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Abstract
Estimating tail risk measures for portfolios of complex variable annuities is an important enterprise risk
management task which usually requires nested simulation. In the nested simulation, the outer simulation
stage involves projecting scenarios of key risk factors under the real-world measure, while the inner sim-
ulations are used to value pay-offs under guarantees of varying complexity, under a risk-neutral measure.
In this paper, we propose and analyse an efficient simulation approach that dynamically allocates the inner
simulations to the specific outer scenarios that are most likely to generate larger losses. These scenarios are
identified using a proxy calculation that is used only to rank the outer scenarios, not to estimate the tail
risk measure directly. As the proxy ranking will not generally provide a perfect match to the true ranking
of outer scenarios, we calculate a measure based on the concomitant of order statistics to test whether fur-
ther tail scenarios are required to ensure, with given confidence, that the true tail scenarios are captured.
This procedure, which we call the dynamic importance allocated nested simulation approach, automati-
cally adjusts for the relationship between the proxy calculations and the true valuations and also signals
when the proxy is not sufficiently accurate.

Keywords: Nested simulation; Conditional tail expectation; Variable annuities; Concomitants; Tail value at risk

1. Introduction
Variable annuities (VAs) are a type of equity-linked insurance that offer a rich variety of embedded
financial options in the form of investment guarantees. The guarantees may be very complex, and
the maturities are very long, contributing to potentially significant costs arising from hedge rebal-
ancing in discrete time. Estimating the tail risk measures of the VA liabilities, including discrete
hedging costs, is of prime interest for risk management and regulatory capital assessment.

In most cases, the evaluation of these risk measures is computationally burdensome, requiring
nested, path-dependentMonte Carlo simulation. Developingmore efficient and accuratemethods
for the valuation and risk management of embedded options is a topic of considerable interest
to insurers and has applications more broadly in financial risk management. In this paper, we
consider the estimation of the conditional tail expectation (CTE, also known as expected shortfall)
for a VA with two forms of guaranteed minimummaturity benefit, but the method can be applied
to other financial options, and to other risk measures such as value at risk (VaR).

The nested simulation process for assessing the distribution of hedging costs for VAs requires
two levels of simulation:

• The outer level simulation projects the underlying risk factors under the real-world measure.
In many finance applications, the projection involves only a single step, but in our context
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Figure 1. Nested simulation structure.

the outer level projections are multi-period, with the time step based on the assumed hedge
rebalancing frequency. The outer level simulated paths are known as the outer scenarios, or
just scenarios, and may include simulated asset returns, interest rates, policyholder behaviour
and longevity experience.

• The inner simulations are used to value the embedded options at each future date, conditional
on the outer level scenarios up to each valuation date. As this is a valuation step, a risk-neutral
pricing measure is used. Note that in this multi-period problem, the inner simulation stage is
repeated, with new simulated paths, at each time step of each outer scenario.

In Figure 1, we illustrate the nested simulation process both for the single period and the multi-
period case. The entire figure represents the multi-period case, while the portion circled in the
green represents the single-period case.

For insurers, large-scale nested simulations for assessing VA losses will take considerable run
time. A large number of outer level simulations are needed in order to estimate the extreme tails
needed for VaR or CTE calculations, and a large number of inner simulations are needed at each
time step, because the embedded options are often far out of the money. Furthermore, the calcu-
lations have to be repeated for each VA policy, or cluster of policies, in force. Consequently, many
insurers are very interested in variance reduction techniques for nested simulation models that
can achieve accurate results within a limited computational budget.

Similar nested simulation challenges arise in banking, where exotic options and intractable
pricing measures make the assessment of the VaR or CTE exposure too complex for analytic cal-
culation. Holton (2003) points out that large-scale nested simulation is too time-consuming for
practical, everyday risk analysis, where risk exposures may be required with only a few minutes
notice. Compromises, such as limiting the choice of pricing models, or prematurely terminating
simulations, are usually insufficiently accurate for tail risks and can produce unacceptably biased
estimators.

The literature on nested simulations focuses either on an efficient allocation of computa-
tional budget between outer and inner simulations (e.g. Gordy & Juneja, 2010), or on methods
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to improve the efficiency of inner simulations. Among the work that aims at reducing the compu-
tational burden of inner simulations, two different approaches have been proposed. The first uses
proxy models to replace the inner simulation step, and the second uses a dynamic, non-uniform
allocation of the inner simulations.

Proxy models are tractable analytic functions that replace the inner simulation stage of a nested
simulation. Proxies may be empirical – that is, intrinsic to the simulation process, or may be
extrinsic. Empirical proxies are constructed using an initial pilot simulation to develop factors or
functionals that can subsequently be used in place of the inner simulation. Hardy &Wirch (2004)
used a simple linear interpolation approach for calculating iterated risk measures; several authors,
including Bauer & Ha (2015) use a least squares Monte Carlo method (following Longstaff &
Schwartz, 2001), Risk & Ludkovski (2018) use Gaussian Process regression, and Feng& Jing (2017)
describe a generic partial differential equation approach. Extrinsic proxy functions are selected to
be close to the inner simulation values and therefore require detailed information about the pay-
offs that are evaluated using the inner simulations. See Aggarwal et al. (2016) for other examples.
Proxy methods are popular in practice, but there is a risk that the proxy may become less accurate
over time, without the user becoming aware of the divergence. Rigorous backtesting can be useful
in assessing the continuing suitability of a proxy, but that can be infeasible for long-term contracts.
In this work, we use an extrinsic proxy, but we have revised the role played by the proxy, compared
with the papers cited, and one of the consequences is that the suitability of the proxy model can
be reviewed directly, without backtesting.

Methods utilising a dynamic, non-uniform allocation of the computational budget of a nested
simulation have been developed by Lan et al. (2010), Broadie et al. (2011) and Risk & Ludkovski
(2018). Typically, the total number of inner simulations that will be distributed across the scenar-
ios is fixed. This is the inner simulation budget. The uniform nested simulation method allocates
the inner simulation budget equally across all the scenarios. Dynamic allocation involves non-
uniform allocation of the inner simulation budget. Lan et al. (2010) suggest a two-stage process,
with the results from a small number of initial inner simulations, uniformly allocated, being used
to signal which scenarios were likely to have the most impact on the risk measure. The remain-
der of the inner simulation budget is then allocated only to these scenarios. Broadie et al. (2011)
also use a smaller number of initial trial simulations, but their method then proceeds sequen-
tially, determining which individual scenario should be allocated the next simulation from the
remaining inner simulation budget. Risk & Ludkovski (2018) use a trial simulation to initialise a
Gaussian Process emulator as empirical proxy and then develop a k-round sequential algorithm
that adaptively allocates the inner simulation budget.

Methods involving trial inner simulations do not transfer well to the VA context. VA options
are typically far out of the money, so a small number of trial inner simulations will not give an
adequate assessment of the hedging losses in the general case, although in some specific cases
importance sampling within the inner simulations could mitigate this problem.

It is also worth noting that in each of Gordy & Juneja (2010), Broadie et al. (2011) and Risk &
Ludkovski (2018), the problem involves a single-step outer scenario, which facilitates a sequential
approach, as there is only one set of inner simulations to consider for each scenario. In the multi-
period problem that we are considering, typically, an insurer will project risk factors up to 20 years
ahead, in weekly or monthly time steps, and new inner level simulations (which may be single or
multi-period, depending on the path dependency of the embedded options) are required at each
time step of each scenario, as illustrated in Figure 1. The main challenge in applying the methods
developed for single-period nested simulation to the multi-period problem is the multiplicative
increase in the dimension of the problem being considered. When conducting pilot simulations, a
significant amount of computation may be required to produce any meaningful signal as to which
scenarios belong to the tail. When applying regression techniques, if we try to apply single-step
methods directly, the dimension of the multi-period problem will be hundreds of times the size of
the single-period problem.
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In this paper, we introduce a dynamic importance allocated nested simulation (DIANS)
methodology, which is an extension of the IANS method introduced in Dang et al. (2020). The
method combines elements of the proxy model approach with elements of the dynamic allocation
approach. More specifically, DIANS uses a proxy model to indicate which scenarios are likely to
generate the most significant losses and then allocates the entire inner simulation budget to that
subset of scenarios. Our proxy model takes on the role of the initial trial simulations in Lan et al.
(2010) and Risk & Ludkovski (2018), but without using any of the inner simulation budget. The
proxy model values are not used directly in the estimation of the risk measure, and they are only
used to determine the allocation of the inner simulation budget. Hence, the proxy model does not
have to provide an accurate valuation of the underlying losses; it only has to provide a reasonably
accurate ranking of the values of the underlying losses. Because the rankings generated by the
proxy will not exactly match the underlying ranking, we apply a margin to allow for the differ-
ence between the rankings generated by the proxy model and more accurate rankings generated
by inner simulation. In the IANS method, this margin is fixed and arbitrary. The contribution
of this paper is to remove that arbitrary margin and replace it with a dynamic algorithm, based
on the relationship between the proxy model and inner simulation rankings for a trial subset of
scenarios; if the relationship is not sufficiently close, the subset of scenarios assigned to the tail
set is increased iteratively. The closeness of rankings is measured using the empirical copula to
generate moments of concomitant of order statistics (David, 1973) for the proxy model in relation
to the inner simulation model. The dynamic methodology not only reduces the need for subjec-
tive input, it also provides a measure for assessing the performance of the extrinsic proxy. If the
iterative process indicates a need to incorporate a very large number of scenarios into the tail set,
that signals that the proxy is not performing adequately, reducing the reliance on backtesting.

