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We discuss tilting objects in exact categories. An object 𝑇 of an exact category
A is a tilting object if it has no self-extensions and generates A as a thick
subcategory. There is an analogous notion of a tilting object in a triangulated
category and we see that 𝑇 is tilting in A if and only if it is tilting when viewed
as an object of the derived category D𝑏 (A).

Any tilting object inA gives rise to a cotorsion pair forA, and we characterise
such cotorsion pairs. In fact, a cotorsion pair (X,Y) is determined either by X

or by Y. The subcategory X is resolving and contravariantly finite, while Y

is coresolving and covariantly finite. This yields a correspondence between
equivalence classes of tilting objects and appropriate subcategories.

207

https://doi.org/10.1017/9781108979108.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108979108.013


208 Tilting in Exact Categories

7.1 Cotorsion Pairs

We introduce cotorsion pairs for exact categories and study their basic prop-
erties. A cotorsion pair is given by a pair of subcategories, and of particular
interest are subcategories whose objects are defined via resolutions or coreso-
lutions.

Thick Subcategories and Resolutions
Let A be an exact category. A full additive subcategory C ⊆ A is thick if it
is closed under direct summands and satisfies the following two out of three
property: an admissible exact sequence 0 → 𝑋 → 𝑌 → 𝑍 → 0 lies in C if two
of 𝑋,𝑌, 𝑍 are in C. Given a class of objects C ⊆ A, we write Thick(C) for the
smallest thick subcategory of A that contains C.

Let C ⊆ A be a full additive subcategory. A finite C-resolution of an object
𝐴 in A is an admissible exact sequence (that is, an acyclic complex)

0 −→ 𝑋𝑟 −→ · · · −→ 𝑋1 −→ 𝑋0 −→ 𝐴 −→ 0

such that 𝑋𝑖 ∈ C for all 𝑖. We write Res(C) for the full subcategory of objects in
A that admit a finite C-resolution. A finite C-coresolution is defined dually, and
we write Cores(C) for the full subcategory of objects in A that admit a finite
C-coresolution.

Self-Orthogonal Subcategories
LetA be an exact category. A full additive subcategoryC ⊆ A is self-orthogonal
if it is closed under direct summands and Ext𝑛 (𝑋,𝑌 ) = 0 for all 𝑋,𝑌 in C and
𝑛 ≠ 0.

We wish to resolve objects in A via objects from a self-orthogonal subcate-
gory C. A basic tool is the derived category D(A). In fact, the inclusion C→ A

is exact and induces an exact functor D(C) → D(A).

Lemma 7.1.1. Let A be an exact category and C ⊆ A a self-orthogonal
subcategory. Then the canonical functor

K𝑏 (C) ∼−−→ D𝑏 (C) −→ D(A)

is fully faithful and identifies K𝑏 (C) with a thick subcategory of D(A).

Proof The functor K𝑏 (C) → D𝑏 (C) is an equivalence since C is split exact,
and D𝑏 (C) → D(A) is fully faithful by a dévissage argument (Lemma 3.1.8).
Thus the composite identifies K𝑏 (C) with a triangulated subcategory of D(A);
it is thick because C is closed under direct summands. �
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7.1 Cotorsion Pairs 209

Thick subcategories have been defined for exact and for triangulated cate-
gories. The next lemma shows that these two notions are compatible.

Let us write

Φ : A −→ D(A)

for the inclusion that identifies A with the complexes concentrated in degree
zero. We call a complex 𝑋 in A bounded if 𝑋𝑛 = 0 for |𝑛| " 0.

Lemma 7.1.2. Let A be an exact category and C ⊆ A a self-orthogonal
subcategory. For an object 𝐴 ∈ A the following are equivalent.

(1) 𝐴 ∈ Thick(C).
(2) Φ(𝐴) ∈ Thick(Φ(C)).
(3) There is a bounded complex 𝑋 in C that admits acyclic truncations

· · · −→ 𝑋−3 −→ 𝑋−2 −→ 𝑋−1 −→ Coker 𝑑−2 −→ 0 −→ · · ·

and

· · · −→ 0 −→ Ker 𝑑0 −→ 𝑋0 −→ 𝑋1 −→ 𝑋2 −→ · · ·

which induce an admissible exact sequence

0 −→ Coker 𝑑−2 −→ Ker 𝑑0 −→ 𝐴 −→ 0. (7.1.3)

(4) There is a bounded complex 𝑋 in C that admits acyclic truncations

· · · −→ 0 −→ Ker 𝑑1 −→ 𝑋1 −→ 𝑋2 −→ 𝑋3 −→ · · ·

and

· · · −→ 𝑋−2 −→ 𝑋−1 −→ 𝑋0 −→ Coker 𝑑−1 −→ 0 −→ · · ·

which induce an admissible exact sequence

0 −→ 𝐴 −→ Coker 𝑑−1 −→ Ker 𝑑1 −→ 0. (7.1.4)

Proof (1) ⇒ (2): This is clear, since any admissible exact sequence in A

induces an exact triangle in D(A).
(2)⇒ (3): An object 𝑋 in Thick(Φ(C)) is a bounded complex with 𝑋𝑛 ∈ C for

all 𝑛 ∈ Z, by Lemma 7.1.1. The truncations exist when 𝑋 is quasi-isomorphic
to Φ(𝐴).

(3) ⇔ (4): Reverse arrows and signs of the degrees.
(3) ⇒ (1): Clear. �

We have the following immediate consequence.
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210 Tilting in Exact Categories

Proposition 7.1.5. For a self-orthogonal subcategory C ⊆ A we have

Φ−1 (Thick(Φ(C))) = Thick(C). �

For a class of objects C ⊆ A we set

⊥C = {𝑋 ∈ A | Ext𝑛 (𝑋,𝑌 ) = 0 for all 𝑌 ∈ C, 𝑛 > 0}

and

C⊥ = {𝑌 ∈ A | Ext𝑛 (𝑋,𝑌 ) = 0 for all 𝑋 ∈ C, 𝑛 > 0}.

Lemma 7.1.6. Let A be an exact category and C ⊆ A a self-orthogonal
subcategory. Then we have the following equalities:

⊥C ∩ Res(C) = C = Cores(C) ∩ C⊥

⊥C ∩ Thick(C) = Cores(C) and C⊥ ∩ Thick(C) = Res(C).

