.6) that Vg is now determined by

2d

V3044 = ——

d
b’ V4034 = _E'

Therefore, we have the following theorem.
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Theorem 4.5 For a four-dimensional non-reductive homogeneous pseudo-Rieman-
nian manifold corresponding to Lie algebra as, the following conditions are equivalent:

(i)  the manifold belongs to class A;

(ii) the manifold belongs to class B;

(iii) the manifold is Ricci-parallel;

(iv) the manifold is Einstein;

(v) the pseudo-Riemannian metric ¢ described in [2.3)) satisfies d = 0.

(A4) By (3.7) and (3.8), we have that tensor Vg is determined by

106 7b
Vion = P Va0 = - Vy013 = — 1.

Hence, we easily deduce that four-dimensional non-reductive homogeneous pseudo-
Riemannian manifolds corresponding to case a4 never belong to either class A or B. In
particular, they are not Ricci-parallel.

(A5) By Theorem[4.T] non-reductive, homogeneous, pseudo-Riemannian, manifolds
corresponding to Lie algebra a5 are Einstein. In particular, they are Ricci-parallel.
The same conclusion can be obtained by direct calculation using equations (3.9) and

G.I10).

(B1) For non-reductive, homogeneous, pseudo-Riemannian, manifolds correspond-
ing to Lie algebra by, by (B11) and (B.12) we get that tensor Vg is determined by

15(2—bd 15(bd—c* 15¢(bd—¢*

Vion = %7 Vaon = %, Vaon = %,
15d(bd—c* 15d(bd—c*

Va0 = %7 Vi = %

Taking into account Theorem 1] and Proposition [£3] we then easily prove the fol-
lowing.

Theorem 4.6 For a four-dimensional, non-reductive, homogeneous, pseudo-Rieman-
nian manifold corresponding to Lie algebra by, the following conditions are equivalent:

(i)  the manifold belongs to class A;

(ii) the manifold belongs to class B;

(iii) the manifold is Ricci-parallel;

(iv) the manifold is Einstein;

(v) the pseudo-Riemannian metric g described in satisfies ¢ — bd = 0.

(B2) Equations (3.13) and (B.14) yield that Vg is determined by

105 7b
V1922=7, V2Q12=—7, Va013 = —1,

from which we easily see that four-dimensional non-reductive homogeneous pseudo-
Riemannian manifolds corresponding to Lie algebra b, do not belong to either class A or
B. In particular, they are not Ricci-parallel.

(B3) Theorem [41] and Proposition 3] yield that non-reductive homogeneous
pseudo-Riemannian manifolds corresponding to Lie algebra b; are Ricci-flat. In par-
ticular, they are Ricci-parallel.
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5 Invariant Killing Vector Fields and Ricci Solitons

We shall now look for homogeneous solutions of equation (L)) for four-dimensional
non-reductive, homogeneous, pseudo-Riemannian manifolds corresponding to Lie
algebras a;,b;.

As we already described the Ricci tensor of these manifolds, it suffices to deter-
mine, with respect to the same bases, the Lie derivative £y g of the metric tensor g
in the direction of an arbitrary vector field V' € m, pointing out the invariant ex-
amples. This also gives us the opportunity to investigate the existence of invariant
Killing vector fields, which is interesting in itself under several points of view [22].

In the different cases corresponding to Lie algebras a;, b;, we shall always refer to
the global bases {u;} introduced in Section 2. With respect to {u; }, the Lie derivative
Ly g of the metric tensor with respect to a vector field V = V;u; € m is determined
by the matrix

4 4
ajj = Z(Vk<Z(A[i]rkgrj + A[j]rkgri) ) ) .

k=1 r=1

(A1) Let (M = G/H,g) be a four-dimensional, non-reductive, homogeneous,
pseudo-Riemannian manifold corresponding to Lie algebra a; and V = Vu; € m.
Then from (2.1) and (B.I) we obtain

0 ZbVZ 2CV2 aVz
c _ 26V, —4bV; —2cVy—aVy —aVi+ %QV3
vE= 2c¢V, —cV; —aVy 0 %aVz

aV, —aVi;+ %aV3 Lav, 0

2
Thus, we can easily prove the following theorem.

Theorem 5.1 Consider a four-dimensional, non-reductive, homogeneous, pseudo-
Riemannian manifold corresponding to Lie algebra a,. A vector field V € m is Killing if
and only if b = 0 and V' = k(uy + 2uy — 2% u3), for a real constant k. Except for the
trivial case V.= 0, V is not invariant.