We note that our work is concerned with the efficient estimation of risk measures for a single
policy. In practice, VA portfolios may include hundreds of thousands of contracts with different
demographic profiles. This very large number of model points generates a need for a different kind
of efficiency, reducing the reliance on seriatim policy valuation. Other research has considered this
issue, combined with methods for estimating the losses on a large heterogeneous portfolio. Gan &
Valdez (2019) present various metamodelling approaches to select representative policies and use
functional approximations to predict the values of the entire portfolio. Lin & Yang (2020b, a) also
consider nested simulation of a large portfolio, Lin & Yang (2020b) in the single-period and Lin &
Yang (2020a) in the multi-period setting. They use a cube sampling algorithm to select representa-
tive policies and use clustering to select representative outer scenarios. Functional approximations
are then used to predict the value of the liabilities. Their work demonstrates a significant compu-
tational saving, but the larger impact (around 98% of the computational saving) is achieved by
reducing the number of model points, through the use of representative policies. This paper has
a different focus; we are concerned with improving the estimation of the tail measures efficiently,
for a given representative policy.

The paper is structured as follows. Section 2 describes how the liability of a VA contract with
dynamic hedging is modelled using a standard, multi-period nested simulation, with uniform
allocation of the inner simulation budget to all the scenarios. Section 3 presents the DIANS proce-
dure. In section 4, we illustrate the methodology using two types of VA guarantees to demonstrate
the potential improvement in computational efficiency by using the DIANS procedure. Section 5
concludes the paper.

2. Uniform Nested Simulation for Variable Annuity Hedge Costs
2.1 Dynamic hedging for variable annuities via nested simulation
In this section, we present the methodology for a generic VA liability. In section 4, we describe the
more specific assumptions used for numerical illustrations. The description here is similar to that
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in Dang et al. (2020), but we have extended the notation to allow for the extension to a dynamic
methodology. For more information on VA contracts and different types of guarantees, see for
example Hardy (2003).

In a dynamic hedging programme, a hedging portfolio is set up for a block of VA contracts
using stocks, bonds, futures and possibly options. The hedging portfolio is rebalanced periodically,
responding to changes in market conditions and in the demographics of the block of contracts. In
this paper, we consider a delta hedge for a single VA contract.

We assume the term of the VA is T years, and the hedging portfolio is rebalanced every h years;
h is also the size of time step for the outer level scenarios.

Let ωi(t) denote the ith outer level scenario information up to time t; ωi(T)= ωi.
At any t ≤ T, let Si(t) be the underlying stock price at time t in outer scenario i. We assume

that the delta hedge for the embedded option is composed of �i(t) units in the underlying stock,
and a sum Bi(t) in a risk-free zero coupon bond maturing at T. The delta hedge portfolio at t − h
is then,

Hi(t − h)= �i(t − h)Si(t − h)+ Bi(t − h)

Let Di(t1, t2), t1 ≤ t2 be the present value at t1 of $1 payable at time t2, discounted at the risk-free
rate. At time t, before rebalancing, the value of the hedge brought forward from t − h is

Hbf
i (t)= �i(t − h)Si(t)+ Bi(t − h)

Di(t − h, t)
(1)

The cash flow incurred by the insurer, which we call the hedging error, is the difference between
the cost of the hedge at t and the value at t of the hedge brought forward from t − h:

HEi(t)=Hi(t)−Hbf
i (t) (2)

We assume management fees are deducted from policyholder’s fund at a gross rate of ηg per h
years, and that a portion equal to (1− ηn

ηg ) is used to cover expenses, so that the insurer’s income
from fees is received at at a net rate of ηn per h years.

The costs to set up the initial hedging portfolio, the periodic hedging gains and losses due to
rebalancing at each date, t = h, 2h, ..., T, the final unwinding of the hedge, the payment of guaran-
teed benefit and the management fee income, are recognised as part of the profit and loss (P&L) of
the VA contract. The present value of these cash flows, discounted at the risk-free rate of interest,
constitutes the liability of the VA to insurers; this is the loss random variable to which we apply a
suitable risk measure.

For a guaranteed minimum maturity benefit (GMMB) the guaranteed payout at T is a fixed
sum G, and the liability can be decomposed as follows. Let Fi(t) denote the value of the policy-
holder’s funds at t. The funds increase in proportion to a stock index with value Si(t) at t, net of
the gross management fee deduction. Let F(0)= S(0), then Fi(t)= Si(t)e−ηg t . The cost of the ini-
tial hedge is H(0)= �(0)S(0)+ B(0), which does not depend on ωi. The random loss generated
by the ith scenario, Li, is

Li =H(0)+
T/h−1∑
k=1

(
HEi(kh)− (eη

n − 1)Fi(kh)
)
D(0, kh)+

(
(G− Fi(T))+ −Hbf

i (T)
)
D(0, T)

(3)

For a guaranteed minimum accumulation benefit (GMAB) the guaranteed payout involves two
dates: the renewal date, T1, and the maturity date, T > T1. Let Gi(t) denote the guarantee value
at t, under scenario i. We assume that Gi(0)= F(0) (i.e. the initial guarantee is equal to the initial
investment). At time T1, if the fund value is less than Gi(0), then the insurer pays the difference
into the fund. If the fund value is greater than the initial guarantee, then the guarantee reset to be
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Algorithm 1: Standard multi-period nested simulation for estimating the CTE of VA
hedging loses.

equal to the fund value. The random loss generated by the ith scenario, Li, is

Li =H(0)+
T/h−1∑
k=1

(
HEi(kh)− (eη

n − 1)Fi(kh)
)
D(0, kh)+

(
(Gi(T)− Fi(T))+ −Hbf

i (T)
)
D(0, T)

(4)
where the pay-off at T1, if any, is captured in HEi(T1), and Gi(T)=max (Fi(0), Fi(T1)).

L̂i represents the estimated value of Li based on the inner simulations.
The risk measure of interest is the α-CTE (Wirch & Hardy, 1999), which is the expected loss

given that the loss lies in the 1−α tail of the distribution. This is also known as TailVar (Artzner
et al., 1999) and expected shortfall (Acerbi & Tasche, 2002).

GivenM equally likely scenarios, with associated losses L̂1, . . . , L̂M , the empirical α-CTE is

ĈTEα = 1
M − �αM�

M∑
j=�αM�+1

L̂(j) (5)

where L̂(j) is the jth smallest loss value, or jth order statistic, of the M simulated values. To sim-
plify the notation, we assume that αM is an integer hereinafter. In practice, the number of outer
scenarios is generally large enough to satisfy this assumption.

2.2 Multi-period uniform nested simulation
A typical multi-period nested simulation procedure used to estimate the α-CTE is described in
Algorithm 1. The outer simulation in Line 2 projects the underlying stock price under the real-
world measure for K time steps, along with other variables such as lapses and, potentially, interest
rates. The multi-period inner simulation procedure is invoked withN independent replications at
each of the K time steps of each of theM outer scenarios.

