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A Singular Critical Potential for the
Schrödinger Operator

Thomas Duyckaerts

Abstract. Consider a real potential V on R
d, d ≥ 2, and the Schrödinger equation:

(LS) i∂t u + ∆u − Vu = 0, u↾t=0 = u0 ∈ L2.

In this paper, we investigate the minimal local regularity of V needed to get local in time dispersive

estimates (such as local in time Strichartz estimates or local smoothing effect with gain of 1/2 deriva-

tive) on solutions of (LS). Prior works show some dispersive properties when V (small at infinity) is

in Ld/2 or in spaces just a little larger but with a smallness condition on V (or at least on its negative

part).

In this work, we prove the critical character of these results by constructing a positive potential V

which has compact support, bounded outside 0 and of the order (log |x|)2/|x|2 near 0. The lack of

dispersiveness comes from the existence of a sequence of quasimodes for the operator P := −∆ + V .

The elementary construction of V consists in sticking together concentrated, truncated potential

wells near 0. This yields a potential oscillating with infinite speed and amplitude at 0, such that the

operator P admits a sequence of quasi-modes of polynomial order whose support concentrates on the

pole.

1 Introduction

Consider a Schrödinger operator,

(1) P := −∆ + V, ∆ :=

d∑

j=1

∂2

∂x2
j

,

on Rd, d ≥ 1, where V is a time-independent, real potential, small at infinity, with a

small negative part, and the initial value problem for the Schrödinger equation,

(2)

{
i∂tU − PU = 0,

U↾t=0 = U0 ∈ L2(Rd).

For potentials V which are not too singular, the solutions of equation (2) enjoy many

dispersive properties, such as the classical dispersion estimate, Strichartz estimates

and the local smoothing effect (introduced by Constantin–Saut [7], Sjölin [14], Vega

[16]):

(3) ‖χU‖L2(]0,T[,H1/2(Rd)) ≤ C‖U0‖L2(Rd), χ ∈ C∞
0 (Rd),
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36 T. Duyckaerts

where T may be finite, and in some cases infinite, and C may depend on V , χ and T.

These well-known properties are essential in the description of the solutions of (2)

and the study of related non-linear equations. It is natural to look for the minimal

assumptions to be made on V for the dispersive properties to hold. This issue has

two aspects, the boundedness of V at infinity and its local regularity. In this paper,

we shall ignore the first question, taking only potentials that decay fast enough for

large |x|, and investigate only the second one. One of our motivations is that the

linearization of non-linear Schrödinger equations near a singular stationary solution

may yield very harsh potentials. We now recall some important results on the subject.

First note that for potentials

V ∈ Ld/2, d ≥ 3 and V ∈ Lp, p > 1, d = 2

small at infinity, it is easy to deduce local in time Strichartz estimates from the free

equation estimates using Duhamel’s formula.

Using perturbative arguments, Ruiz and Vega [13] showed that for these poten-

tials, in dimension d ≥ 3 the smoothing effect (3) also holds. Furthermore, their re-

sults handle more singular potentials belonging to some Morrey–Campanato spaces,

which are (from a local point of view), strictly larger than the Lorentz space L
d/2
w

(and thus larger than Ld/2), but strictly contained in
⋂

p<d/2 Lp. In this case a small-

ness condition on the potential (or at least on its most singular part) is needed. The

simpler example of this kind is the inverse square potential,

Va :=
a

|x|2
, |a| < εd,

where εd is a constant depending on d.

Burq, Planchon, Stalker and Tahvildar-Zadeh [5] showed Strichartz estimates and

smoothing effect on the Schrödinger equation with the potential Va (see also [9] for

the multipolar case), assuming only the following positivity property on a:

a + (d/2 − 1)2 > 0.

When a + (d/2 − 1)2 < 0, there is a sequence of eigenvalues going to −∞, such that

the sequence of the corresponding stationary solutions invalidate the dispersive-type

estimates. Therefore, these critical potentials may not be considered as perturbations

of the Laplacien, but rather as operators of the same order, which may change radi-

cally the behaviour of P.

In a recent article [12], Rodniansky and Schlag proved dispersive-type decay of

solutions of Schrödinger equations in dimension 3 with potentials that are in a Kato

class which is, again, locally strictly contained in
⋂

p<d/2 Lp but larger than Ld/2. In

their article, the authors make a smallness assumption on the negative, singular part

of the potential, which is similar to the positivity assumption on a.