Proof We show the first equality. Then the second follows by duality. The
inclusion ⊥C ∩ Res(C) ⊇ C is clear. Thus we fix 𝐴 ∈ ⊥C ∩ Res(C). An
induction on the length 𝑛 of a C-resolution shows that 𝐴 is in C. The case 𝑛 = 0
is clear. If 𝑛 > 0, consider an exact sequence 𝜂 : 0 → 𝐴′ → 𝐶 → 𝐴→ 0 with
𝐶 ∈ C. Then 𝐴′ ∈ ⊥C ∩ Res(C), and 𝐴′ ∈ C by the inductive hypothesis. Thus
the sequence 𝜂 splits, and 𝐴 is in C since C is closed under direct summands.

Next we verify the third equality. Then the last follows by duality. We have
⊥C ⊇ Cores(C) since ⊥C contains C and is closed under kernels of admissible
epimorphisms. The inclusion Thick(C) ⊇ Cores(C) is clear. Now fix 𝐴 in
⊥C∩ Thick(C). We apply Lemma 7.1.2 and choose a bounded complex 𝑋 in C

that is quasi-isomorphic to Φ(𝐴). We have Ker 𝑑1 ∈ ⊥C, and then the sequence
(7.1.4) implies Coker 𝑑−1 ∈ ⊥C since ⊥C is extension closed. From the first
equality it follows that Coker 𝑑−1 ∈ C. Then

0 −→ 𝐴 −→ Coker 𝑑−1 −→ 𝑋1 −→ 𝑋2 −→ · · ·

yields a finite C-coresolution of 𝐴. �

The category ProjA of projective objects in A is a particular example of a
self-orthogonal subcategory.

Proposition 7.1.7. Let A be an exact category and P ⊆ ProjA a full additive
subcategory closed under direct summands. Then Thick(P) = Res(P).

Proof The inclusion Res(P) ⊆ Thick(P) is clear. Thus we may assume that
A = Thick(P). Clearly, P⊥ = A. Then A = Res(P) by Lemma 7.1.6. �
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7.1 Cotorsion Pairs 211

Corollary 7.1.8. Let Λ be a ring. Then a Λ-module 𝑋 viewed as a complex
concentrated in degree zero belongs to Dperf (Λ) if and only if 𝑋 admits a finite
length projective resolution

0 −→ 𝑃𝑛 −→ · · · −→ 𝑃1 −→ 𝑃0 −→ 𝑋 −→ 0

such that each 𝑃𝑖 is finitely generated.

Proof Combine Proposition 7.1.5 and Proposition 7.1.7. �

Cotorsion Pairs
Let A be an exact category and let X,Y be full subcategories of A. Then (X,Y)
is a (hereditary and complete) cotorsion pair for A if

X⊥ = Y and X = ⊥Y

and every object 𝐴 ∈ A fits into admissible exact sequences

0 −→ 𝑌𝐴 −→ 𝑋𝐴 −→ 𝐴 −→ 0 and 0 −→ 𝐴 −→ 𝑌 𝐴 −→ 𝑋𝐴 −→ 0

with 𝑋𝐴, 𝑋
𝐴 ∈ X and 𝑌𝐴, 𝑌 𝐴 ∈ Y.

Remark 7.1.9. Let (X,Y) be a cotorsion pair for A and set C = X ∩ Y.
(1) We have 𝑋𝐴 ∈ C if 𝐴 ∈ Y, and 𝑌 𝐴 ∈ C if 𝐴 ∈ X.
(2) The above exact sequences are uniquely determined up to isomorphism

in the quotient category A/C (that is obtained from A by annihilating all
morphisms that factor through an object in C). In fact, the assignment 𝐴 ↦→ 𝑋𝐴

gives a right adjoint of the inclusion X/C → A/C, while the assignment
𝐴 ↦→ 𝑌 𝐴 gives a left adjoint of the inclusion Y/C→ A/C.

Proposition 7.1.10. Let A be an exact category and let C ⊆ A be a self-
orthogonal subcategory such that Thick(C) = A. Then

(⊥C,C⊥) = (Cores(C),Res(C))

is a cotorsion pair for A and ⊥C ∩ C⊥ = C.

Proof Combine Lemma 7.1.2 and Lemma 7.1.6. �

Resolving and Coresolving Subcategories
Let A be an exact category and let X,Y be full subcategories of A. The
subcategory X is resolving if X is closed under extensions, direct summands,
kernels of admissible epimorphisms, and for each object 𝐴 ∈ A there is an
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212 Tilting in Exact Categories

admissible epimorphism 𝑋 → 𝐴 with 𝑋 ∈ X. Dually, the subcategory Y is
coresolving if Y is resolving when viewed as a full subcategory of Aop.

Given an object 𝐴 ∈ A, a morphism 𝑋 → 𝐴 with 𝑋 ∈ X is called a right
X-approximation of 𝐴 if the induced map Hom(𝑋 ′, 𝑋) → Hom(𝑋 ′, 𝐴) is
surjective for every object 𝑋 ′ ∈ X. The subcategory X is contravariantly finite
if every object 𝐴 ∈ A admits a right X-approximation. Dually, a morphism
𝐴 → 𝑌 with 𝑌 ∈ Y is called a left Y-approximation of 𝐴 if the induced
map Hom(𝑌,𝑌 ′) → Hom(𝐴,𝑌 ′) is surjective for every object 𝑌 ′ ∈ Y. The
subcategory Y is covariantly finite if every object 𝐴 ∈ A admits a left Y-
approximation.

Example 7.1.11. A full subcategory X ⊆ A is contravariantly finite if the
inclusion admits a right adjoint 𝑝 : A → X. In that case the counit 𝑝(𝐴) → 𝐴

yields a right X-approximation for each object 𝐴 ∈ A. Dually, Y ⊆ A is
covariantly finite if the inclusion admits a left adjoint 𝑞 : A→ X, and then the
unit 𝐴→ 𝑞(𝐴) yields a left Y-approximation for 𝐴 ∈ A.

Lemma 7.1.12. Let (X,Y) be a cotorsion pair for A.

(1) The subcategory X ⊆ A is resolving and contravariantly finite.
(2) The subcategory Y ⊆ A is coresolving and covariantly finite.

Proof Clear. �

A morphism 𝛼 : 𝑋 → 𝑌 is called right minimal if every endomorphism
𝜙 : 𝑋 → 𝑋 with 𝛼𝜙 = 𝛼 is invertible. Dually, 𝛼 is left minimal if every
endomorphism 𝜓 : 𝑌 → 𝑌 with 𝜓𝛼 = 𝛼 is invertible. Note that any morphism
𝜙 : 𝑋 → 𝑌 in a Krull–Schmidt category admits a decomposition 𝑋 = 𝑋 ′ ⊕ 𝑋 ′′

such that 𝜙|𝑋′ is right minimal and 𝜙|𝑋′′ = 0. There is an analogue for left
minimal morphisms.