The hedge costs at each rebalancing time will depend on the hedging strategy. In our numer-
ical illustrations, the relevant Greeks are estimated using the infinite perturbation analysis (IPA)
method, also known as the pathwise method, (Broadie & Glasserman, 1996; Glasserman, 2013).
Other methods for the computation of Greeks, such as the likelihood ratio method (L’Ecuyer,
1990) or simultaneous perturbation (Fu et al., 2015), give similar results.
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We refer to the total number of inner simulation replications, for each time step, as the simula-
tion budget and denote it by �. For example, the simulation budget in Algorithm 1 is � =M ×N.
We assume that the required number of outer scenarios (M) is fixed; our objective (similarly
to Gordy & Juneja, 2008; Broadie et al., 2011 and Risk & Ludkovski, 2018) will be to improve
accuracy through a non-uniform allocation of the inner simulation budget. Note that the actual
computational budget associated withN inner simulations is greater thanM ×N, as we use a new
set of N simulations at each time step of each scenario.

Given theM outer scenarios, the true m-tail scenario set, denoted Tm, is the subset containing
them scenarios associated with the largest losses. That is,

Tm = {ωi : Li > L(M−m)
}

(6)

where Li is the (unknown) true hedge loss associated with scenario ωi, for i= 1, . . . ,M, and L(j)
is the jth smallest value of the Li’s.

3. Dynamic Importance Allocated Nested Simulation (DIANS)
The DIANS method exploits the fact that the CTE calculation only uses the largest (1−α)M sim-
ulated loss values, so the inner simulation budget can be concentrated on the scenarios which are
most likely to generate the largest losses. We use a proxy model to determine these scenarios.

To identify a suitable proxy model, we first consider why the inner simulation step is needed.
Typically, the complexity in the valuation, leading to the need for the guarantee cost to be deter-
mined using simulation rather than analytically, comes from some combination of the following
issues.

(1) An intractable risk-neutral measure; this is a common problem, as the contracts are very
long term, and models used often involve stochastic volatility, for which analytic valuation
formulae may not be available.

(2) Dynamic lapse assumptions; insurers typically assume that lapses are (somewhat) depen-
dent on the moneyness of the guarantee. A popular version of the dynamic lapse model,
from the National Association of Insurance Commissioners (NAIC, 2019), is described in
section 4.1. Incorporating dynamic lapses creates a path-dependent option valuation that is
not analytically tractable.

(3) The option pay-off is too complex for analytic valuation.

The proxy model should be a tractable model that is close enough to the more complex model to
give an approximate ranking of the scenarios. We might construct the proxy by using a tractable
risk-neutral measure in place of the stochastic volatility model, to cover issue (1) above; we might
use a simplified lapse rate assumption, to deal with issue (2) above, andwemight replace a complex
pay-off with a simpler one that captures most of the costs to cover issue (3) above. We reiterate
that the proxy does not have to give an accurate estimate of the option costs based on the more
complex assumptions; it is sufficient that the scenarios generating the highest losses under the
proxy model overlap significantly with the scenarios generating the highest losses under the full
inner simulation approach.

In cases where no obvious extrinsic proxy model is available, an intrinsic proxy can be con-
structed from PDEs (see Feng, 2014), or by applying likelihood ratio estimators based on a pilot
simulation. The intrinsic proxy only needs to be accurate enough to separate tail scenarios from
the rest of the scenarios, in terms of overall losses. The selection of the proxy model should also
consider the computation cost trade-off. For example, suppose that proxy model A can rank the
scenarios more accurately than proxy model B, but at much greater computational cost. It may
be more efficient to use proxy model B, and increase the inner simulation budget, than to run
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model A with the smaller inner simulation budget. The key to a successful proxy model is to
ensure that the computation cost required in running the proxy model is justified compared to
the computation cost saved by avoiding in inner simulation of non-tail scenarios.

The proxy model is used to identify a set of scenarios that is likely to contain the scenarios
associated with the largest losses. Let LPi denote the loss, based on the proxy model, given scenario
ωi, i= 1, 2, . . . ,M. Let LP(j) denote the jth ranked value of L

P
i . Then the proxy tail scenario set with

m scenarios is denoted T P
m , where

ωi ∈ T P
m ⇔ LPi > LP(M−m)

In other words, a scenario is in the proxy tail scenario set, T P
m , if the proxy loss associated with

that scenario is one of the largestm losses out of the full set ofM losses.
We want the proxy tail scenario set to overlap with the (1− α)M true tail scenario set used in

the α-CTE (given the M scenarios), T(1−α)M . We select m≥ (1− α)M proxy tail scenarios such
that we can be confident that few or no scenarios are in T(1−α)M but not in T P

m . Once we have T P
m ,

the inner simulation budget is allocated, in full and uniformly, to the scenarios in T P
m , with no

further estimation of losses for other scenarios. The estimated loss for ωi ∈ T P
m is mL̂i, and these

are sorted into the sequence mL̂(j), for j= 1, 2, . . . ,m. The estimated CTE is then

ĈTEα = 1
(1− α)M

m∑
j=m−(1−α)M+1

mL̂(j) (7)

The problem here is that in order to capture the largest (1− α)M true tail scenarios, we need
more than (1− α)M proxy tail scenarios. If we use m
 (1− α)M, then we are more likely to
capture the true tail scenarios, but with the inner simulation budget spread more widely, so the
individual loss estimates are less accurate. If we choose a smaller value form, then we risk missing
some of the true tail scenarios, as the proxy rankings will not usually perfectly coincide with the
true rankings.

In Dang et al. (2020) a fixed, arbitrary value of m= (1− α + 0.05)M was used. In this paper,
we use a dynamic method to determine m, based on the emerging closeness of the ranking of
losses from the proxy model and the ranking of losses from an initial set of inner simulations.
This closeness is quantified using results from order statistics described in the following section.

3.1 Dynamic selection of proxy tail scenarios for DIANS
The proxy is successful if the ranking of scenarios based on the proxy model corresponds closely
with the true ranking of the scenarios, which we estimate using simulation. A natural way to
explore how close the rankings are is through the empirical copulas of the bivariate random
variables comprised of the proxy loss and the simulated loss.

Consider the bivariate random variable (LPi , Li), representing the proxy loss and the ran-
dom loss generated by the ith scenarios, for ωi ∈ T P

m . Let (UP
i ,Ui) represent the uniform random

variables generated by applying the marginal distribution functions to LPi and Li, that is(
UP
i , Ui

)= (FLP (LPi ) , (FL (Li)
)

We assume, for convenience, that the losses are continuous; it is straightforward to adapt the
method for mixed distributions. We order them pairs of (UP

i ,Ui) by the UP
i values, from smallest

to largest, giving us the ordered sample:(
UP

(1), U[1]
)
,
(
UP

(2), U[2]
)
, . . . ,

(
UP

(m), U[m]
)
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where UP
(j) is the j-th smallest (or j-th order statistic) of the UP

i values, and U[j] is known as the
concomitant of the jth order statistic (David, 1973).

Let Rj :m denote the rank of the value of Ui corresponding to the jth smallest value in a sample
of m values of UP

i (or equivalently, the rank of the value of Li corresponding to the jth smallest
value of LPi ). Then, we have (

UP
(j), U[j]

)
=
(
UP
(j), U(Rj :m)

)
If UP and U are comonotonic, then Rj :m = j, and we have a perfect proxy in terms of ranking
of losses. If not, then we can use results from David et al. (1977) and O’Connell (1974) to derive
formulae for moments of Rj :m, in terms of the copula function and the copula density function of
UP and U, denoted C(uP, u) and c(uP, u), respectively. We also need the density function of the
rth order statistic among an i.i.d. sample ofm Uniform(0,1) random variables, which is

fj :m(u)= m!
(j− 1)!(m− j)!u

j−1(1− u)m−j.

Proposition 3.1. Let U and V denote U(0,1) random variables, with joint distribution function
C(U,V) and joint density function c(u,v). Let Rj :m denote the rank of the concomitant of the jth
order statistic of U, from a random sample of size m, and let fj :m denote the density function defined
above.