These results suggest that the critical class of potentials from the point of view of

local regularity is a little larger than Ld/2, but to our knowledge little is known about

the optimality of the assumptions on the positive part of V . Indeed nothing in the
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above works suggest that a positive, very singular potential may prevent solutions of

(2) from having dispersive properties.

In this paper, we answer this question, constructing a unipolar positive potential,

with compact support, whose pole is of the order
(log |x|)2

|x|2 near 0, and such that local in

time dispersive estimates do not hold. This construction shows the quasi-optimality

of the works mentioned above [5, 9, 12, 13], (see also the paper by Goldberg [10]).

The lack of dispersion comes from the existence of a sequence of quasi-modes for

the operator P (i.e., approximate solutions of the equation Pu − λu = 0 with λ
going to infinity). Note that the existence of a finite number of eigenfunctions would

show that global in time dispersive estimates cannot hold. Our result is stronger

as it shows also the impossibility of local in time estimates (which are really high-

frequency type estimates). Recall also that in general, there is no uniformity of the

estimates with respect to the norm of the potential in the critical spaces. Thus, it is

important to construct a single V invalidating the dispersive properties, rather than

giving an example of a sequence of potentials (even with an uniform bound).

Theorem 1 (Existence of quasi-modes) Let d ≥ 1, N ≥ 0 be integers. There exist

• a radial, positive potential V on Rd, which has compact support and such that

V ∈ C∞(Rd\{0})(4)

| log r|2

Cr2
≤ V (r) ≤

C| log r|2

r2
, r ≤ r0,(5)

• an increasing sequence (λn)n≥n0
of positive real numbers, diverging to +∞,

• a sequence of radial C∞ functions (un)n≥n0
, whose support is of the following form:

{

c1
logλn

λn

≤ r ≤ c2
logλn

λn

}

, 0 < c1 < c2;

such that

(−∆ + V )un − λ2
nun = fn(6)

‖un‖L1 = 1(7)

∀ j ∈ N,
∥
∥
∥

d j

dr j
fn

∥
∥
∥

L∞

= O(λ j−N
n ), n → +∞.(8)

Corollary 1 Let N ≥ 2, P = −∆ + V , where V is the potential of the preceding

theorem, and χ a function in C∞
0 (Rd) which does not vanish in 0. Then the solutions of

(2) do not enjoy any of the classical dispersive properties.

• local Strichartz estimates:

(9) ∀q, q0 ∈ [1,+∞], q > q0, ∀T > 0, ∀K > 0, ∃U0 ∈ C∞
0 (Rd\{0}),

‖χU (t)‖L1(]0,T[,Lq(Rd)) > K‖U0‖Lq0 (Rd);
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• local smoothing effect:

(10) ∀σ > 0 ∀T > 0, ∀K > 0, ∃U0 ∈ C∞
0 (Rd\{0}),

‖χU (t)‖L1(]0,T[,Hσ(Rd)) > K‖U0‖L2(Rd);

• local dispersion:

(11) ∀q ∈]1,+∞], ∀T > 0, ∀K > 0, ∃U0 ∈ C∞
0 (Rd\{0}),

‖χU (T)‖Lq(Rd) > K‖U0‖Lq ′ (Rd);

• Strichartz estimates with loss of derivative:

(12) ∀q ∈ [1,+∞], ∀σ ∈ [0, 1],
1

2
−

1

q
>
σ

d
,

∀T > 0, ∀K > 0, ∃U0 ∈ C∞
0 (Rd\{0}),

‖χU (t)‖L1(]0,T[,Lq(Rd)) > K‖U0‖D(Pσ/2).

In the preceding statements, U (t) is the solution of the equation (2) with initial value

U0, and q ′ the conjugate exponent of q which is defined by 1/q + 1/q ′
= 1.

Remarks

(i) If d > 2, the hypotheses (4) and (5) imply:

V ∈
⋂

p<d/2

Lp.

(ii) The sequence ( fn)n≥n0
of Theorem 1 invalidates the classical non-trapping

type, resolvent estimates (cf. [2]), which imply the local smoothing effect (3). In-

deed, one may see V as a trapping potential, as it concentrates the energy of a se-

quence of quasi-modes on the pole 0. In similar settings, the equivalence between a

non-trapping type assumption and the local smoothing effect is by now well under-

stood (see for example [3]). As will be clear in the proof, this trapping property is a

consequence of the very fast oscillations of V near 0.