(A2) Equations (2.2)) and (B.3) imply that in this case,

0 0 —20aVy ala —1)V;
0 2caVy 0 —aaV,
Lo = B B a(la+ 1)V,
v8 20eaVy 0 2b(a — 1)V, —(a — 1)(bV; — cVy)
a(a + 1)V1

a(lae — 1)V3 —aaV, —2c(ae — 1)V3

—(a = 1)(BV3 — cVy)

Then, solving equation £y g = 0, we obtain the following theorem.
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Theorem 5.2 Consider a four-dimensional, non-reductive, homogeneous, pseudo-

Riemannian manifold corresponding to Lie algebra a,. A vector field V. € m is Killing if
and only if « = 0 and either b = 0 and

V:k(£u1+u4) + oy,
a

orb # 0andV = pu,, where k, i are real constants. In particular, if b = 0, then V
is an invariant Killing vector field if and only if 1 = 0, while when b # 0, there are not
invariant Killing vector fields (besides V = 0).

(A3) From equations (2.3)), (B.5) we obtain

0 0 0 2aV,
. 0 2aV3 —ClVZ 0
L8=1 0 _av, o0  —2av,
2aVs 0 —2aV, 0

As a # 0 so that g is nondegenerate, we have at once the following theorem.

Theorem 5.3 Consider a four-dimensional, non-reductive, homogeneous, pseudo-
Riemannian manifold corresponding to Lie algebra as. A vector field V. € m is Killing if
and only if V. = k uy, where k is a real constant. Unless k = 0, V' is not invariant.

(A4) Equations (2.4), (3.7) yield

0 2 sz Cle % ﬂV4
2 sz —4 bVl — aV1 0
aVz — aV1 0 0
avy 0 0 —aV,

ng:

As a # 0 so that g is nondegenerate, we obtain the following theorem.

Theorem 5.4 Consider a four-dimensional, non-reductive, homogeneous, pseudo-
Riemannian manifold corresponding to Lie algebra ay. A vector field V. € m is Killing
if and only if V. = kus, where k is a real constant. All these Killing vector fields are
invariant.

(A5) We start from equations (2.3]) and (3.9), and we find

0 %aV3 0 iaVzl
1 1
_ 2 ClV3 0 ) aV1 0
ve 0 —lav, 0 o |
iaV4 0 0 — %aVl

and so we have the following theorem.
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Theorem 5.5 Consider a four-dimensional, non-reductive, homogeneous, pseudo-
Riemannian manifold corresponding to Lie algebra as. Then V. € m is Killing if and
only if V.= ku,, where k is a real constant. Unless k = 0, V is not invariant.

(B1) Now consider four-dimensional, non-reductive, homogeneous, pseudo-Rie-
mannian manifolds corresponding to Lie algebra b;. Then equations (2.6) and (3.11)

yield
2&V3 2bV2 + CV3 *avl + 2CV2 + dV3 QVZ
C o ZbVQ + CV3 —4bV1 + 2CV4 —3CV1 + dV4 —aV1 — CV2
VET | —aVy + 2V, + dVs =3¢V +dV, —24v, —dv,
aVz —aVl — CV2 —de 0

and solving equation £y g = 0, we prove the following theorem.

Theorem 5.6 Consider a four-dimensional, non-reductive, homogeneous, pseudo-
Riemannian manifold corresponding to Lie algebra b,. A vector field V. € m is Killing
ifand only if c = d = 0 and V. = kuy, for any real constant k. All these Killing vector
fields are invariant.

(B2) From equations (27)) and (B.13)) we get

0 26V,  aV, —iaV,
o ZbVZ —4bV1 —[lVl 0
ng o aVz —aV1 0 0
— %aV4 0 0 aV1

As a # 0, we obtain the following theorem.

Theorem 5.7 Consider a four-dimensional, non-reductive, homogeneous, pseudo-
Riemannian manifold corresponding to Lie algebra b,. A vector field V. € m is Killing if
and only if V.= k us, for any real constant k. All these Killing vector fields are invariant.

(B3) Equations (Z.8]) and (3.19) yield

0 —aV3 (ZVZ 0
—aV3 —2&V4 —2bV3 aVz
aVz —2bV3 4bV2 0
0 aVv, 0 0

ng =

Since a # 0, we get at once the following theorem.

Theorem 5.8 Consider a four-dimensional, non-reductive, homogeneous, pseudo-
Riemannian manifold corresponding to Lie algebra bs. A vector field V. € m is Killing if
and only if V.= ku, for any real constant k. All these Killing vector fields are invariant.
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We can now classify homogeneous Ricci solitons among four-dimensional, non-
reductive, pseudo-Riemannian, homogeneous manifolds. We solve equation (1))
using the descriptions of invariant pseudo-Riemannian metrics g, their Ricci tensor
0, and the Lie derivative £y g obtained above. Then we check whether these solu-
tions correspond to invariant vector fields. Ruling out the trivial solutions of (LII),
corresponding to the case of Einstein manifolds (as classified in Theorem [£1] and
Proposition [£.3) with a vector field V' € m which is either Killing or conformally
Killing, we obtain the following theorem.