The following is known as Wakamatsu’s lemma.

Lemma 7.1.13 (Wakamatsu). Let X and Y be extension closed subcategories
of A and 𝐴 ∈ A.

(1) Let 0 → 𝑌 → 𝑋
𝜙
−→ 𝐴 → 0 be an exact sequence in A such that 𝜙 is a

right minimal X-approximation. Then Ext1 (𝑋 ′, 𝑌 ) = 0 for all 𝑋 ′ ∈ X.

(2) Let 0 → 𝐴
𝜙
−→ 𝑌 → 𝑋 → 0 be an exact sequence in A such that 𝜙 is a left

minimal Y-approximation. Then Ext1 (𝑋,𝑌 ′) = 0 for all 𝑌 ′ ∈ Y.

Proof We prove (1), and (2) is dual. An exact sequence 0 → 𝑌 → 𝐸 →

𝑋 ′ → 0 gives rise to the following commutative diagram with exact rows and
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7.1 Cotorsion Pairs 213

columns.

0 0

0 𝑌 𝐸 𝑋 ′ 0

0 𝑋 �̃� 𝑋 ′ 0

𝐴 𝐴

0 0

𝜙 �̃�

We have �̃� ∈ X since X is extension closed, and 𝜙 factors through 𝜙 since 𝜙 is a
right X-approximation. Then the minimality of 𝜙 implies that 𝑋 → �̃� is a split
monomorphism. The approximation 𝜙 induces the following exact sequence

0 Hom(𝑋 ′, 𝑌 ) Hom(𝑋 ′, 𝑋) Hom(𝑋 ′, 𝐴)

Ext1 (𝑋 ′, 𝑌 ) Ext1 (𝑋 ′, 𝑋) Ext1 (𝑋 ′, 𝐴) · · ·

𝛼

𝛽

and we have shown that 𝛽 = 0. On the other hand, 𝛼 = 0 since Hom(𝑋 ′, 𝜙) is
surjective. Thus Ext1 (𝑋 ′, 𝑌 ) = 0. �

Lemma 7.1.14. Let A be an exact category and Y ⊆ A a full additive sub-
category. Then (⊥Y,Y) is a cotorsion pair for A if and only if the following
holds.

(1) Each object 𝐴 ∈ A fits into an admissible exact sequence

0 −→ 𝐴 −→ 𝑌 𝐴 −→ 𝑋𝐴 −→ 0

with 𝑋𝐴 ∈ ⊥Y and 𝑌 𝐴 ∈ Y.
(2) For each object 𝐴 ∈ A there is an admissible epimorphism 𝑋 → 𝐴 with

𝑋 ∈ ⊥Y.
(3) The subcategory Y ⊆ A is closed under direct summands.

Proof For an object 𝐴 ∈ A we need to construct an admissible exact sequence
0 → 𝑌𝐴 → 𝑋𝐴 → 𝐴 → 0. To this end choose an admissible epimorphism
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214 Tilting in Exact Categories

𝑋 → 𝐴 with 𝑋 ∈ ⊥Y and form the following pushout diagram.

0 𝑈 𝑋 𝐴 0

0 𝑌𝑈 𝑋 ′ 𝐴 0

Then the bottom row is the desired exact sequence. It is easily checked that
(⊥Y)⊥ = Y, since Y is closed under direct summands. �

In order to apply the above lemma, we make the following observation. Let
A be an exact category with enough projective objects and X ⊆ A a resolving
subcategory. Then a dimension shift argument shows for 𝑌 ∈ A that

𝑌 ∈ X⊥ ⇐⇒ Ext1 (𝑋,𝑌 ) = 0 for all 𝑋 ∈ X

since Ext𝑝+𝑞 (𝑋,𝑌 ) � Ext𝑝 (Ω𝑞𝑋,𝑌 ) for 𝑝, 𝑞 ≥ 1.

Corollary 7.1.15. Let A be an exact category with enough projective objects
and suppose that A is a Krull–Schmidt category. Then the assignment

Y ↦−→ (⊥Y,Y)

induces a bijection between the covariantly finite coresolving subcategories of
A and the cotorsion pairs for A.

Proof Any cotorsion pair yields a covariantly finite coresolving subcategory
by Lemma 7.1.12. Conversely, if Y ⊆ A is covariantly finite and coresolving,
then the assumptions in Lemma 7.1.14 are satisfied, thanks to Lemma 7.1.13
and the fact that A is a Krull–Schmidt category. Thus (⊥Y,Y) is a cotorsion
pair for A. �

Corollary 7.1.16. Let A be an exact category with enough projective and
enough injective objects. Suppose also that A is a Krull–Schmidt category.
Then the assignments

X ↦−→ X⊥ and ⊥Y←−� Y

induce mutually inverse bijections between the contravariantly finite resolving
subcategories of A and the covariantly finite coresolving subcategories of A.

Proof Apply Corollary 7.1.15 and the dual assertion. �

Example 7.1.17. (1) Let Λ be an Artin algebra. Then modΛ is an abelian
Krull–Schmidt category with enough projective and enough injective objects.

(2) Let Λ be an Artin algebra and suppose that Λ is Gorenstein. Then the
category of finitely generated Λ-modules of finite projective dimension is an
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7.2 Tilting in Exact Categories 215

exact Krull–Schmidt category with enough projective and enough injective
objects.

7.2 Tilting in Exact Categories

We introduce tilting objects in exact categories and discuss the connection
with cotorsion pairs. Also, we show that each tilting object gives rise to a
derived equivalence. The correspondence between tilting objects and cotorsion
pairs is very explicit: a tilting object 𝑇 corresponds to the pair (⊥𝑇,𝑇⊥). The
correspondence is of particular interest for modules over Artin algebras. Also,
we characterise the subcategories which are of the form ⊥𝑇 or 𝑇⊥.

Tilting Objects
Before giving the definition of a tilting object, let us point out that there is a
plethora of different definitions in the literature. Each definition depends on
its context. There are definitions for module categories, abelian categories,
triangulated categories etc. Also, a definition may require the existence of
set-indexed coproducts.

Let A be an exact category. An object 𝑇 is a tilting object if Ext𝑛 (𝑇,𝑇) = 0
for all 𝑛 ≠ 0 and Thick(𝑇) = A.

For an object 𝑋 in A we denote by add 𝑋 the full subcategory consisting of
the direct summands of finite direct sums of copies of 𝑋 .

Proposition 7.2.1. Let A be an exact category and C = add𝑇 for an object
𝑇 ∈ A. Then 𝑇 is tilting if and only if (Cores(C),Res(C)) is a cotorsion pair
for A. In that case we have

⊥𝑇 = Cores(C), 𝑇⊥ = Res(C), ⊥𝑇 ∩ 𝑇⊥ = C.