E
[
Rj :m

]= 1+m

⎧⎨⎩
1∫

0

⎡⎣ 1∫
0

C(u, v)c(u, v)dv

⎤⎦ fj−1 :m−1(u)du

+
1∫

0

⎡⎣ 1∫
0

(
v− C(u, v)

)
c(u, v)dv

⎤⎦ fj :m−1(u)du

⎫⎬⎭
E[R2j :m]= 3E[Rj :m]− 2+m(m− 1)

⎧⎨⎩
1∫

0

⎡⎣ 1∫
0

(
C(u, v)

)2c(u, v)dv
⎤⎦ fj−2 :m−2(u)du

+
1∫

0

⎡⎣ 1∫
0

(
v− C(u, v)

)2c(u, v)dv
⎤⎦ fj :m−2(u)du

+2
1∫

0

⎡⎣ 1∫
0

C(u, v)
(
v− C(u, v)

)
c(u, v)dv

⎤⎦ fj−1 :m−2(u)du

⎫⎬⎭
The proof of Proposition 3.1 is shown in Appendix A.

We use this proposition to quantify how well the proxy works at ranking the losses. First, we
set an initial value for the number of proxy tail scenarios, denoted m0. We allocate a portion
of the inner simulation budget to run, say, N0 inner simulations for each scenario in T P

m0 . We
then assess the closeness of the ranking of proxy losses and simulated losses for scenarios in T P

m0 ,
using the moments of rank of the concomitant for a specific order statistic. If the test (described
below) is not satisfied, then we increase the number of scenarios in the set and apply N0 inner
simulations to the newly added proxy tail scenarios. If the proxy is working, our process will cease
after a few iterations, and the remaining inner simulation budget is applied to the final proxy
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tail scenario set T P
m̃ . If the iterations continue, creating tail scenario sets that are larger than a

prescribed maximum, this will signal that the proxy is inadequate.
The test for increasing the sample size, or not, at each iteration proceeds as follows. Assume

that there aremk scenarios in the proxy tail scenario set on the kth iteration. We have preliminary
inner simulation results for each scenario, from which we can construct the empirical copula and
copula density functions.

From these, we can calculate the mean and standard deviation of the rank of a simulated loss
concomitant to any given ranked proxy loss. We choose to consider the d =m0 − (1− α)Mth
ranked proxy loss (this value stays the same through the iterations of mk). For the initial iter-
ation of the process, the number of scenarios in the tail scenario set is m0 = (1− α)M + d, so
d represents the additional scenarios included beyond the minimum of (1− α)M in the initial
iteration.

We use the mean and standard deviation of the rank of concomitant of the dth ranked proxy
loss to calculate a one-sided upper 95% bound for the concomitant rank:

bk = E
[
Rd:mk

]+ 1.645
√
V
[
Rd:mk

]
(8)

If this upper bound is greater than mk − (1− α)M, then we increase the sample size, to
mk+1 = (1− α)M + bk, and repeat the test.

Algorithm 2 describes the process.
The choice of d =m0 − (1− α)M in the test for adequacy of T P

mk
is a convenient heuristic.

Intuitively (assuming positive correlation between proxy and true losses), we might prefer to use
the lowest available order statistic (the minimum for which the mean and variance of the rank
of the concomitant can be calculated is d = 3), but this will be more unstable due to the higher
uncertainty at the boundary of the empirical copula. In the numerical experiments illustrated in
section 4, we chose d = 150.

The initial number of inner simulations, N0, is a design variable that needs to be chosen care-
fully. If N0 is too low, then the simulated losses will be subject to greater sampling variability,
leading to greater variability in Rj :m. This will tend to generate a higher number of tail scenarios
(mk), which is wasteful of the inner simulation budget. On the other hand, if N0 is too high, then
we may run out of computation budget. One approach is to set N0 to be the minimum number
of inner simulations required for an adequate assessment of the losses, which will depend on the
nature and moneyness of the embedded option.

Note from Line 14 of the algorithm that it may stop without calculating the CTE, if the num-
ber of proxy tail scenarios selected exceeds mmax. A valuable feature of the algorithm is that it
signals when the proxy and the simulated losses have diverged such that the number of proxy
tail scenarios required to capture the true tail scenarios would be too large, in the sense that the
inner simulation budget would be spread too thinly for adequate accuracy of the tail risk measure
estimate. An example is shown in the following section. Setting mmax =M removes the stopping
point so that, if necessary, the algorithm continues until allM scenarios are included in the inner
simulation set. In this case, the DIANS procedure becomes a standard nested simulation.

Another useful feature of the algorithm is that each round of iteration provides the sample
size for the next round. Even though statistics such as Spearman’s rho or Kendall’s tau also give an
indication of the level of rank dependency, they provide no guidance on the sample size increment,
nor do they offer any objective criteria for when the iteration could stop.

The algorithm specifically targets the α-CTE estimate, but it can be easily adapted to other
tail risk measures such as the α-VaR. The only change required in the algorithm is to replace
the CTE estimator in Line 25 by a VaR estimator such as the one proposed by Hyndman & Fan
(1996):
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Algorithm 2: Dynamic proxy tail scenario selection procedure.

V̂aRα = (1− γ )̂L(m̃−(M−g)) + γ L̂(m̃−(M−g)+1) (9)

where g = �(M + 1
3 )α + 1

3� and γ = (M + 1
3 )α + 1

3 − g. See Kim & Hardy (2007) or Risk &
Ludkovski (2018) for a fuller account of bias reduction in VaR estimation.
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4. Numerical Experiments
4.1 Example contracts andmodel assumptions
We illustrate the DIANS procedure by applying it to estimate the 95% CTE of the hedging costs
for a GMMB and GMAB contract under a Markov regime-switching lognormal asset model, with
a dynamic lapse assumption.

Both the GMMB and GMAB contracts are 20-year, single-premium policies. The premium is
1,000. The risk is managed using delta hedging, rebalanced at monthly intervals.

In the GMMB example, the contract has a guaranteed return of premium at maturity. A gross
management fee of 1.75% per annum is deducted monthly from the policyholder fund value, of
which 0.30% per annum is returned as net fee income for the insurer. The remaining fee of 1.45%
per annum is assumed to pay for expenses that are not modelled explicitly.

In the GMAB example, the contract has a renewal in 10 years’ time and matures in 20 years.
A gross management fee of 2.00% per annum is deducted monthly from the policyholder fund
value, of which 0.60% per annum is counted as net fee income for the insurer. The remaining fee
of 1.40% per annum is assumed to pay for expenses that are not modelled explicitly.

To simplify the presentation, we assume that there are no transactions costs and we ignore
mortality.

Returns on the policyholder’s funds, under the real-world measure, are modelled as a regime-
switching lognormal process with two regimes, using monthly time steps. The model parameters
are given in Appendix B.1.

Returns on the policyholder’s funds under the risk-neutral measure are the same as under the
real-world measure, but with the mean log returns adjusted in each regime to generate a risk-
neutral distribution. All other parameters are unchanged. This is the same approach as used, for
example, by Bollen (1998) and Hardy (2001).

The dynamic lapse behaviour of policyholders is modelled using the NAIC formula (NAIC,
2019). The monthly lapse rate from t to t + 1

12 is

1
12
qlx+t =min

(
1, max

(
0.5, 1− 1.25×

(
G(t)
F(t)

− 1.1
)))

× 1
12
ql−base
x+t (10)

where F(t) is the fund value at t, G(t) is the guarantee at t, and

1
12
ql−base
x+t =

{
0.00417 if t < 7,
0.00833 if t ≥ 7

(11)

The proxy liabilities are calculated using the Black–Scholes put option formula (so the proxy
model assumes geometric Brownian motion for the stock return process) with volatility recali-
brated at each time t, depending on ωi(t). Under the proxy model, lapse rates are assumed to be
constant, equal to the base rates of the dynamic lapse rate model.

4.2 Proxy losses versus true losses
We conduct a large-scale, full uniform nested simulation as a benchmark, against which we will
compare the results of the DIANS method.

We use 5,000 outer scenarios, with 10,000 inner simulations at each time step of each scenario.
We assume (after some testing) that this is sufficient to give a very accurate evaluation of the loss
for each scenario ωi, so for convenience, we will designate these the “true” losses associated with
each ωi, denoted Li.

We also apply the proxy model to each of the 5,000 scenarios, generating proxy losses, LPi . In
Figure 2, we show the proxy losses (x-axis) plotted against the true losses (y-axis).