(iii) It will be clear in the proof of the theorem that one may construct quasi-

modes of infinite order (i.e., such that(8) holds with O(λ−∞
n ) instead of O(λ

j−N
n ))

by taking a singularity just a bit stronger:

| log r|2+ε

Cr2
≤ V (r) ≤

C| log r|2+ε

r2
, ε > 0.

With a still stronger singularity, one may force fn to be exponentially decreasing

in −λn.
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(iv) Classical Strichartz estimates

‖U‖Lp(]0,T[,Lq(Rd)) ≤ C‖U0‖L2(Rd), p > 2,
2

p
+

d

q
=

d

2
,

are invalidated by (9), with the exception of the case q = 2, p = +∞ which is always

true by the L2 conservation law. Likewise, (12) shows that Strichartz estimates with

loss of derivative (see [4]) of the form:

‖U‖Lp(]0,T[,Lq(Rd)) ≤ C‖U0‖D(Pσ/2),
1

2
−

1

q
>
σ

d
, σ ∈ [0, 1],

are false. In this inequality, the limit case σ/d = 1/2 − 1/q is an immediate conse-

quence of the Sobolev inclusion

Lq(Rd) ⊂ Hσ(Rd) ⊂ D(Pσ/2),

and of the conservation of the norm D(Pσ/2) of any solution of (2). Notice that this

last inclusion implies that (12) is still true in usual Sobolev spaces, i.e., when D(Pσ/2)

is replaced by Hσ(Rn).

(v) The potential V and quasi-modes un being of compact support as close to 0

as desired, the preceding counter-example is still valid in any regular domain for a

Laplace operator with Dirichlet or Neumann boundary conditions.

(vi) It is also possible to deduce from Theorem 1 negative results on the solutions

of the wave equation (see the remark at the end of the proof of Corollary 1).

(13) ∂2
t u + Pu = 0.

For example, the usual Strichartz and dispersive estimates, and the uniform decay of

local energy do not hold. For positive results in this direction, see [13], or the recent

work of D’Ancona and Pierfelice [8], in dimension 3. Their assumption on V , taken

in a critical Kato class, is very close to the one of Rodniansky and Schlag [12].

(vii) Examples of linear Schrödinger equations which do not admit the classical

dispersion inequality or Strichartz estimates are given in [1,6]. In these two cases, the

particular behavior of the equation arises from the metric which defines the Laplace

operator. Our construction is close to the one of C. Castro and E. Zuazua in [6],

where the authors investigate the critical regularity of the metric defining the Laplace

operator in order to get certain control properties on the wave and Schrödinger equa-

tions. Let us mention that the idea to use quasi-modes in relation with Strichartz

inequalities is due to M. Zworski (see [15]).

Finally, we would like to point out that for the potential V introduced in the theorem,

one may define the operator P without ambiguity. The operator−∆+V has a natural

meaning on C∞
0 (Rd\{0}), and is essentially self-adjoint on this space, under a posi-

tivity assumption implied by (5). We call P its unique self-adjoint extension which is

of course positive. We refer to Reed and Simon [11, Th X.30] for any precision.

Section 2 of the paper is devoted to the proof of Corollary 1, and Section 3 to the

proof of Theorem 1.
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2 Proof of Corollary 1

According to Hölder’s inequality, for any function v on Rd, with a finite volume sup-

port,

(14) ‖v‖Lq0 ≤ B1/q0−1/q‖v‖Lq , q > q0,

where B is the volume of the support. Let Un(t) = e−iλ2
nt un. Then

i∂tUn − PUn = −e−iλ2
nt fn, Un↾t=0 = un,

Un(t) = e−itPun + i

∫ t

0

e−iλ2
nsei(s−t)P fnds.(15)

Assume that (9) is false. According to (15):

∫ T

0

‖χUn(t)‖Lq(Rd) dt ≤

∫ T

0

‖χe−itPun‖Lq(Rd) dt +

∫ T

0

∫ t

0

‖χei(s−t)P fn‖Lq(Rd) dsdt.