Proof Apply Proposition 7.1.10. �

The definition of a tilting object in an exact category is compatible with
the definition of a tilting object in a triangulated category. Let T be a triangu-
lated category with suspension Σ : T ∼−→ T. An object 𝑇 is a tilting object if
Hom(𝑇, Σ𝑛𝑇) = 0 for all 𝑛 ≠ 0 and Thick(𝑇) = T.

Proposition 7.2.2. Let A be an exact category. An object 𝑇 in A is a tilting
object if and only if it is a tilting object of D𝑏 (A) when viewed as a complex
concentrated in degree zero.

Proof Set C = add𝑇 and apply Proposition 7.1.5. �
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216 Tilting in Exact Categories

A tilting object gives rise to a derived equivalence.

Theorem 7.2.3. Let A be an exact and idempotent complete category. For an
object 𝑇 with Λ = End(𝑇), the following are equivalent.

(1) The object 𝑇 is a tilting object in A.
(2) The functor Hom(𝑇,−) induces a triangle equivalence D𝑏 (A) ∼−→ Dperf (Λ)

that makes the following square commutative.

K𝑏 (add𝑇) K𝑏 (projΛ)

D𝑏 (A) Dperf (Λ)

Hom(𝑇,−)

� �

∼

(3) There is a triangle equivalence D𝑏 (A) ∼−→ Dperf (Λ) that maps 𝑇 to Λ.

Proof (1) ⇒ (2): Suppose 𝑇 is tilting. The functor Hom(𝑇,−) induces an
equivalence

add𝑇 ∼−−→ projΛ

while the vertical functors are fully faithful by Lemma 7.1.1. The functor on
the right is surjective on objects by definition, and the functor on the left by
Proposition 7.2.2.

(2) ⇒ (3): Clear.
(3) ⇒ (1): The object Λ is a tilting object in Dperf (Λ). This property is

preserved under a triangle equivalence, but also under the embedding A →

D𝑏 (A) by Proposition 7.2.2. �

We will see another proof of the equivalence D𝑏 (A) ∼−→ Dperf (Λ) when we
discuss tilting objects in D𝑏 (A); see Proposition 9.1.20.

Next we consider Grothendieck groups and derive a consequence from the
fact that a triangle equivalence preserves Grothendieck groups. Recall that
𝐾0 (A) denotes the Grothendieck group of an exact category, and that 𝐾0 (Λ) =
𝐾0 (projΛ) for any ring Λ.

Corollary 7.2.4. Let A be an exact and idempotent complete category. Given
a tilting object 𝑇 with Λ = End(𝑇), then Hom(𝑇,−) induces an isomorphism

𝐾0 (A)
∼−−→ 𝐾0 (Λ).

Proof We have isomorphisms

𝐾0 (A)
∼−→ 𝐾0 (D𝑏 (A)) ∼−→ 𝐾0 (Dperf (Λ)) ∼−→ 𝐾0 (Λ),

where the first and the third follow from Lemma 4.1.17 and the middle one
from Theorem 7.2.3. �
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7.2 Tilting in Exact Categories 217

Of particular interest are module categories. Let Λ be a right coherent ring
and consider the abelian category modΛ of finitely presented Λ-modules. If
𝑇 ∈ modΛ is a tilting object and Γ = End(𝑇), then Hom(𝑇,−) induces a
triangle equivalence

D𝑏 (modΛ) ∼−−→ Dperf (Γ)

by the above theorem. For example, ΛΛ is a tilting object in modΛ if and only if
every finitely presented Λ-module has finite projective dimension. This reflects
the fact that the inclusion projΛ → modΛ induces a triangle equivalence
Dperf (Λ) ∼−→ D𝑏 (modΛ) if and only if every finitely presented Λ-module has
finite projective dimension (Corollary 4.2.9).

The existence of a tilting object imposes some immediate constraints on
objects and morphisms in A and D𝑏 (A).

Lemma 7.2.5. Let A be an exact category and suppose there is a tilting object
in A or in D𝑏 (A). Then for each pair of objects 𝑋,𝑌 ∈ D𝑏 (A) we have

Hom(𝑋,Σ𝑛𝑌 ) = 0 for |𝑛| " 0.

In particular, for all 𝑋,𝑌 ∈ A we have Ext𝑛 (𝑋,𝑌 ) = 0 for 𝑛 " 0.

Proof Suppose there is a tilting object 𝑇 in D𝑏 (A). This includes the case
that there is a tilting object in A, by Proposition 7.2.2. It follows from the
definition of a tilting object that 𝑇 is homologically finite, so for all𝑌 ∈ D𝑏 (A)

we have Hom(𝑇, Σ𝑛𝑌 ) = 0 for |𝑛| " 0. The homologically finite objects form
a thick subcategory (Example 3.1.7) and therefore all objects in D𝑏 (A) are
homologically finite. �

We have further consequences when A is a length category.

Lemma 7.2.6. Let A be a length category and 𝑇 ∈ D𝑏 (A) a tilting object.
Then A has only finitely many isomorphism classes of simple objects and

gl.dimA = inf
𝑆,𝑆′

simple

{𝑖 ∈ N | Ext𝑖+1 (𝑆, 𝑆′) = 0} < ∞.

Proof The length of 𝐻 =
⊕

𝑛 𝐻
𝑛𝑇 gives a bound for the number of isomor-

phism classes of simple objects in A. More precisely, let B ⊆ A denote the
Serre subcategory generated by the composition factors of 𝐻. Then 𝑇 belongs
to the thick subcategory of objects 𝑋 ∈ D𝑏 (A) with 𝐻𝑛𝑋 ∈ B for all 𝑛. Thus
B = A.

Having only finitely many simple objects inA, the bound for gl.dimA follows
from the previous lemma. �

Let us consider another class of exact categories.
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Lemma 7.2.7. Let A be a Frobenius category and 𝑇 ∈ A a tilting object. Then
ProjA ⊆ add𝑇 .

Proof Every projective (and injective) object belongs to ⊥𝑇∩𝑇⊥ = add𝑇 . �

Tilting Modules
We consider an exact category A and study its tilting objects. A useful assump-
tion is that A contains a projective tilting object. For example, this holds for a
ring Λ when A equals the category of Λ-modules 𝑋 having a resolution

0 −→ 𝑃𝑟 −→ · · · −→ 𝑃1 −→ 𝑃0 −→ 𝑋 −→ 0

such that each 𝑃𝑖 is finitely generated projective. We set

P(Λ) := Res(projΛ)

and note that P(Λ) = Thick(Λ) by Proposition 7.1.7. Let us give a criterion for
when P(Λ) is trivial.

