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The result given above for unrestricted x suggests my second
proof, which is considerably simpler. From the asymptotic expansion
of the Gamma-function it follows that the function

r(x)r(-x-j)
8r(f + x) T(l-x)

satisfies the conditions (Cf. Modern Analysis, §7'4) which admit of
its being expressed as a sum of partial fractions. Since the residues
of the function at the poles x — — n, x = n — \ are respectively

2 + 2

we obtain anew the result

Y{x)Y{-x-\) |
8T(-?r +x) r ( l - z ) n=o2a; + 2w n=0 2x - 2n

for unrestricted x.
It is, of course, possible to write down any number of

generalisations of this result, the simplest perhaps being the
expression for

F (x) T (— x — a)
T(l + a+x)r(l-x)

as a sum of partial fractions, where a is a suitably restricted
constant.

On the configuration known as a double-six of lines

By H. W. RICHMOND, King's College, Cambridge.

In geometry of three dimensions it is well known that, when two
quadrics Qlt Q2 are given, if one set of four points exists having the
properties that each point lies on Qx, and each two points are
conjugate with respect to Q2, an infinity of such sets of points
can be found. The quadrics Qlt Q2 stand in a special relation to one
another1, expressed by the vanishing of the coefficient of A in the
discriminant of Qz + XQlt an invariant of Qx, Q2. Two quadrics
Qi, Qi are thus related if the equation of Qx contains no squares

1 See Salmon, Analytic Geometry of Three Dimensions, Rogers' revised edition, Vol. 1,
p. 204 ; or Sommerville, Analytical Geometry of Three Dimensions, p. 309.
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of the coordinates, and that of Q2 contains no products of two
coordinates; for then the vertices of the tetrahedron of reference
form such a set of four points.

Even better known are the analogous properties in plane
geometry concerning sets of three points and two conies: they need
not be quoted. Similar results hold when more than four homo-
geneous variables are used; they may be enunciated as theorems in
algebra, or in geometry of more than three dimensions. With six
homogeneous coordinates, if in the first paragraph we replace " four "
by " six," and the word " tetrahedron" by " simplex," we have a
theorem of geometry of five dimensions.

But under certain conditions the six coordinates lend themselves
to a simple interpretation in three-dimensional space. Points being
represented by homogeneous coordinates (x0, xu x2, xz), Pliicker
represented a line by six homogeneous coordinates p01, p02, p03, p2Zy

psl, p12 satisfying a quadratic relation

Poi P23 + P02 Psi + #03 fesO: (Qx)

since this contains no squared terms, it will serve for Qx. Again, if
8 is any quadric surface in the space whose equation is expressed as

a0 xl + ay x\ + a2 x\ + a3 x\ = 0,

the condition that a line should touch S is

= 0 , (Q2)

or 2 am aH pln = 0:

which, containing only squares of the coordinates (p), will serve for
Q2. The condition

2 am anpmnp'mn = 0,

(which asserts that two sets of six coordinates pmn and p'mn are
conjugate with respect to Q2) bears the interpretation that either
line meets the polar of the other with respect to S. Hence we have
the theorem.

In connection with any quadric surface in space of three dimensions,
there exist sets of six lines having the property that any one of the lines
intersects the polar line of any other.

The quadric being given, a set of six lines may be built up as
follows:—the first line (ax) is chosen at random; its polar line (&x) is
then known. The second line (a2) may be any line that meets bx;
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its polar line (b2), which must meet au is then known. For as choose
any line that meets bx and b2; its polar line (bs) will meet ax and a2

and will be known. For <z4 choose any line that meets bu b2, b3; its
polar line (64) will meet alt a2, a3 and will be known. But at this
point, since only two lines meet 6X, b2, 63, 64, one of them must be
a-o and the other a6; their polars 65 and b6 are the two lines which
meet au a2, a3, a4: and at this point, since all but one of the condi-
tions binding the lines (a) have been satisfied, the force of the
invariant relation between Qx and Q2 becomes effective and proves
the last condition, viz. that a5 meets the polar line of aa and vice
versa. The twelve lines a and b thus constitute a double-six of lines.
Moreover any double-six of lines may be thus obtained.

The evaluation of certain continued fractions

By C. G. DARWIN, University of Cambridge.

1. If the approximate numerical value of e is expressed as a con-
tinued fraction the result is

e = 2 + l 1 1 1 1 I 1 1 I . . . . (i)
T 1 + 2+ 1 + 1 + 4+ 1 + 1 + 6+ 1 W

and it was in finding the proof that the sequence extends correctly to
infinity that the following work was done. First the continued
fraction may be simplified by setting down the difference equations
for numerator and denominator as usual, and eliminating two out of
every successive three equations. A difference equation is thus
formed between the first, fourth, seventh, tenth . . . . convergents

/counting the first as 2 + — ), and this equation will generate

another continued fraction. After a little rearrangement of the first
two members it appears that (1) implies

e--.! = ! 1 i- .... (2)
e + 1 2 + 6 + 10+ K '

2. We therefore consider the continued fraction
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