We assume that we are interested in the 95% CTE, which involves the largest 250 losses from
the 5,000 scenarios. The “+”’s in Figure 2 represent T250 \ T P

250, that is, the losses that are ranked
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Figure 2. Simulated losses in 5,000 outer scenarios, by proxy valuation (x axis) and by inner simulation (y axis). Region above
the horizontal line indicates the worst 5% loss by inner simulation. Region to the right of the vertical line indicates the worst
5% loss by proxy valuations.

in the top 5% of the Li but are not in the top 5% of the proxy loss estimates. The “∗”’s represent
T P
250 \ T250. Losses that lie on the right of the vertical line correspond to the worst 5% proxy losses,

while losses that lie above the horizontal line correspond to the worst 5% true losses.
In Figure 3, we show the quantile of the simulated losses presented in Figure 2. It suggests that

the ranking of losses from inner simulation are reasonably well correlated to the ranking of losses
from the proxy model.
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Figure 3. P–P plots of the simulated loss cumulative distribution functions in 5,000 outer scenarios, by proxy valuation (x
axis) and by inner simulation (y axis); GMMB (top figure) and GMAB (bottomfigure). The vertical and horizontal line represent
the respective 95% quantile on the x and y axis.
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We note from Figures 2 and 3 that although the proxymodel produces similar ranking of losses
to the “true” losses, the actual values of the losses produced by the proxy model are very different
to the accurate inner simulation model losses; the points in Figure 2 deviate significantly from the
y= x line in each plot. This means that we cannot simply use the proxy estimates of loss in the
risk measure – we must proceed to the inner simulation step of the algorithm.

In addition, Figure 4 illustrates the final empirical copula used in applying the DIANS proce-
dure to the 5,000 scenarios presented in Figure 2. The empirical copula suggests the proxy and
inner simulation losses within the proxy tail scenarios set T P

m̃ are also fairly well correlated, with
the correlation in the empirical copula of the GMMB being stronger than that of GMAB. This has
an impact on the number of proxy tail scenarios identified by the DIANS algorithm for the two
different types of contracts, as we will see in section 4.4.

4.3 Identifying T P
m̃

We explore the variablesm∗ and m̃, where T P
m∗ is the smallest set of proxy tail scenarios containing

T250, and m̃ is the number of proxy tail scenarios identified by the DIANS algorithm.
To do this, we run 20 repetitions of the DIANS algorithm, each using the same set of M =

5, 000 scenarios as used in the full uniform nested simulation, and each with the following input
parameters:

� = 5, 000× 200= 106, N0 = 1, 000, m0 = 400, mmax = 5, 000, d = 150

Note that we have setmmax =M, which means that we have allowed the algorithm to continue to
find an unconstrained value of m̃. In practice,mmax is a design variable that the user of the DIANS
procedure would choose, based on the minimum acceptable number of inner simulations.

From the full-scale uniform nested simulation, we know that the minimum number of proxy
tail scenarios required to capture all the true tail scenarios ism∗ =min{m : T250 ⊂ T P

m } = 557.
From the DIANS algorithm, for each repetition we record m̃, which is the final number of

scenarios in the proxy tail scenario set.
The results are illustrated in Figure 5. Each column represents a separate repetition of the

DIANS valuation. In each column, the triangle represents m̃, which is the number of scenarios
included in the tail scenario set using DIANS. The dots (which are the same in each column)
represent the quantitiesM − Rj :M , forM = 5, 000, and j= 4, 751, 4, 752, . . . , 5, 000. Here, Rj,M is
the concomitant rank of the jth true tail losses, so M − Rj :M indicates the number of proxy tail
scenarios required to capture the topM − j true tail scenarios. The maximum value ofM − Rj :M
(i.e. the top dot in each column) is m∗, which is the number of proxy tail scenarios required to
capture the scenarios generating the top 5% of true losses.

We see from the figure that m̃ remains relatively stable across the experiments. We also see that
for both the GMMB and the GMAB, in each of the 20 experiments, the threshold generated by
the DIANS algorithm (the triangle) lies above the maximum required to capture all the true tail
scenarios (represented by the uppermost dot), meaning that the algorithm generated a proxy tail
set that included all the true tail scenarios. On the one hand, this is encouraging – the algorithm,
here, does a good job of capturing all the true tail scenarios. On the other hand, in the GMMB
case, the number of proxy tail scenarios selected is significantly greater than the number required
to capture the true tail scenarios, signalling that we might be wasting computational effort. There
is a trade-off here, between ensuring that the true tail scenarios are all captured, and ensuring
that the inner simulation budget is sufficiently concentrated to give reliable results. The balance
between these competing objectives can be adjusted by increasing or decreasing the confidence
level used for the bound in Algorithm 2.
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Figure 4. Empirical copula of simulated losses within the proxy tail scenarios set T P
m̃ . The same legends as in Figure 2 are

used.
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Figure 5. Actual inverse rank of concomitant of true tail losses and m̃ (threshold generated by DIANS), for 20 repeated
experiments described in section 4.3; GMMB (top) and GMAB (bottom).

4.4 CTE estimation
In this section, we compare the estimated 95% CTEs of the losses for both the GMMB and the
GMAB described in section 4.1. We fix the inner simulation budget and apply the following
estimation methods:

(a) DIANS, as described in Algorithm 2, parameters as in the previous section.
(b) Fixed (non-dynamic) importance allocation nested simulation (Dang et al., 2020) with

(b1)m= 0.15×M = 750.
(b2)m= 0.10×M = 500.
(b3)m= 0.05×M = 250.

(c) Standard nested simulation with equal number of inner simulation.

Each experiment is repeated 100 times. The outer scenarios used for each repetition of each
experiment are the same, so the differences between the results arise solely from tail scenario
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Table 1. Results from 100 repetitions of fixed and dynamic IANS process, and standard nested simulation,
GMMB example, with standard errors. All values are based on a single outer scenario set.

Average % of
true tail scenarios

Experiment m N RMSE used in CTE estimation

(a) Dynamic IANS,m0 = 400 ≈ 654 ≈ 1, 528 0.121% (0.008%) 96% (0.1%)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b1) Fixed IANS 750 1,333 0.134% (0.010%) 96% (0.1%)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b2) Fixed IANS 500 2,000 0.118% (0.009%) 96% (0.1%)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b3) Fixed IANS 250 4,000 3.997% (0.007%) 78% (0.0%)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) Uniform inner simulation 5,000 200 0.674% (0.032%) 90% (0.1%)

Figure 6. Box and whisker plot of results from 100 repetitions of fixed and dynamic IANS process and standard nested
simulation, GMMB example.

selection, and sampling variability at the inner simulation stage. The scenarios are also the same
as those used for the large-scale nested simulations illustrated in Figure 2, which were used to
calculate the accurate CTE estimate used as the basis for the root mean square error (RMSE)
values below.

The inner simulation budget is fixed at � = 106. Using importance allocated nested simulation,
with a fixed number of scenarios,m say, in the proxy tail scenario set, means that each scenario in
the tail scenario set would be allocated 106/m inner simulations, at each time step of the scenario.

The DIANS approach uses the same inner simulation budget, but with a dynamic search
algorithm to set the size of the proxy tail set. The additional run time created by the dynamic
algorithm is negligible, so the different methods can be viewed as essentially equal in terms of the
computational cost.

The results for the GMMB experiments are summarised in Table 1 and are illustrated in the box
and whisker plot in Figure 6. The results for the GMAB experiments are summarised in Table 2
and are illustrated in the box and whisker plot in Figure 7. In the tables, the RMSE is the root
mean square error, expressed as a percentage of the accurate CTE value.
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Table 2. Results from100 repetitions of fixed and dynamic IANS process, and standard nested simulation, GMAB
example, standard errors in brackets.

Average % of
true tail scenarios

Experiment m N RMSE used in CTE estimation

(a) Dynamic IANS,m0 = 400 ≈ 826 ≈ 1, 210 0.208% (0.011%) 92% (0.1%)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b1) Fixed IANS 750 1,333 0.167% (0.011%) 92% (0.1%)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b2) Fixed IANS 500 2,000 0.409% (0.013%) 89% (0.1%)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b3) Fixed IANS 250 4,000 5.671% (0.007%) 57% (0.0%)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) Uniform inner simulation 5,000 200 1.201% (0.030%) 82% (0.2%)

Figure 7. Box and whisker plot of results from 100 repetitions of fixed and dynamic IANS process and standard nested
simulation, GMAB example.