Lemma 7.2.8. We have P(Λ) = projΛ if and only if Hom(𝑋,Λ) ≠ 0 for every
finitely presented Λop-module 𝑋 ≠ 0.

Proof Write 𝑃∗ = Hom(𝑃,Λ) for 𝑃 ∈ projΛ. We have P(Λ) = projΛ if and
only if every monomorphism 𝑃 → 𝑄 in projΛ splits. Such a monomorphism
𝑃→ 𝑄 splits if and only if 𝑄∗ → 𝑃∗ is an epimorphism. It remains to observe
that Hom(𝑋,Λ) = 0 for 𝑋 = Coker(𝑄∗ → 𝑃∗). �

We continue with an elementary characterisation of projective tilting objects;
so all objects need to have finite projective dimension.

Lemma 7.2.9. Let A be an exact category. Then a projective object 𝑃 is a
tilting object if and only if every object 𝐴 ∈ A admits a finite resolution

0 −→ 𝑃𝑟 −→ · · · −→ 𝑃1 −→ 𝑃0 −→ 𝐴 −→ 0 (𝑃𝑖 ∈ add 𝑃).

Proof If 𝑃 is a tilting object, then 𝑃⊥ = Res(add 𝑃), by Proposition 7.1.10.
Now use that 𝑃⊥ = A since 𝑃 is projective. The other direction is clear since
Res(add 𝑃) ⊆ Thick(𝑃). �

Proposition 7.2.10. Let A be an exact category and 𝑃 ∈ A a projective tilting
object. Then an object 𝑇 ∈ A is a tilting object if and only if

(1) Ext𝑛 (𝑇,𝑇) = 0 for all 𝑛 ≠ 0, and
(2) there is an exact sequence

0 −→ 𝑃 −→ 𝑇0 −→ 𝑇1 −→ · · · −→ 𝑇𝑟 −→ 0 (𝑇 𝑖 ∈ add𝑇).
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Proof If 𝑇 is a tilting object, then 𝑃 ∈ ⊥𝑇 = Cores(add𝑇), by Proposi-
tion 7.1.10. Conversely, if𝑃 ∈ Cores(add𝑇), thenA = Thick(𝑃) ⊆ Thick(𝑇) ⊆
A. �

When Λ is a ring, then a Λ-module 𝑇 is called a tilting module (of finite pro-
jective dimension) if it is a tilting object of the exact categoryP(Λ). This means
Ext𝑛 (𝑇,𝑇) = 0 for all 𝑛 ≠ 0, and Thick(𝑇) = Thick(Λ). More concretely, it
follows from the above proposition that a Λ-module 𝑇 is a tilting module if and
only if

(T1) there is an exact sequence

0 −→ 𝑃𝑟 −→ · · · −→ 𝑃1 −→ 𝑃0 −→ 𝑇 −→ 0 (𝑃𝑖 ∈ projΛ),

(T2) Ext𝑛 (𝑇,𝑇) = 0 for all 𝑛 ≠ 0, and
(T3) there is an exact sequence

0 −→ Λ −→ 𝑇0 −→ 𝑇1 −→ · · · −→ 𝑇 𝑠 −→ 0 (𝑇 𝑖 ∈ add𝑇).

Now let Λ be an Artin 𝑘-algebra, and write 𝐷 = Hom𝑘 (−, 𝐸) for the Matlis
duality given by an injective 𝑘-module 𝐸 .

Example 7.2.11. The algebra Λ is Gorenstein if and only if 𝐷 (Λ)Λ is a tilting
module. In fact, the finite injective dimension of ΛΛ corresponds to (T3), while
the finite injective dimension of ΛΛ corresponds to (T1).

Example 7.2.12. Let Λ be an algebra such that every module of finite pro-
jective dimension is projective, so P(Λ) = projΛ. This holds if and only if
Hom(𝑆,Λ) ≠ 0 for every simple Λop-module 𝑆, so for example when Λ is
self-injective or local; see Lemma 7.2.8. Then a Λ-module 𝑇 is tilting if and
only if add𝑇 = projΛ.

Any tilting object gives rise to a derived equivalence by Theorem 7.2.3, and
the following result makes this more precise for modules over Artin algebras.
For a generalisation involving tilting complexes, see Theorem 9.2.4.

Proposition 7.2.13. Let Λ and Γ be Artin algebras of finite global dimension.
Suppose that 𝑇Λ is a tilting module and Γ � EndΛ (𝑇). Then we have an adjoint
pair of triangle equivalences

D𝑏 (modΛ) D𝑏 (mod Γ).
RHomΛ (𝑇,−)

−⊗𝐿
Γ 𝑇

Proof The pair of adjoint functors is taken from Proposition 4.3.15 and
provides equivalences by Theorem 7.2.3, keeping in mind that Dperf (Γ) ∼−→

D𝑏 (mod Γ). �
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Remark 7.2.14. It suffices to assume that Λ has finite global dimension. Then
for any tilting module 𝑇 the algebra EndΛ (𝑇) has finite global dimension, by
Theorem 9.3.11.

Tilting Objects and Cotorsion Pairs
In Proposition 7.2.1 we have seen that each tilting object 𝑇 yields a cotorsion
pair (⊥𝑇,𝑇⊥). Now we wish to characterise the cotorsion pairs of an exact
category that are induced by tilting objects. Let us keep the assumption that the
category admits a projective tilting object.

Lemma 7.2.15. Let A be an exact category and suppose 𝑃 ∈ A is a projective
tilting object. For a cotorsion pair (X,Y) the following are equivalent.

(1) There is an exact sequence

0 −→ 𝑃 −→ 𝑌0 −→ 𝑌1 −→ · · · −→ 𝑌 𝑟 −→ 0 (𝑌 𝑖 ∈ Y).

(2) gl.dimX < ∞.
(3) There exists a tilting object 𝑇 in A such that (X,Y) = (⊥𝑇,𝑇⊥).

Proof (1) ⇒ (2): Set 𝑍 𝑖 := Ker(𝑌 𝑖 → 𝑌 𝑖+1). Then we have for any 𝑋 ∈ X

Ext1 (𝑋, 𝑍 𝑖) � Ext𝑖+1 (𝑋, 𝑃)

and therefore Ext𝑖 (𝑋, 𝑃) = 0 for all 𝑖 > 𝑟. This implies Ext𝑖 (𝑋,−) = 0 for all
𝑖 > 𝑟 since every object inA has a finite projective resolution; see Lemma 7.2.9.