Since the support of un concentrates in 0, with a volume of order (logλn/λn)d, and χ
does not vanish in 0, the left term of this inequality is, using (14) and taking n large

enough, greater than

1

C

∫ T

0

‖un‖Lq(Rd) dt ≥
1

C

( logλn

λn

) d(1/q−1/q0)

‖un‖Lq0 (Rd).

Using the negation of (9), the right term is dominated by

‖un‖Lq0 (Rd) + ‖ fn‖Lq0 (Rd).

Hence, using (8) we obtain,

( λn

logλn

) d(1/q0−1/q)

‖un‖Lq0 = O
(
‖un‖Lq0 + λ−N

n

)
,

which leads to the announced contradiction since N ≥ 1 and q > q0, the norm of un

in Lq0 being greater than 1 by (7).

By Sobolev inequalities, (9) implies (10), taking in (9) q0 = 2 and q > 2 close

enough to 2. So (10) holds.

Let us assume that (11) is not true. Then by (15) we get

‖χUn(T)‖Lq(Rd) ≤ C‖un‖Lq ′ (Rd) +

∫ T

0

‖χe−iTPeisP fn‖L1(Rd) ds

≤ C
{
‖un‖Lq ′ (Rd) +

∫ T

0

‖eisP fn‖Lq ′ (Rd) ds
}

≤ C
{
‖un‖Lq ′ (Rd) + T‖ fn‖L2(Rd)

}
.
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To obtain the second inequality, we have bounded the Lq ′

norm on the support of fn

by the L2 norm, up to a multiplicative constant, and we have used the fact that eisP is

an isometry on L2. The contradiction is again a simple consequence of (14) and the

fact that q ′ < q.

We shall now prove (12). Otherwise, we would have, by (15),

(16)

∫ T

0

‖Un(t)‖Lq(Rd) dt ≤ C
{
‖un‖D(Pσ/2) +

∫ T

0

∫ t

0

‖ei(s−t)P fn‖D(Pσ/2) dsdt
}
.

Of course, ei(s−t)P maps isometrically the domain of Pσ/2 onto itself. We have,

‖ fn‖
2
D(P1/2) =

∫

|∇ fn(x)|2 dx +

∫

(1 + V (x))| fn(x)|2 dx.

On the support of fn, as on that of un, we have |x| ≥ log λn

Cλn
. Using the superior bound

of V in (5) on the support of fn, we get

|V (r)| ≤ C
λ2

n

(logλn)2
(log logλn − logλn)2 ≤ Cλ2

n.

It follows using the bound (8) on the semi-norms of fn and N ≥ 2 that

(17) ‖ fn‖D(P1/2) ≤ C
(
‖∇ fn‖L2 + λn‖ fn‖L2

)
≤ Cλ−1

n .

Furthermore, the equation Pun − λ2
nun = fn implies, using once again the bounds

(7) and (8) on the norms of un and fn,

‖un‖
2
D(P1/2) ≤ ‖ fn‖L2‖un‖L2 + λ2

n‖un‖
2
L2 ≤ Cλ2

n‖un‖
2
L2 .

By interpolation on the norms of the left-hand side, and since 0 ≤ σ ≤ 1, we get

(18) ‖un‖D(Pσ/2) ≤ Cλσn‖un‖L2 .

According to (17), (18) and the inequality (16),

‖un‖Lq ≤ Cλσn‖un‖L2 + o(1).

Hence, with (14),

( λn

logλn

) d/2−d/q

‖un‖L2 ≤ Cλσn‖un‖L2 + o(1),

which is absurd since d
2
− d

q
> σ.

Remark To get a similar result on the wave equation (13), replace e−iλ2
nt un by

sin(λnt)un, which is an approximate solution of (13).
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3 Proof of the Theorem

Denote by r the Euclidean norm of x and by ′ the radial derivative d
dr

. We would like

to find radial functions V , fn, un such that

(19) fn(r) = −u ′ ′
n (r) −

d − 1

r
u ′

n(r) + V (r)un(r) − λ2
nun(r),

with fn small and λn diverging to infinity. We shall first change functions to get rid

of the first-order derivative in this equation. Set

(20) un = r−
d−1

2 vn, fn = r−
d−1

2 gn, W = V +
d2 − 4d + 3

4r2
.

