BULL. AUSTRAL. MATH. Soc. Vol. 40 (1989) [157-160]

CHEN'S PROBLEM ON MIXED FOLIATE CR-SUBMANIFOLDS

MOHAMMED ALI BASHIR

We prove that the simply connected compact mixed foliate CR-submanifold in a hyperbolic complex space form is either a complex submanifold or a totally real submanifold. This is the problem posed by Chen.

1. PRELIMINARIES

Let \overline{M} be an *m*-dimensional hyperbolic complex space form, that is a Kaehler manifold of constant holomorphic sectional curvature-4. The curvature tensor \overline{R} of \overline{M} is given by

(1.1)
$$\overline{R}(X, Y)Z = -\{g(Y, Z)X - g(X, Z)Y + g(JY, Z)JX - g(JX, Z)JY + 2g(X, JY)JZ\}$$

where J is the almost complex structure on \overline{M} and g is the Hermitian metric.

A (2p+q)-dimensional submanifold M of \overline{M} is called a CR-submanifold if there exists a pair of orthogonal complementary distributions D and D^{\perp} such that JD = Dand $JD^{\perp} \subset \nu$ where ν is the normal bundle of M and dim D = 2p, dim $D^{\perp} = q[1]$. A CR-submanifold is said to be proper if neither $D = \{0\}$ nor $D^{\perp} = \{0\}$. We shall denote by $\overline{\nabla} \nabla, \nabla^{\perp}$ the Riemannian connections on \overline{M} , M and the normal bundle respectively. They are related by

(1.2)
$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y), \overline{\nabla}_X N = -A_N X + \nabla_X^{\perp} N, N \in \nu$$

where h(X, Y) and $A_N X$ are the second fundamental forms satisfying

$$g(h(X, Y), N) = g(A_N X, Y).$$

Denote by R and R^{\perp} the curvature tensors associated with ∇ and ∇^{\perp} respectively. Then the equations of Codazzi and Ricci are given by

(1.3)
$$\overline{R}(X, Y, Z, N) = g((\overline{\nabla}_X h(Y, Z)) - (\overline{\nabla}_Y h)(X, Z), N)$$

(1.4)
$$\overline{R}(X, Y; N, N') = R^{\perp}(X, Y; N, N') - g([A_N, A_{N'}](X), Y)$$

Received 16 November 1988

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/89 \$A2.00+0.00.

where $(\nabla_X h)(Y, Z) = \nabla_X^{\perp} h(Y, Z) - h(\nabla_X Y, Z) - h(\nabla_X Z, Y) X, Y, Z \in *(M)$ and $N, N' \in \nu$.

A CR-submanifold is said to be mized foliate if

- (i) D is integrable and
- (ii) $h(X, Y) = 0, X \in D, Y \in D^{\perp}$.

For a mixed foliate CR-submanifold the following hold (see [2])

(1.5)
$$h(X, JY) = h(JX, Y) \text{ for } X, Y \in D;$$

(1.6)
$$A_N X \in D \text{ for } X \in D; \text{ and } A_N X \in D^{\perp} \text{ for } X \in D^{\perp};$$

$$(1.7) A_N J X = -J A_N X ext{ for } X \in D;$$

(1.8)
$$A_{JX}Y = A_{JY}X \text{ for } X, Y \in D^{\perp};$$

(1.9)
$$\nabla_X Y \in D^{\perp} \text{ for } X, Y \in D^{\perp}; \nabla_X Y \in D \text{ for } X \in D^{\perp}, Y \in D;$$

and $\nabla_X^{\perp} J Y \in J D^{\perp} \text{ for } X \in D, Y \in D^{\perp}.$

The normal bundle splits as $\nu = JD \oplus \mu$ where μ is a J-invariant sub-bundle of ν .

2. MAIN THEOREM

We shall prove the following theorem which was proved by Chen [2] for the case $\dim M \leq 5$ and was conjectured for the general case.

THEOREM. Let M be a simply connected compact mixed foliate CR-submanifold of a hyperbolic complex space form $\overline{M}(-4)$. Then M is either a complex submanifold or a totally real submanifold of \overline{M} .

First we prove the following

LEMMA. Let M be a proper mixed foliate CR-submanifold of a hyperbolic complex space form $\overline{M}(-4)$. Then for $X, Y \in D$, $h(X, Y) \in JD^{\perp}$.