(2) ⇒ (3): Suppose that gl.dimX = 𝑟. We apply successively Remark 7.1.9
and obtain an exact sequence

0 −→ 𝑃 −→ 𝑇0 −→ 𝑇1 −→ · · · −→ 𝑇𝑟 −→ 0 (𝑇 𝑖 ∈ X ∩ Y)

that terminates since Ext𝑟+1 (𝑋, 𝑃) = 0. Thus 𝑇 = 𝑇0 ⊕ · · · ⊕ 𝑇𝑟 is a tilting
object by Proposition 7.2.10. We have

⊥𝑇 = ⊥(𝑇⊥) ⊆ ⊥Y = X ⊆ ⊥𝑇

where the first equality holds by Proposition 7.2.1. Therefore ⊥𝑇 = X. Analo-
gously, 𝑇⊥ = Y.

(3) ⇒ (1): Apply Proposition 7.2.10. �

We call tilting objects 𝑇 and 𝑇 ′ equivalent if add𝑇 = add𝑇 ′.

Proposition 7.2.16. Let A be an exact category and 𝑃 a projective tilting
object. Then the assignment 𝑇 ↦→ 𝑇⊥ = Res(add𝑇) gives a bijection between
the equivalence classes of tilting objects of A and full additive subcategories
Y ⊆ A satisfying the following.
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(1) Each object 𝐴 ∈ A fits into an admissible exact sequence

0 −→ 𝐴 −→ 𝑌 𝐴 −→ 𝑋𝐴 −→ 0

with 𝑋𝐴 ∈ ⊥Y and 𝑌 𝐴 ∈ Y.
(2) There is an exact sequence

0 −→ 𝑃 −→ 𝑌0 −→ 𝑌1 −→ · · · −→ 𝑌 𝑟 −→ 0 (𝑌 𝑖 ∈ Y).

(3) The subcategory Y ⊆ A is closed under direct summands.

Proof We have a correspondence between tilting objects and cotorsion pairs
by Proposition 7.2.1. Combining this with Lemma 7.2.15 the assertion follows,
once we observe that a subcategory Y ⊆ A satisfying (1)–(3) gives rise to a
cotorsion pair (⊥Y,Y) by Lemma 7.1.14. �

Let us consider the case A = modΛ when Λ is right coherent.

Proposition 7.2.17. Let Λ be a right coherent ring of finite global dimension.
Then the asssignment 𝑇 ↦→ (⊥𝑇,𝑇⊥) gives a bijection between the equivalence
classes of tilting objects of modΛ and the cotorsion pairs for modΛ.

Proof The assertion follows from Proposition 7.2.1 and Lemma 7.2.15. The
inverse maps sends (X,Y) to X ∩ Y = add𝑇 . �

Finite Global Dimension
We consider an exact category A and make some additional assumptions:

(1) A is a Krull–Schmidt category, and
(2) A admits a projective tilting object.

Then the correspondence in Proposition 7.2.16 can be reformulated as follows.

Theorem 7.2.18. The assignment 𝑇 ↦→ 𝑇⊥ = Res(add𝑇) gives a bijec-
tion between the equivalence classes of tilting objects of A and full addi-
tive subcategories Y ⊆ A that are covariantly finite and coresolving with
gl.dim ⊥Y < ∞. The inverse map sends a subcategory Y ⊆ A to an object 𝑇
satisfying add𝑇 = ⊥Y ∩ Y.

Clearly, the condition gl.dim ⊥Y < ∞ is obsolete when gl.dimA < ∞.

Proof We apply the correspondence of Corollary 7.1.15 between cotorsion
pairs and covariantly finite and coresolving subcategories. The cotorsion pairs
corresponding to tilting objects are characterised in Lemma 7.2.15. Given a
tilting cotorsion pair (X,Y), the tilting object 𝑇 is determined by the equality
add𝑇 = X ∩ Y; see Proposition 7.2.1. �
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For a ring Λ we consider the category P(Λ) of modules having a finite pro-
jective resolution via finitely generated projective modules. Then gl.dimP(Λ)
is called the finitistic dimension of Λ; it is conjectured to be finite when Λ is an
Artin algebra, and this has been established for many classes of algebras.

Corollary 7.2.19. Let Λ be an Artin algebra and suppose that Λ is Gorenstein.

(1) The assignment𝑇 ↦→ 𝑇⊥ = Res(add𝑇) gives a bijection between the equiv-
alence classes of tilting objects of P(Λ) and full additive subcategories
Y ⊆ P(Λ) that are covariantly finite and coresolving.

(2) The assignment 𝑇 ↦→ ⊥𝑇 = Cores(add𝑇) gives a bijection between the
equivalence classes of tilting objects of P(Λ) and full additive subcate-
gories X ⊆ P(Λ) that are contravariantly finite and resolving.

Proof Let Λ be Gorenstein of dimension 𝑑. This means that the injective
dimensions of ΛΛ and ΛΛ equal 𝑑. Then the projective dimension of every
injectiveΛ-module is bounded by 𝑑. Thus gl.dimP(Λ) = 𝑑 < ∞ (Lemma 6.2.2)
and P(Λ) has enough injective objects. Then (1) follows from Theorem 7.2.18,
and (2) follows from (1) with Corollary 7.1.16. �

There are examples of rings such that the finitistic dimension is infinite. That
means an exact category with a projective tilting object need not be of finite
global dimension.

Example 7.2.20. Let 𝑘 be a field and fix a partitionN =
⋃

𝑖 𝐼𝑖 into finite sets of
unbounded cardinality. Consider the ring Λ which is obtained from localising
the polynomial ring 𝐴 = 𝑘 [𝑥0, 𝑥1, 𝑥2, . . .] at the complement of the union of
the infinite set of prime ideals

⋃
𝑖 𝔭𝑖 , where 𝔭𝑖 denotes the ideal generated by

{𝑥𝑛 | 𝑛 ∈ 𝐼𝑖}. Then this is an example of a commutative noetherian ring of
infinite Krull dimension [146, Appendix, Example 1]. In fact, the height of𝔭𝑖 in
𝐴 is card 𝐼𝑖; so there is no bound for the height of a prime ideal in Λ. Moreover,
there is no bound on the length of a regular sequence in Λ. It remains to note
that for any commutative noetherian ring the supremum of the lengths of the
regular sequences equals the finitistic dimension [12, Theorem 1.6].

APR Tilting Modules
LetΛ be an Artin algebra. We exhibit a particular class of tilting modules which
have projective dimension one.