In the final column of Table 1, we show the percentage of true tail scenarios used in the 95%
CTE estimation of the GMMB experiments. In experiments (a) and (b1), although Tm̃ captured
all the true tail scenarios, the ranking of the tail scenarios in each case is not identical to the
benchmark run due to inner simulation noise. As a result, only 96% of the true tail scenarios were
used in the actual CTE calculation. We note from Figure 2 that, close to the threshold of the top
5% of true losses, the values of the losses immediately above the threshold are very close to the
losses immediately below the threshold, so a small amount of replacement, in this example, makes
little difference to the CTE estimation.

In this example, the RMSE results suggest that the dynamic IANS procedure achieves signifi-
cantly higher accuracy than IANS with fixedm= 250, achieves very similar results compared with
IANS, with fixedm= 750 orm= 500, and significantly outperforms the uniform inner simulation
method.

The RMSEs in methods (a), (b1) and (b2) are similar because the minimum number of proxy
tail scenarios required to capture the full set of true tail scenarios is m∗ = 557 (for this set of ω).
Thus, any importance allocation method with m> 557 would capture all the true tail scenarios,
and that includes the DIANS case (m exceeded 557 in each of the 100 repetitions) and the fixed
IANS case withm= 750. For the fixed IANS case withm= 500< 557, some true tail scenarios are
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omitted from the inner simulation stage; from the top plot in Figure 5, by looking at the number
of dots lying above the y= 500 line, we see that using 500 proxy tail scenarios will miss just 2 true
tail scenarios. Even though the true tail scenarios are all, or almost all captured in experiments
(a), (b1) and (b2), the losses for the tail scenarios are estimated with different numbers of inner
simulations in each of the three experiments. The difference in RMSE between experiments (a)
and (b1) is driven entirely by the difference in the number of inner simulations deployed to each
scenario in Tm; both methods capture all the true tail scenarios, but the DIANS method does
so with less redundancy, and therefore more accuracy in the loss estimation. This is illustrated
in Figure 6, which shows that both experiments appear to generate unbiased estimators, but the
variance of (b1) is a little greater than the variance of (a). Experiment (b2) misses two true tail
scenarios, but achieves more accurate results for those that it does capture. Because it misses some
true tail scenarios, the CTE estimate is biased low (as we can see in Figure 6). However, in this
case, the bias is compensated by the low variance in the RMSE calculation.

In contrast, the RMSE under experiment (b3) is close to 30 times that of the DIANS result.
Experiment (b3) uses a fixed m of only 250, allowing no cushion for losses that are in the top 5%
under the accurate calculation, but are below the top 5% by the proxy calculation. The evaluation
of loss for each scenario in the proxy tail set will be more accurate, using 4,000 inner simulations,
but many true tail scenarios are missed in this experiment. The missed tail scenarios are replaced
with others that are lesser ranked, based on the initial simulation values, so the CTE estimate is,
again, biased low – much more significantly than in (b2). Note that, comparing the result from
method (b3) with the uniform nested simulation result, in method (c), we see that if the impor-
tance allocation method misses too many true tail scenarios the result is actually worse than using
a uniform allocation of inner simulation under the same budget. This underscores the usefulness
of using the dynamic IANS procedure to ensure sufficient tail scenario coverage, rather than a
fixed IANS method. In practice, we do not know the value of m∗; the advantage of the dynamic
IANS procedure is that we eliminate the subjectivity involved in selecting a fixedm.

Note that the positive bias indicated in the uniform nested simulation approach (experiment
(c)) results from evaluating discrete hedging errors for out-of-the-money options with a small
number of simulations (Boyle & Emanuel, 1980).

In the GMAB case, the greater volatility in estimated losses for each scenario means that a
larger number of additional proxy tail scenarios are required to capture all 250 true tail scenar-
ios. GMABs involve very significant gamma risk (Hardy, 2003), particularly at the renewal dates,
when the delta of the option can decline sharply from positive to negative. There is, therefore,
significantly more hedging error from a delta hedge of a GMAB than of the GMMB. For this set
of scenarios, the number of proxy tail scenarios required to capture all 250 true tail scenarios is
m∗ = 787. The DIANS method captures all these scenarios, with an average m of 826, but with
only (on average) 1,210 inner simulations allocated to the valuation for each step in each scenario;
this number is relatively small, leading to a small positive bias in the estimation. The fixed IANS
method withm= 750 captures all but one of the true tail scenarios and has a slightly higher inner
simulation budget than the DIANS method, with the result that the RMSE is slightly better than
the DIANSmethod. Experiments (b2) and (b3) both have values ofm that are too small, missing a
significant number of true tail scenarios, creating an estimate that is biased low, with much larger
RMSEs. The result for the uniform nested simulation method is similar to the GMMB case.

4.5 VaR estimation
In this section, we repeat the DIANS (experiment (a)) and standard nested simulation (experi-
ment (c)) in section 4.4, but for a 99% VaR estimation. The purpose of these experiments is to
demonstrate the gain in computation efficiency by applying the DIANS procedure in a quantile
risk measure estimation further into the tail region of the loss distribution.
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Table 3. 99% VaR results from 100 repetitions of dynamic IANS process and stan-
dard nested simulation. Standard error of the results indicated in bracket. All values
are based on a single outer scenario set, ω.

Experiment m N RMSE

GMMB
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dynamic IANS,m0 = 200 ≈ 324 ≈ 3, 083 0.402% (0.027%)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Uniform inner simulation 5,000 200 0.900% (0.057%)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GMAB
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dynamic IANS,m0 = 200 ≈ 368 ≈ 2, 773 0.593% (0.024%)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Uniform inner simulation 5,000 200 1.503% (0.064%)

Figure 8. Box and whisker plot of 99% VaR results from 100 repetitions of fixed and dynamic IANS process, and standard
nested simulation, GMMB (left) and GMAB (right) example.

We apply the same experiment setting and used the same sets of outer scenarios for GMMB and
GMAB, respectively, as in section 4.4. The DIANS experiment was conducted using Algorithm 2
with α = 99% and the VaR estimator in equation (9).

The parameters and results of the experiments are summarised in Table 3. The results are also
illustrated in the box and whisker plots in Figure 8.

Given the same computation budget, the DIANS procedure achieves an RMSE of less than 1/2
of the standard nested simulation method. The improvement is less significant than that observed
in the CTE estimation. There are two main reasons for this. The first is that in nested simulations,
as the number of inner simulation increases, the bias of the estimated CTE reduces faster than
bias of the estimated VaR; see the convergence results derived in Gordy & Juneja (2010). The
second reason is that there is more variance in the VaR estimate than the CTE estimate. The
CTE is estimated by taking the average of all relevant tail scenario loss, which smooths out some
variations in losses of individual tail scenarios. In contrast, the VaR is only a weighted average of
losses in two individual tail scenarios.
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Figure 9. Actual inverse rank of concomitant of true tail scenarios and and m̃ (threshold generated by DIANS), in 20 repeated
experiments in section 4.6 (sensitivity test).

We also observe that the DIANS procedure results in a negative bias in the VaR estimate,
whereas the standard nested simulation results in a positive bias. In the standard nested simu-
lation, due to inner simulation noise some non-tail scenarios are misclassified as tail scenarios.
Moreover, as we are interested in scenarios with the highest losses, scenarios with positive biases
are more likely to be (mis)classified as tail scenarios and carried to the tail risk estimate (VaR
or CTE). As Gordy & Juneja (2010) point out, this positive bias in standard nested simulation
diminishes as computational budget increases.

The negative bias in the DIANS procedure is caused by possible misclassification of non-tail
scenarios in the proxy tail scenario set, similar to our observation in experiment (b3) in the CTE
experiments (see Figures 6 and 7). The misclassified non-tail scenarios inherently have lower
loss estimates which is estimated more accurately in the DIANS procedure due to concentra-
tion in the computational budget. As a result, a negative bias in the tail risk measure occurs when
misclassification of non-tail scenarios happens.

With a higher computational budget, the DIANS procedure would identify the tail scenar-
ios more accurately by deploying more inner simulations in the pilot runs. This would lead a
more accurate estimate of ranking of scenarios and eventually eliminate the negative bias in VaR
estimation.