Thus (19) becomes

(19 ′) gn = −v ′ ′
n + W vn − λ2

nvn.

Let

y(s) = e−
√

s2+1, b(s) = −
1

(s2 + 1)3/2
+

s2

s2 + 1
,

which are C∞ solutions of the equation on R:

−y ′ ′(s) + b(s)y(s) = 0(21)

y(s) > 0, ∀ j ∈ N, |y( j)(s)| ≤ C je
−|s|(22)

|b(s)| ≤ 1.(23)

We shall write

yω,a(r) = y(ω(r − a)), bω,a(r) = ω2b(ω(r − a)),

where a and ω are two real parameters. We have

(21 ′) −y ′ ′
ω,a + bω,a yω,a = 0;

Let q(λ) be a strictly increasing positive function defined in a neighborhood of +∞
such that

lim
λ→+∞

q(λ) = +∞,(24)

lim
λ→+∞

q(λ)

λ
= 0.(25)

Let (λn)n≥n0
be the sequence defined by the equations

10n
= q(λn),

https://doi.org/10.4153/CMB-2007-004-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2007-004-3


A Singular Critical Potential for the Schrödinger Operator 43
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1
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︷ ︸︸ ︷
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︷ ︸︸ ︷
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︷ ︸︸ ︷
suppψn+1

︷ ︸︸ ︷
χn = 1

︸ ︷︷ ︸

ψn = 1
︸ ︷︷ ︸

suppψn

Figure 1: Cutoff functions near 3/10n+1

so that λn diverges faster to +∞ than 10n.

Choose a cutoff function χ: χ ∈ C∞
0 (]−1, 1[) , χ = 1 on

[
− 1

2
, 1

2

]
.

Set

ψn(r) = χ(10nr) − χ(10n+1r),

χn(r) = χ
(

10n+1
(

r −
3

10n+1

))

,

The ψn’s form a partition of unity near 0. The support of each χn is included in that

of ψn, away from those of the ψ j ’s, j 6= n (see Figure 1):

suppψn ⊂
[ 5

10n+2
,

1

10n

]

,
1

10n+1
≤ r ≤

5

10n+1
⇒ ψn(r) = 1,

∑

n≥n0

ψn(r) = χ(10n0 r),(26)

suppχn ⊂
[ 2

10n+1
,

4

10n+1

]

⊂ {ψn = 1},(27)

25

10n+2
≤ r ≤

35

10n+2
⇒ χn(r) = 1.(28)

We shall denote by yn and bn the following functions:

yn(r) = y λn
2
, 3

10n+1
(r) = y

( λn

2

(

r −
3

10n+1

))

,(29)

bn(r) = b λn
2
, 3

10n+1
(r) =

λ2
n

4
b
( λn

2

(

r −
3

10n+1

))

.(30)

Each of the functions −bn may be seen as a potential well which (by equation (21 ′))

concentrates the energy of yn near 3/10n+1. We shall construct W so that the equation

gn(r) = 0 is exactly −v ′ ′
n + bnvn = 0 on a small interval (including the support of vn)

around the point 3/10n+1. The size of this interval will be of the same order as 10−n,

smaller than the equation parameter ω = λn/2. We shall choose vn as a cutoff of yn.
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-

6

r

W (r)

3
10n+2

3
10n+1

λ2
n+1

λ2
n

Figure 2: The potential W

The exponential decay of y, combined with the difference of order between these two

scales will induce small enough error terms for (7) and (8) to hold. Set

W (r) =

∑

n≥n0

ψn(r)(bn(r) + λ2
n),(31)

vn(r) = αn yn(r)χn(r),(32)

where the αn’s are strictly positive constants yet to be determined (see Figure 2). The

functions gn, un, fn and the potential V are thus defined by (19 ′) and (20).

Lemma 1 The following inequalities hold:

∀ j ∈ N, ∃C > 0,
∥
∥
∥

d j fn

dr j

∥
∥
∥

L∞(Rd)
≤ Cαnλ

1+ j
n (q(λn))

d+1
2 e−λn/20q(λn)(33)

‖un‖L1(Rd) ≥
αn

C
λ−1

n (q(λn))−
d−1

2 .(34)

Proof According to (27), W is equal to bn + λ2
n on the support of χn. Hence,

(35) gn(r) = −v ′ ′
n (r) + bn(r)vn(r).
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Thus, using the equation on yn given by (21 ′),

fn(r) = r−
d−1

2 gn(r) = r−
d−1

2 αn

(
yn(r)χ ′ ′

n (r) + 2y ′
n(r)χ ′

n(r)
)
.