Theorem 5.9 Let (M = G/H,g) be a four-dimensional non-reductive homogeneous
pseudo-Riemannian manifold.

(i) If M corresponds to one of Lie algebras a;, as, ay, as, by, b3, then (M, g) is not a
non-trivial homogeneous Ricci soliton (for which equation (L)) is satisfied by a
vector field V € m).

(ii) If M corresponds to the Lie algebra a, (with o # % and b # 0, otherwise is
Einstein), then (M, g) is a non-trivial homogeneous Ricci soliton if and only if one
of the following cases occurs:

(a) a # 0,x1 and d # 0. In this case, (L)) holds for

3a0 — 2 c(a —3) B
2d (_a(a+1)“1+““) and A= ——.

The Ricci soliton is either expanding, steady, or shrinking, depending on the
sign of aw and d, and V' is invariant.
(b) @« = —1landd # 0 = c. In this case, (L) holds for
5 2
Vzkul—ﬁuz; and /\:3,
for any k € R. The Ricci soliton is either expanding or shrinking, depending
on the sign of d, and all vector fields V are invariant.
(¢) a=1andd # 0. In this case, (L) holds for

2
V= a

1 /c 2
—g<;u1+u4)+ku3 and )\——a,

for any k € R. The Ricci soliton is either expanding or shrinking, depending
on the sign of d, and V is invariant if and only if k = 0.
(d) @ = 0andd +# 0. In this case, (L) holds for

3
= —f(—cul +u4) +kuy, and MN=0,
a
for any k € R. The Ricci soliton is steady, and V is invariant if and only if

k=o.

(iii) If M corresponds to the Lie algebra by, then (M, g) is a non-trivial homogeneous
Ricci soliton if and only if d = 0 # c. In this case, (L)) holds for

15¢

V:@m and M\ =0.

Thus, the Ricci soliton is steady and V is invariant.
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Remark 5.10 In all the non-trivial examples of three-dimensional, left-invariant,
homogeneous Lorentzian Ricci solitons [3]], the Ricci operator is not diagonalizable
and has three equal eigenvalues. This could suggest that the existence of more in-
variant Ricci solitons in pseudo-Riemannian settings than in the Riemannian case is
related to this special form of the Ricci operator.

As one can see from Section 3, also with regard to four-dimensional, non-
reductive, invariant, pseudo-Riemannian Ricci solitons, in all examples we classified
in Theorem[5.9](cases a,, b ), the Ricci operator is again not diagonalizable with four
equal eigenvalues. Four-dimensional, reductive, invariant Ricci solitons with differ-
ent types of the Ricci operators (including the diagonalizable one) are presented in

(9.

6 Invariant Symplectic, Complex and Kahler Structures

Invariant symplectic structures on a homogeneous space M = G/H are in a one-to-
one correspondence with non-degenerate, invariant, skew-symmetric, bilinear forms
) on m such that

dUx, yz) = =[x, I, 2) +Q([x,2]m, ¥) — Q(1y, 2lm,x) =0,

for all x, y,z € m [20]. Hence, we can determine the matrices (£2;;) associated with
invariant skew-symmetric bilinear forms {2 on m, with respect to the corresponding
basis {u; }, for every non-reductive four-dimensional homogeneous space. By a direct
calculation, we get

0 Q, 0 0 0 0 0 0
Q5 0 s 0 0 0 Q0
0 Qs 0 0 for (A1), 0 —Ou 0 Os, for (A2), (B3),
0 0 0 0 0 0 —Qu 0
0 0 0 0 0 O, 0 0
8 8 8 g“ for (A3), ’50)12 8 8 954 for (A4), (B2),
3
0 —Qz4 —Q34 0 0 —Qz4 0 0
0 0 0 O 0 Qn Qs 0
0 0 0 0 -, 0 Qs Qs
00 0 0 for (A5), Q5 Qs 0 Qs for (B1).
0 0 0 0 0 O3 Qg O

Therefore, there exist invariant non-degenerate 2-forms only on the non-reductive
homogeneous space corresponding to case (B1). Moreover, in such a case we find
that dQ2 = 0 if and only if 2, 3 = 0. Thus, we have the following theorem.
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Theorem 6.1 A four-dimensional, non-reductive, homogeneous, pseudo-Riemannian
manifold M = G/H admits an invariant symplectic form if and only if ¢ = by. In this
case, with respect to the basis {u;} of m, invariant symplectic forms are given by

0 Qi Qi3 0

- - 0 0 Q3
s 0 0 Qay |’
0 -z —Q 0

with 912934 — 9%3 7& 0.

Next, invariant complex structures on a homogeneous spaces M = G/H are in a
one-to-one correspondence with complex structures J on m that commute with the
isotropy representation. We now prove the following theorem.