PROOF: For $X, Y \in D$ and $Z \in D^{\perp}$ it follows from (1.1) that $[\overline{R}(X, Y)Z]^{\perp} = -2g(X, JY)JZ$. Using this and $X, Y \in D$ in the Codazzi equation (1.3) we get

$$(2.1) -2g(X, JY)JZ = h(X, \nabla_Y Z) - h(Y, \nabla_X Z).$$

Taking the inner product with $JW \in JD^{\perp}$ and replacing X by JX we have, using (1.2), (1.6) and (1.7), that

$$\begin{aligned} -2g(JX, JY)g(JZ, JW) &= g(h(JX, \nabla_Y Z), JW) - g(h(Y, \nabla_{JX} Z), JW) \\ &= g(A_{JW}JX, \overline{\nabla}_Y Z) - g(A_{JW}Y, \overline{\nabla}_{JX} Z) \\ &= g(A_{JW}X, \overline{\nabla}_Y JZ) - g(A_{JW}Y, \overline{\nabla}_{JX} Z) \\ &= g(A_{JW}X, -A_{JZ}Y) - g(JA_{JW}Y, -(A_{JZ}JX)) \\ &= -g(A_{JW}X, A_{JZ}Y) - g(A_{JW}Y, A_{JZ}X). \end{aligned}$$

Thus we get:

(2.2)
$$2g(X, Y)g(Z, W) = g(A_{JW}X, A_{JZ}Y) + g(A_{JW}Y, A_{JZ}X).$$

From (1.9) we get $R^{\perp}(X, Y)JZ \in JD^{\perp}$ for $X, Y \in D$. Thus for $N \in \mu$, the Ricci equation (1.4) and equation (1.1) gives

(2.3)
$$g([A_{JZ}, A_N](X), Y) = 0.$$

Taking the inner product in (2.1) with $N \in \mu$ and using similar techniques to those used in (2.2) we get

$$(2.4) g(A_NX, A_{JZ}Y) + g(A_{JZ}X, A_NY) = 0.$$

Combining (2.3) and (2.4) we get

$$A_{JZ}(A_NX)=0 \text{ for } X\in D.$$

Replacing X by $A_N X$ in (2.2) and using the above equation we get

$$2g(A_NX, Y)g(Z, W) = 0.$$

Now suppose that M is a proper CR-submanifold. Then the above equation gives g(h(X, Y), N) = 0, that is $h(X, Y) \in JD^{\perp}$ for $X, Y \in D$.

PROOF OF THE THEOREM: Let M be a proper mixed foliate CR-submanifold of $\overline{M}(-4)$. For any unit vector $Z \in D^{\perp}$ and $X \in D$ we easily get from (1.6) and (2.2) that $A_{JZ}^2 X = X$. Now take a non-zero vector $Y_0 \in D$ and consider the set $\{Jh(X, Y_0): X \in D\}$. By the above lemma, this is a subset of D^{\perp} . We claim that $D^{\perp} = \{Jh(X, Y_0): X \in D\}$, for if not then there exists a unit vector $Z \in D^{\perp}$ such that $g(Jh(X, Y_0), Z) = 0, X \in D$. This gives $g(A_{JZ}X, Y_0) = 0$. In particular for $X = A_{JZ}Y_0$, we get $g(A_{JZ}^2Y_0, Y_0) = g(Y_0, Y_0) = 0$, a contradiction, and hence our claim is established. We can then define the linear map;

 $T_{Y_0}: D_p \xrightarrow{\text{onto}} D_p^{\perp}$ for $p \in M$ given by $T_{Y_0}X = Jh(X, Y_0)$. Now we prove that dimker $T_{Y_0} = 2p - 1$. For $X \perp Y_0$ we get $0 = g(Y_0, X) = g(Y_0, A_{JZ}^2X) =$ $g(-Jh(A_{JZ}X, Y_0), X)$, which implies $Jh(A_{JZ}X, Y_0) = 0$, that is, $A_{JZ}X \in \ker T_{Y_0}$. Also with the same argument we would get $A_{JZ}Y_0 \notin \ker T_{Y_0}$. Since $A_{JZ}^2 \mid_D = I$, $A_{JZ} \mid_D$ is non-singular, and thus dim ker $T_{Y_0} = 2p - 1$. Then using the fundamental theorem of homomorphism we get dim $D^{\perp} = 1$.

Now let ξ be the unit vector in D^{\perp} which is globally defined on M. We shall prove that its dual 1-form η is closed. Note that for every vector field V on M, we can write

$$JV = PV + \eta(V)J\xi$$
 where $PV \in D$.

Then using (1.2) in $\overline{\nabla}_X JY = J\overline{\nabla}_X Y$ and equating the JD^{\perp} components we get

$$(\nabla_X \eta)(Y)J\xi = -h(X, PY)$$

where we have used the definition of mixed foliate CR-submanifold and $h(X, Y) \in JD^{\perp}$ for $X, Y \in D$.

Now using (1.5) we get $d\eta = 0$. Since $\eta(\xi) = 1$ and M is compact, η cannot be exact. Thus $[\eta]$ is a non-trivial cohomology class in the cohomology group $H^1(M, \mathbb{R})$. This is contradiction to the simply connectedness of M. Hence M cannot be proper and this completes the proof of the theorem

References

- A. Bejancu, 'CR-submanifolds of a Kaehler manifold', Proc. Amer. Math. Soc. 69 (1978), 135-142.
- [2] B.Y. Chen, 'CR-submanifolds of a Kaehler manifold II', J. Differential Geom. 16 (1981), 493-509.

Mathematics Department College of Science King Saud University P.O. Box 2455, Riyadh 11451 Saudi Arabia