The derivative of fn of order j is then of the form

(36)
d j fn

dr j
=

∑

j1+ j2+ j3= j+1

β j1, j2, j3

d j1

dr j1
yn

d j2

dr j2
χ ′

n

d j3

dr j3
r−

d−1

2 .

On the support of χ ′
n,

∣
∣
∣ r −

3

10n+1

∣
∣
∣ >

1

10n+1
=

1

10q(λn)
.

So according to the bounds (22) of y and its derivatives,

|y( j1)
n (r)| ≤ Cλ j1

n e
− λn

2

∣
∣ r− 3

10n+1

∣
∣
∣

≤ Cλ j1

n e−
λn

20q(λn) .

Furthermore,

|χ( j2+1)
n | ≤ C

(
q(λn)

) j2+1
≤Cλ j2

n q(λn)

∣
∣
∣

( d

dr

) j3

(

r−
d−1

2

)∣
∣
∣ ≤ C(q(λn))

d−1
2

+ j3≤Cλ j3

n (q(λn))
d−1

2 ,

for on the support ofχn, r ≥ 1
10n+1 . These three inequalities, together with (36), imply

(33). We shall now prove (34). By the definition of yn,

λn

2

∣
∣
∣ r −

3

10n

∣
∣
∣ ≤

1

2
⇒ yn(r) ≥ m = sup

|s|≤ 1
2

|y(s)|.

Furthermore, if r is as above, and n big enough, then χn(r) = 1 and so

un(r) = r−
d−1

2 vn(r) = r−
d−1

2 αn yn(r).

Hence,

‖un‖L1 ≥ mαn

∫

λn

∣
∣ r− 3

10n

∣
∣≤1

r−
d−1

2 rd−1 dr ≥
αn

C
(10−n)

d−1
2 λ−1

n .

Choose M > 1 and set

(37) q(λ) =
λ

M logλ
.
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The positive function q is strictly increasing for big λ’s and satisfies (24) and (25). In

addition, bounding q(λn) from above by λn, Lemma 1 implies

∥
∥
∥

d j fn

dr j

∥
∥
∥

L∞

≤ Cαnλ
d+3

2
+ j− M

20
n ,

‖un‖L1 ≥
αn

C
λ

d+1
2

n ,

with new constants C , which may depend on M. So the conditions (7) and (8) of the

theorem are satisfied if the constants M and αn are well chosen. The support of un is

that of χn, which is of the desired form

{

c1
logλn

λn

≤ r ≤ c2
logλn

λn

}

if the support of χ is taken to be a segment.

The assertion (5) on the potential remains to be checked. We have the following

approximation of the inverse function of q:

Lemma 2 Let q be defined by (37). Then

q(λ) log(q(λ)) ∼
λ

M
, λ→ +∞.

Proof

q(λ) log q(λ) = q(λ) log
( λ

M logλ

)

= q(λ)(log λ− log logλ− log M) ∼ q(λ) logλ,

when λ goes to infinity.

On the support of ψn,

1

20r
≤ q(λn) ≤

1

r
,

1

20r
| log r + log 20| ≤ q(λn) log(q(λn)) ≤

1

r
| log r|.

(We used that s 7→ s log s is an increasing function for s > e−1). Using Lemma 2 and

taking r close enough to 0 we get

C−1 1

r
| log r| ≤ λn ≤ C

1

r
| log r|.

Thus, by the definition (31) of W , |bn| being bounded from above by λ2
n/4,

C−1 | log r|2

r2

∑

n≥n0

ψn(r) ≤ W (r) ≤ C
| log r|2

r2

∑

n≥n0

ψn(r),

which implies, with (26), the inequality (5) on the potential W . Taking a greater C if

necessary, we get that V satisfies the same inequality.
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Remarks

(i) To get quasi-modes of infinite order, we would have taken q(λ) =
λ

(log λ)1+ε and

suitably modified Lemma 2.

(ii) In the preceding construction, we could have replaced y and b by any non-

trivial solutions of the equation (21) satisfying the bounds (22) and (23).
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