Proposition 7.2.21. Let 𝑒 ∈ Λ be an idempotent such that no direct summand
of (1− 𝑒)Λ is isomorphic to 𝑒Λ. Suppose that 𝑒Λ is a simple and non-injective
Λ-module. Then 𝑇 = (1 − 𝑒)Λ ⊕ Tr𝐷 (𝑒Λ) is a tilting module.

https://doi.org/10.1017/9781108979108.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108979108.013


7.2 Tilting in Exact Categories 223

Proof Set 𝑆 = 𝑒Λ and denote by 𝑃1, . . . , 𝑃𝑛 a representative set of indecom-
posable projective Λ-modules which are not isomorphic to 𝑆. We need to check
conditions (T1)–(T3) for 𝑇 . The almost split sequence starting at 𝑆 is of the
form

0 −→ 𝑆 −→
⊕
𝑖

𝑃𝑑𝑖

𝑖 −→ Tr𝐷𝑆 −→ 0 (7.2.22)

for some 𝑑𝑖 ≥ 0. This follows from the fact that for each indecomposable
summand 𝑋 of the middle term, the morphism 𝜙 : 𝑋 → Tr𝐷𝑆 yields a mor-
phism 𝐷 Tr 𝜙 : 𝐷 Tr 𝑋 → 𝑆, which is non-zero when 𝐷 Tr 𝑋 ≠ 0. Thus 𝑋
is projective since 𝑆 is simple projective. This sequence gives immediately
(T1) and (T3). Condition (T2) is deduced from the Auslander-Reiten formula,
so 𝐷 Ext1 (𝑇,𝑇) � Hom(𝑇, 𝐷 Tr𝑇) = 0, since 𝐷 Tr𝑇 � 𝑆 is simple projec-
tive. �

Let us consider some specific algebras over a field 𝑘 .

Example 7.2.23. Denote by Λ the 𝑘-algebra given by the following quiver with
a commutativity relation:

2

1 4

3

𝛽𝛼

𝛾 𝛿

with 𝛽𝛼 = 𝛿𝛾

Let 𝑃𝑖 = 𝑒𝑖Λ denote the indecomposable projective module corresponding to
the vertex 𝑖. Then 𝑃1 is simple, so

𝑇 = Tr𝐷𝑃1 ⊕ 𝑃2 ⊕ 𝑃3 ⊕ 𝑃4

is a tilting module with Γ = End(𝑇) isomorphic to the path algebra of the
quiver of Dynkin type 𝐷4:

2

1 4

3

We may also get back from Γ to Λ, because the Γ-module

𝑇 ′ = 𝑃1 ⊕ Tr𝐷𝑃2 ⊕ Tr𝐷𝑃3 ⊕ Tr𝐷𝑃4

is tilting and End(𝑇 ′) � Λ.
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Now let Λ = 𝑘𝑄 be the path algebra given by a finite quiver 𝑄 without
oriented cycles. Suppose the vertex 𝑖 ∈ 𝑄0 is a source, so no arrow ends in 𝑖,
but at least one arrow starts at 𝑖. Denote by 𝑄(𝑖) the quiver which is obtained
from 𝑄 by reversing the orientation of each arrow starting at 𝑖.

Observe that the algebra Λ is hereditary. Thus the following illustrates the
tilting process for hereditary abelian categories discussed in Theorem 5.1.2.

Proposition 7.2.24. Let 𝑖 ∈ 𝑄0 be a source of 𝑄. Then the indecomposable
projective module 𝑃𝑖 is simple, and therefore

𝑇 (𝑖) = Tr𝐷𝑃𝑖 ⊕
( ⊕
𝑖≠ 𝑗∈𝑄0

𝑃 𝑗

)
is a tilting module with End(𝑇 (𝑖)) � 𝑘𝑄(𝑖).

Proof The module 𝑇 (𝑖) is tilting by Proposition 7.2.21. To compute its endo-
morphism algebra, we note that the almost split sequence (7.2.22) starting at
𝑃𝑖 is of the form

0 −→ 𝑃𝑖 −→
⊕
𝑖→ 𝑗

𝑃 𝑗 −→ Tr𝐷𝑃𝑖 −→ 0

where 𝑖 → 𝑗 runs through all arrows in 𝑄 starting at 𝑖. �

We denote by |𝑄 | the underlying diagram of𝑄which is obtained by forgetting
the orientation of each arrow.

Corollary 7.2.25. Let 𝑄 and 𝑄 ′ be acyclic quivers such that |𝑄 | = |𝑄 ′ |. Then
there is a triangle equivalence D𝑏 (mod 𝑘𝑄) ∼−→ D𝑏 (mod 𝑘𝑄 ′).

Proof For a sequence 𝑖1, . . . , 𝑖𝑛 of vertices in 𝑄 one defines recursively

𝑄(𝑖1, . . . , 𝑖𝑛) = 𝑄(𝑖1, . . . , 𝑖𝑛−1) (𝑖𝑛).

Because the quivers are acyclic, it is not difficult to construct from the assump-
tion |𝑄 | = |𝑄 ′ | a sequence 𝑖1, . . . , 𝑖𝑛 of vertices such that 𝑄 ′ = 𝑄(𝑖1, . . . , 𝑖𝑛).
Then we obtain a sequence of 𝑛 tilting modules from Proposition 7.2.24. These
yield triangle equivalences connecting D𝑏 (mod 𝑘𝑄) and D𝑏 (mod 𝑘𝑄 ′), by ap-
plying Theorem 5.1.2 or Proposition 7.2.13, and keeping in mind that a path
algebra is hereditary. �

Tilting Objects for Quivers of Type 𝐴𝑛
We describe the lattice of tilting objects for the category of representations of
a quiver of type 𝐴𝑛; it is isomorphic to the Tamari lattice of order 𝑛.
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The Tamari Lattice
Fix an integer 𝑛 ≥ 1. The Tamari lattice of order 𝑛 is a partially ordered set and
is denoted by𝑇𝑛. The elements consist of the meaningful bracketings of a string
of 𝑛 + 1 letters. The partial order is given by applying the rule (𝑥𝑦)𝑧 → 𝑥(𝑦𝑧)

from left to right. For example, when 𝑛 = 3, we have

((𝑎𝑏)𝑐)𝑑 ≥ (𝑎(𝑏𝑐))𝑑 ≥ 𝑎((𝑏𝑐)𝑑) ≥ 𝑎(𝑏(𝑐𝑑)).