4.6 Identifying a bad proxy
With all methods based on proxy modelling, there is a risk that, over time, the relationship
between the true loss and the proxy loss can deteriorate; the simplifications used in the proxy
model may drift too far from the real-world experience, or the proxy model parameters may need
to be updated. An advantage of the DIANS approach is that the suitability of the proxy model can
be assessed directly using the DIANS output, without the need for additional backtesting.

To illustrate, we repeat the experiment from section 4.3, but with very different parameters for
the fund returns, specified in Appendix B.2. These parameters generate prolonged periods of very
poor mean returns and very high volatility.

The results are shown in Figure 9. As in Figure 5, each column represents a repetition of the
DIANS procedure under shocked parameters. The highest dot marks m∗, the minimum number
of proxy scenarios required to capture the true 5% tail scenarios, and the triangle represents the
cut-off identified by the DIANS algorithm, but without the constraint in Line 14 of Algorithm 2,
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Figure 10. Examples of empirical copulas for proxy tail scenario sets.

thatmk ≤mmax. In fact, in all cases, the algorithm would be stopped asmk exceeds the maximum
of 1,000 scenarios. A small amount of investigation in this case indicates that the constant lapse
assumption used in the proxy is not sufficiently accurate when the fund returns are consistently
poor for long periods, as is the case under the new parameters. A small change to the lapse
assumption restores the proxy model as an adequate signal for the tail scenarios.

Checking how close m̃ is to mmax is only one way that the DIANS procedure signals an
inadequate proxy. Other indicators include the following.

• The Spearman’s rank correlation can be calculated for the m̃ proxy losses and simulated losses
in the proxy tail scenario set. A strong proxy will have a rank correlation, greater than, say,
0.75. An adequate proxy will have a rank correlation of at least around 0.6. Lower correlations
indicate that the proxy needs to be updated.

• The plots of (UP
j , Ûj) (which are p−p plots for the proxy and simulated losses), generated by

successive iterations ofmk, can give a visual signal of the proxy model adequacy. If the proxy
is working well, then the p−p plots will show strong clustering around the y= x line through
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successive iterations. If there are a significant number of outliers, that could indicate that the
proxy is systematically missing some of the true tail scenarios.

In Figure 10, we show examples of copulas generated by successful and unsuccessful proxies.
In each case, M = 5, 000 and m0 = 400. Figure 10(a) shows the same copula in the GMMB
experiment as in Figure 4(a). As discussed in section 4.2, the proxy is a good indicator of the
ranking of the losses. The Spearman’s correlation coefficient was ρs = 0.6 on the first iteration of
the algorithm, and ρs = 0.8 on the third and final iteration, and m̃ ended at 652 scenarios.

Figure 10(b) shows the copula from the GMAB experiment. As mentioned earlier, this is a less
accurate proxy than the GMMB case. The Spearman’s correlation coefficient was ρs = 0.4 on the
first iteration of the algorithm, and ρs = 0.6 on the third and final iteration, and m̃ ended at 823
scenarios.

In Figure 10(c), the p−p plot indicates that the proxy is not a good indicator of the ranking of
the simulated losses. The Spearman’s correlation coefficient in this example was ρs = 0.2 on the
first iteration of the algorithm, and ρs = 0.3 on the fourth and final iteration. The final m̃was close
to 1,400 scenarios.

In Figure 10(d), the copula indicates that the proxy is capturing some of the tail scenarios, but
is also misclassifying some. This can happen, for example, for more complex payouts with two
triggers, and where the proxy only captures one trigger. The Spearman’s correlation coefficient
in this case was ρs = 0.55 on the first iteration, and ρs = 0.56 on the seventh and final iteration.
The final number of scenarios in T P

m̃ was just under 600, which would not indicate that the proxy
was inadequate. The only signals here of an inadequate proxy are the Spearman’s rho and the p−p
plot.

5. Conclusion
In both insurance and finance, risk management of more sophisticated products, with longer
horizons, and with more complex economic capital requirements, is creating computational com-
plexity that challenges even the most powerful computing environments. The development of
efficient, accurate and implementable computational tools is important and timely. The DIANS
method provides a practical tool for nested simulation in insurance liability measurement and
has potential for application to a wider range of problems, including, for example, assessing
semi-static hedging strategies, estimating multi-period risk measures (Hardy & Wirch, 2004;
Devolder & Lebègue, 2017), and calculating Solvency II regulatory capital requirements (Bauer
et al., 2012). It is particularly useful for path-dependent problems, where the non-uniform allo-
cation approaches of Gordy & Juneja (2010) and Broadie et al. (2011) are not directly applicable.
Compared with full proxymodel approaches, the DIANS offersmore accurate calculation and also
signals an inadequate or ineffective proxy. The extra calculation involved in the process of finding
the appropriate size for the proxy tail scenario set is minor, compared with the computational cost
of additional simulations.

The identification and implementation of a suitable proxy model is a large part of this method-
ology. For most VA guarantees with lump-sum benefits (i.e. excluding GMWBs and GMIBs) the
Black–Scholes option pricing framework provides the obvious resource. Complex VA guarantees
can be mapped to formulas or numerical approximations developed for exotic options; for exam-
ple, the GMMB with resets is very similar to a “put-on-the-max,” or high water mark option, for
which a valuation formula was provided in Goldman et al. (1979).

Where no tractable Black–Scholes valuation approach is available, the proxy model is most
likely to be generated intrinsically. This may involve a regular calibration exercise to construct
empirical valuation functions based on key scenario variables. The PDE valuation method of
Feng (2014) could be used to construct a proxy model, which can then be combined with tar-
geted inner simulations. In Dang et al. (2021), the proxy model is replaced with a pilot simulation
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using common set of inner simulations, with the inner simulation probabilities adjusted for each
scenario using a likelihood ratio approach.
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A. Proof of Proposition 3.1
For a general bivariate distribution of (U,V), from David et al. (1977), we have

E[Rj :m]= 1+m

⎛⎝ −∞∫
∞

⎡⎣ −∞∫
∞

θ1f (v|u)dv
⎤⎦ fUj−1 :m−1 (u)du+

−∞∫
∞

⎡⎣ −∞∫
∞

θ3f (v|u)dv
⎤⎦ fUj :m−1 (u)du

⎞⎠
(A.1)

where

θ1 = P[U < u,V < v], θ2 = P[U < u,V > v], θ3 = P[U > u,V < v], θ4 = P[U > u,V > v]

If (U,V) has a bivariate uniform distribution, we have

f (v|u)= f (u, v)
fU(u)

= f (u, v)= c(u, v)

θ1 = C(u, v) θ2 = u− C(u, v)
θ3 = v− C(u, v) θ4 = 1− u− v+ C(u, v)

where
C(u,v) is the copula function of U = u and V = v.
c(u,v) is the density function of C(U,V).
fUj :m(u) represents the density function of the jth order statistic amongm U’s:

fUj :m(u)=
m!

(j− 1)!(m− j)!u
j−1(1− u)m−j.

Therefore, in this case, equation (A.1) is equivalent to

E[Rj :m]=1+m

⎛⎝ 1∫
0

⎡⎣ 1∫
0

C(u, v)c(u, v)dv

⎤⎦ fUj−1 :m−1 (u)du

+
1∫

0

⎡⎣ 1∫
0

(
v− C(u, v)

)
c(u, v)dv

⎤⎦ fUj :m−1 (u)du

⎞⎠ (A.2)

To derive the second moment of Rj :m, we first derive the second moment of Rj :m for a gen-
eral bivariate pair, (X,Y), that is, not specifically bivariate uniform distributed. We use the same
factorial moment method as in O’Connell (1974).
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First, we have

E
[
R2j :m

]
=

m∑
s=1

s2P
[
Rj :m = s

]

=
m−1∑
s=0

(s+ 1)2P
[
Rj :m = s+ 1

]

=
m−1∑
s=0

P
[
Rj :m = s+ 1

]+ 2
m−1∑
s=0

sP
[
Rj :m = s+ 1

]+ m−1∑
s=0

s2P
[
Rj :m = s+ 1

]

= 1+ 2(E
[
Rj :m

]− 1)+
m−1∑
s=0

s2P
[
Rj :m = s+ 1

]
(A.3)