Theorem 6.2 A four-dimensional, non-reductive, homogeneous, pseudo-Riemannian
manifold M = G/H admits an invariant almost complex structure if and only if g =
by. In particular, in this case there exists a two-parameter family of invariant complex
structures ], ; described, with respect the basis {u;} of m, by

—s 0 0 ¢
0 —s —t 0
]t,s = 0 (1+5%) s 0 )

S

for arbitrary real constants s and t # 0.

Proof We start by determining, for every non-reductive four-dimensional homoge-
neous space G/H, the linear maps J: m — m such that J o p(x) = p(x) o J, for
every x € m. Then we can check whether these linear maps satisfy J> = —id and the
integrability conditions

(Jug, Jug] = [wg, ue] — T, wie] — T, Jug],

forevery I,k = 1,...4. A direct calculation shows that there are no invariant almost
complex structures unless g = b;. For example, if g = a;, then Jo p = p o Jyields

an 0 0 3as—jap
] _ 0 an 0 0
- 0 0 ass 0
0 0 a43 an
with respect to the basis {#;} of m, and none of these linear maps satisfies J? = —id.

On the other hand, when g = b;, we find that Jo p = p o Jif and only if

arn ap a3 a4
0 anp —ay 0
0 as) ass 0 ’
—daszy dg 43 ass
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and, imposing J?> = —id, we obtain that in this case, invariant almost complex struc-
tures are of the form

—dass a43 as ais
0 —ads3 —ay4 0
(1+a%,)
0 o ass 0
(1+a;) (a13+a130%; —2a53a33a14)
T Tom - e ds3  a33
14

Finally, it is easy to check that such an almost complex structure is integrable if and
only if a;3 = a43 = 0, and this completes the proof. [ |

Results above imply that invariant pseudo-Hermitian (in particular, pseudo-
Kihler) structures may only exist on the non-reductive four-dimensional homoge-
neous space M = G/H corresponding to Lie algebra b;. We shall now classify such
structures on M.

Consider the complex structures J; ; described in Theorem [6.2]and the pseudo-
Riemannian metrics g given by (2.6). Requiring the compatibility of J; ; with g, that
is,

gUu;i, Jux) = g(u;, ug),

for every i, k, we get the following system of algebraic equations:

bt?s? +d(1 +s2)? — 2c(1 +s*)ts — bt> = 0,
(6.1) bt?s — 2c(1 + s2)t + s(1 + s2)d = 0,
bt? +ds* — 2cts —d = 0.

Ast # 0, a straightforward calculation proves that the solutions of system (&.1]) are
2
givenby c = ¢ p= 1194,

t

Next, let {1/} denote the basis dual to the basis {#;} of m. By Theorem [6.1] the
generic invariant symplectic form on m is given by

Q=Qpu' A+ Qi A+ Au®) + Qg A ut

In order to have a pseudo-Kahler structure, we must require the compatibility of 2
with J; ;, that is,
Qe sup, Jesu) = Quy, uy),

forevery I,k =1,...,4. We get the equations
—2t(1+52)Q3 + 1250, + s(1 + )34 = 0,

t2(52 — I)le — 2t5(1 + 52)913 + (1 + 52)2934 = 0,
(52 — 1)934 + tZQIZ — 251’913 = 0,

which easily Yleld Q]z = (IHZ)QM, Q]3 = §Q34. Note that

t2

Qus, Jisuz) = Quz, —tuy +suz) =0,  Q(uy, Jru3) = Q3 = 0,
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and for the associated pseudo-Kéhler metric ¢ we have

Q34
a—=—-.

b=c=d=0,
t

Hence, taking into account Propositiond.3] we proved the following theorem.

Theorem 6.3 Let M = G/H denote the four-dimensional, non-reductive, homoge-
neous, pseudo-Riemannian manifold corresponding to Lie algebra g = by and let g, J; ,,
and ) be the invariant pseudo-Riemannian metrics, complex structures, and symplec-
tic forms over M, respectively. Then (M, g, J;5) is a homogeneous pseudo-Hermitian
manifold if and only if
sd (1+5)d
c=—, b=—7-"—.
t 12
Hence, any invariant complex structure ], ; on M determines a two-parameter family of
pseudo-Hermitian structures, depending on two arbitrary real constants a # 0 and d.
In particular, each complex structure J; s corresponds to a one-parameter family of
pseudo-Kdihler structures (g4, J; 5, $2a), where g, is the (flat) pseudo-Riemannian metric
determined by conditions b = ¢ = d = 0, and Q is completely determined by coefficients

le = 7‘1(1:32),934 = at, 913 = as.
Moreover, from Theorems[5.9and [6.3] we get at once the following corollary.

Corollary 6.4 Four-dimensional non-reductive homogeneous pseudo-Riemannian
manifolds do not admit (non-trivial) pseudo-Hermitian homogeneous Ricci solitons.
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