Here is the Hasse diagram of the lattice 𝑇3:

( (𝑎𝑏)𝑐)𝑑

(𝑎 (𝑏𝑐) )𝑑

(𝑎𝑏) (𝑐𝑑)

𝑎 ( (𝑏𝑐)𝑑)

𝑎 (𝑏 (𝑐𝑑) )

And here is the Hasse diagram of the lattice 𝑇4:

( ( (𝑎𝑏)𝑐)𝑑)𝑒

( (𝑎 (𝑏𝑐) )𝑑)𝑒 ( (𝑎𝑏)𝑐) (𝑑𝑒)

( (𝑎𝑏) (𝑐𝑑) )𝑒 (𝑎 ( (𝑏𝑐)𝑑) )𝑒

(𝑎 (𝑏 (𝑐𝑑) ) )𝑒 (𝑎 (𝑏𝑐) ) (𝑑𝑒)

(𝑎𝑏) ( (𝑐𝑑)𝑒) 𝑎 ( ( (𝑏𝑐)𝑑) )𝑒)

𝑎 ( (𝑏 (𝑐𝑑) )𝑒) 𝑎 ( (𝑏𝑐) (𝑑𝑒) )

(𝑎𝑏) (𝑐 (𝑑𝑒) ) 𝑎 (𝑏 ( (𝑐𝑑)𝑒) )

𝑎 (𝑏 (𝑐 (𝑑𝑒) ) )

The cardinality of the Tamari lattice 𝑇𝑛 equals the Catalan number

𝐶𝑛 =
1

𝑛 + 1

(
2𝑛
𝑛

)
.

Let I(𝑛) denote the set of intervals [𝑖, 𝑗] = {𝑖, 𝑖 + 1, . . . , 𝑗} in Z with 0 ≤ 𝑖 <
𝑗 ≤ 𝑛. For a pair of intervals 𝐼, 𝐽 we set

𝐼 ⊥ 𝐽 : ⇐⇒ 𝐼 ⊆ 𝐽 or 𝐽 ⊆ 𝐼 or 𝐼 ∩ 𝐽 = ∅.

Let T(𝑛) denote the set of all subsets 𝑋 ⊆ I(𝑛) of cardinality 𝑛 such that 𝐼 ⊥ 𝐽
for all 𝐼, 𝐽 ∈ 𝑋 .

Lemma 7.2.26. Sending an interval [𝑖, 𝑗] to the bracketing

𝑥0 . . . (𝑥𝑖 . . . 𝑥 𝑗 ) . . . 𝑥𝑛

of the string 𝑥0 . . . 𝑥𝑛 induces a bijection T(𝑛) ∼−→ 𝑇𝑛. �
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Representations of Type 𝐴𝑛
Fix an integer 𝑛 ≥ 1 and a field 𝑘 . We consider the quiver of type 𝐴𝑛 with linear
orientation

1 2 3 · · · 𝑛

and denote by Λ𝑛 its path algebra over 𝑘 . For each 𝑗 ∈ {1, . . . , 𝑛} let 𝑃 𝑗 denote
the indecomposable projective Λ𝑛-module having as a 𝑘-basis all paths ending
in the vertex 𝑗 , and for each interval 𝐼 = [𝑖, 𝑗] in Z with 0 ≤ 𝑖 < 𝑗 ≤ 𝑛 we set
𝑀𝐼 := 𝑃 𝑗/rad 𝑗−𝑖 𝑃 𝑗 .

Lemma 7.2.27. The following holds for the modules 𝑀𝐼 .

(1) The set {𝑀𝐼 | 𝐼 ∈ I(𝑛)} is a complete set of isomorphism classes of
indecomposable Λ𝑛-modules.

(2) Ext1 (𝑀𝐼 , 𝑀𝐽 ) = 0 = Ext1 (𝑀𝐽 , 𝑀𝐼 ) if and only if 𝐼 ⊥ 𝐽.
(3) There is an epimorphism 𝑀𝐼 → 𝑀𝐽 if and only if 𝐽 ⊆ 𝐼 and sup 𝐽 =

sup 𝐼. �

A Λ𝑛-module 𝑇 is a basic tilting module if 𝑇 has precisely 𝑛 pairwise non-
isomorphic indecomposable direct summands and Ext1 (𝑇,𝑇) = 0. Observe
that the isomorphism classes of basic tilting modules correspond bijectively to
the equivalence classes of tilting objects in modΛ𝑛, since 𝑇 � 𝑇 ′ if and only if
add𝑇 = add𝑇 ′.

Write𝑇 ≥ 𝑇 ′ if there is an epimorphism𝑇𝑟 → 𝑇 ′ for some positive integer 𝑟.
This induces a partial order on the isomorphism classes of basic tilting modules,
and we have

𝑇 ≥ 𝑇 ′ ⇐⇒ 𝑇⊥ ⊇ 𝑇 ′⊥

since an object 𝑀 is in 𝑇⊥ if and only if there is an epimorphism 𝑇𝑟 → 𝑀 for
some positive integer 𝑟.

Proposition 7.2.28. The assignment 𝑋 ↦→
⊕

𝐼∈𝑋 𝑀𝐼 induces a bijection be-
tween T(𝑛) and the set of isomorphism classes of basic tilting modules over Λ𝑛.
Composition with the bijection 𝑇𝑛 ∼−→ T(𝑛) yields a lattice isomorphism. �

Notes

Tilting theory has a rich history [5]. The notion of a tilting module over a
finite dimensional algebra was introduced by Brenner and Butler [41], using
the conditions of Proposition 7.2.10 and assuming projective dimension at most
one. A generalisation of the Coxeter functors arising in the work of Bernšteı̆n,
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Gel’fand and Ponomarev [36] motivated the study of tilting modules; see also
the contribution of Auslander, Platzeck and Reiten leading to the notion of APR
tilting [14]. The original definition of a tilting module was later generalised in
various directions.

According to Brenner and Butler, the term ‘tilting’ was chosen for the fol-
lowing reasons. Given a tilting object 𝑇 ∈ A, the functor RHom(𝑇,−) swaps
the components of the torsion pair (T,F) for A (Theorem 5.1.2). Inside the
Grothendieck group 𝐾0 (A) � Z𝑛, the functor RHom(𝑇,−) tilts the axes given
by the standard basis vectors (Corollary 7.2.4). Moreover, the word ‘tilting’
inflicts well.

For representations of finite dimensional algebras, the link between tilting
and derived categories was first established by Happel [101]. He proved that
any tilting module induces a derived equivalence. A predecessor is a theorem
of Beilinson that identifies a tilting object in the category of coherent sheaves
on the projective 𝑛-space [25].

For modules over Artin algebras, the correspondence𝑇 ↦→ 𝑇⊥ between tilting
objects and covariantly finite and coresolving subcategories (Theorem 7.2.18)
is due to Auslander and Reiten [16].

Gabriel noticed that the Catalan number 𝐶𝑛 counts the tilting modules of the
equioriented quiver of type 𝐴𝑛 [81]. The connection with the Tamari lattice
was pointed out in [43].
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