More specifically,

m−1∑
s=0

s2P[Rj :m = s+ 1]=
m−1∑
s=0

s2m
∞∫

−∞

∞∫
−∞

t∑
k=0

Ckθ
k
1 θ

j−1−k
2 θ s−k

3 θ
m−j−s+k
4 f (x, y)dxdy (A.4)

where Ck =
(
m− 1
j− 1

)(
j− 1
k

)(
m− j
s− k

)
Let i= s− k, then

m−1∑
s=0

s2P[Rj :m = s+ 1]

=
m−1∑
s=0

s2m
∞∫

−∞

∞∫
−∞

t∑
k=0

Ckθ
k
1 θ

j−1−k
2 θ s−k

3 θ
m−j−s+k
4 f (x, y)dxdy

= n
(
m− 1
j− 1

) ∞∫
−∞

∞∫
−∞

j−1∑
k=0

m−j∑
i=0

(k+ i)2
(
j− 1
k

)(
m− j
i

)
θk1 θ

j−1−k
2 θ i3θ

m−j−i
4 f (x, y)dxdy

=m
(
m− 1
j− 1

) ∞∫
−∞

∞∫
−∞

j−1∑
k=0

m−j∑
i=0

(k2 + i2 + 2ki)

×
(
j− 1
k

)(
m− j
i

)
θk1 θ

j−1−k
2 θ i3θ

m−j−i
4 f (x, y)dxdy (A.5)

Furthermore,

m
(
m− 1
j− 1

) ∞∫
−∞

∞∫
−∞

j−1∑
k=0

m−j∑
i=0

k2
(
j− 1
k

)(
m− j
i

)
θk1 θ

j−1−k
2 θ i3θ

m−j−i
4 f (x, y)dxdy

=m
(
m− 1
j− 1

) ∞∫
−∞

∞∫
−∞

j−1∑
k=0

m−j∑
i=0

k(k− 1)
(
j− 1
k

)(
m− j
i

)
θk1 θ

j−1−k
2 θ i3θ

m−j−i
4 f (x, y)dxd
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+m
(
m− 1
j− 1

) ∞∫
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(
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=m
∞∫

−∞

∞∫
−∞

(
m− 1
j− 1

)
(j− 1)(j− 2)θ21 [FX(x)]

j−3[1− FX(x)]m−jf (x, y)dxdy

+m
∞∫

−∞

∞∫
−∞

(
m− 1
j− 1

)
(j− 1)θ1[FX(x)]j−2[1− FX(x)]m−jf (x, y)dxdy

=m(m− 1)
∞∫

−∞

∞∫
−∞

θ21
f (x, y)
fX(x)

fj−2 :m−2(x)dxdy+m
∞∫

−∞

∞∫
−∞

θ1
f (x, y)
fX(x)

fj−1 :m−1(x)dxdy

=m(m− 1)
∞∫

−∞

⎡⎣ ∞∫
−∞

θ21 f (y|x)dy
⎤⎦ fj−2 :m−2(x)dx+m

∞∫
−∞

⎡⎣ ∞∫
−∞

θ1f (y|x)dy
⎤⎦ dy]fj−1 :m−1(x)dx

(A.6)

Similarly,

m
(
m− 1
j− 1

) ∞∫
−∞

∞∫
−∞

j−1∑
k=0

m−j∑
i=0

i2
(
j− 1
k

)(
m− j
i

)
θk1 θ

j−1−k
2 θ i3θ

m−j−i
4 f (x, y)dxdy

=m(m− 1)
∞∫

−∞

⎡⎣ ∞∫
−∞

θ23 f (y|x)dy
⎤⎦ fj :m−2(x)dx+m

∞∫
−∞

⎡⎣ ∞∫
−∞

θ3f (y|x)dy
⎤⎦ dy]fj :m−1(x)dx

(A.7)

And

m
(
m− 1
j− 1

) ∞∫
−∞

∞∫
−∞

j−1∑
k=0

m−j∑
i=0

ki
(
j− 1
k

)(
m− j
i

)
θk1 θ

j−1−k
2 θ i3θ

m−j−i
4 f (x, y)dxdy

=m(m− 1)
∞∫

−∞

⎡⎣ ∞∫
−∞

θ1θ3f (y|x)dy
⎤⎦ fj−1 :m−2(x)dx (A.8)
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Substitute (A.6), (A.7) and (A.8) back in (A.5), we have

m−1∑
s=0

s2P[Rj :m = s+ 1]

=m(m− 1)
∞∫

−∞

⎡⎣ ∞∫
−∞

θ21 f (y|x)dy
⎤⎦ fj−2 :m−2(x)dx+m

∞∫
−∞

⎡⎣ ∞∫
−∞

θ1f (y|x)dy
⎤⎦ dy]fj−1 :m−1(x)dx

+m(m− 1)
∞∫

−∞

⎡⎣ ∞∫
−∞

θ23 f (y|x)dy
⎤⎦ fj :m−2(x)dx+m

∞∫
−∞

⎡⎣ ∞∫
−∞

θ3f (y|x)dy
⎤⎦ dy]fj :m−1(x)dx

+ 2m(m− 1)
∞∫

−∞

⎡⎣ ∞∫
−∞

θ1θ3f (y|x)dy
⎤⎦ fj−1 :m−2(x)dx

=m(m− 1)

⎛⎝ ∞∫
−∞

⎡⎣ ∞∫
−∞

θ21 f (y|x)dy
⎤⎦ fj−2 :m−2(x)dx+

∞∫
−∞

⎡⎣ ∞∫
−∞

θ23 f (y|x)dy
⎤⎦ fj :m−2(x)dx

+2
∞∫

−∞

⎡⎣ ∞∫
−∞

θ1θ3f (y|x)dy
⎤⎦ fj−1 :m−2(x)dx

⎞⎠+ E[Rr :m]− 1 (A.9)

Substitute (A.9) back in (A.3), we have

E
[
R2j :m

]
=3E

[
Rj :m

]− 2+m(m− 1)×
⎛⎝ ∞∫

−∞

⎡⎣ ∞∫
−∞

θ21 f (y|x)dy
⎤⎦ fj−2 :m−2(x)dx

+
∞∫

−∞

⎡⎣ ∞∫
−∞

θ23 f (y|x)dy
⎤⎦ fj :m−2(x)dx+ 2

∞∫
−∞

⎡⎣ ∞∫
−∞

θ1θ3f (y|x)dy
⎤⎦ fj−1 :m−2(x)dx

⎞⎠
(A.10)

In the case of bivariate uniform distribution of (U,V), we have

E
[
R2j :m

]
= 3E

[
Rj :m

]− 2+m(m− 1)×
⎛⎝ 1∫

0

⎡⎣ 1∫
0

(
C(u, v)

)2c(u, v)dv
⎤⎦ fUj−2 :m−2 (u)du

+
1∫

0

⎡⎣ 1∫
0

(
v− C(u, v)

)2c(u, v)dv
⎤⎦ fUj :m−2 (u)du

+ 2
1∫

0

⎡⎣ 1∫
0

C(u, v)
(
v− C(u, v)

)
c(u, v)dv

⎤⎦ fUj−1 :m−2 (u)du

⎞⎠

https://doi.org/10.1017/S1748499521000257 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499521000257


348 Ou Dang et al.

B. Parameters and Assumptions for Numerical Examples
B.1 Asset return model
The parameters for the P-measure regime-switching model used in section 4.2 are

(Monthly rate) Real world Risk neutral

Risk-free rate: r 0.002 0.002
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mean – Regime 1 (ρ = 1):μ1 0.0085 0.0013875
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mean – Regime 2 (ρ = 2):μ2 −0.0200 −0.0012000
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Standard deviation – Regime 1: σ1 0.035 0.035
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Standard deviation – Regime 2: σ2 0.080 0.080
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Transition probability – from Regime 1: p12 0.04 0.04
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Transition probability – from Regime 2: p21 0.20 0.20

B.2 Shocked asset return model
The parameters for the shocked P-measure regime-switching model used in section 4.6 are

(Monthly rate) Real world Risk neutral

Risk-free rate: r 0.002 0.002
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mean – Regime 1 (ρ = 1):μ1 0.0085 0.0013875
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mean – Regime 2 (ρ = 2):μ2 −0.0500 −0.0180000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Standard deviation – Regime 1: σ1 0.035 0.035
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Standard deviation – Regime 2: σ2 0.200 0.200
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Transition probability – from Regime 1: p12 0.10 0.10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Transition probability – from Regime 2: p21 0.20 0.20
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